A Comprehensive Review of Nanotechnology Applications in Oil and Gas Well Drilling Operations
Abstract
:1. Introduction
2. Nanotechnology Revolutionizing the Oil Field
3. Challenges Faced in Oil and Gas Well Drilling Operations
4. Advantages of Applying Nanotechnology in the Oil and Gas Industry
4.1. Enhancing Drilling Fluid Performance through the Integration of Nanoparticles
4.2. Harnessing Nanoparticles for Enhanced Filtration Control and Thermal Conductivity in Drilling Fluids
4.3. Nanoparticle Advancements in Drilling Fluids: Optimizing Filtration, Rheology, and Environmental Impact
4.4. Nano Silica Modernizing Oil Well Cementing: Enhancing Strength, Reducing Porosity, and Mitigating Gas Migration Risks
4.5. Innovations in Cement Technology: From Self-Healing Additives to Nanosensors, Paving the Way for Durable and Enhanced Well Integrity
4.6. Nanoparticle Innovations Transforming Oil Industry Practices: From High-Temperature Insulating Packer Fluids to Precision Conformance Control
5. Nanotechnology and Environmental Impacts
5.1. Nanotechnology and Waste Management
5.1.1. Nanofilters in Waste Management
5.1.2. Nano Photocatalysts and Porous Nano Catalysts
6. Utilizing Nanomaterials in the Drilling Operations of Deep Geothermal Reservoirs
7. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, H.; Jin, X.; Ding, B. Application of nanotechnology in petroleum exploration and development. Pet. Explor. Dev. 2016, 43, 1107–1115. [Google Scholar] [CrossRef]
- Abdo, J.; Haneef, M.D. Nanoparticles: Promising solution to overcome stern drilling problems. In Proceedings of the Nanotech Conference and Exhibition, Anaheim, CA, USA, 21–24 June 2010; pp. 6–8. [Google Scholar]
- Cheraghian, G.; Khalili Nezhad, S.S.; Bazgir, S. Improvement of thermal stability of polyacryl amide solution used as a nano-fluid in enhanced oil recovery process by nanoclay. Int. J. Nanosci. Nanotechnol. 2015, 11, 201–208. [Google Scholar]
- Abdo, J.; Haneef, M.D. Nano-enhanced drilling fluids: Pioneering approach to overcome uncompromising drilling problems. J. Energy Resourse Technol. 2012, 134, 014501. [Google Scholar] [CrossRef]
- Devendiran, D.K.; Amirtham, V.A. A review on preparation, characterization, properties and applications of nanofluids. Renew. Sustain. Energy Rev. 2016, 60, 21–40. [Google Scholar] [CrossRef]
- Roodbari, P.; Sabbaghi, S. Investigating the properties of modified drilling mud with barite/polyacrylamide nanocomposite. SPE Drill. Complet. 2021, 36, 868–874. [Google Scholar] [CrossRef]
- Abdo, J.; Haneef, M.D. Clay nanoparticles modified drilling fluids for drilling of deep hydrocarbon wells. Appl. Clay Sci. 2013, 86, 76–82. [Google Scholar] [CrossRef]
- Apaleke, A.S.; Al-Majed, A.; Hossain, M.E. Drilling fluid: State of the art and future trend. In Proceedings of the SPE North Africa Technical Conference and Exhibition, Cairo, Egypt, 20–22 February 2012; p. SPE-149555-MS. [Google Scholar]
- Cheraghian, G. Application of nano-particles of clay to improve drilling fluid. Int. J. Nanosci. Nanotechnol. 2017, 13, 177–186. [Google Scholar]
- Chekli, L.; Phuntsho, S.; Kim, J.E.; Kim, J.; Choi, J.Y.; Choi, J.-S.; Kim, S.; Kim, J.H.; Hong, S.; Sohn, J.; et al. A comprehensive review of hybrid forward osmosis systems: Performance, applications and future prospects. J. Membr. Sci. 2016, 497, 430–449. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Olayiwola, T.; Elkatatny, S.; Haq, B.; Patil, S. Insights into the application of surfactants and nanomaterials as shale inhibitors for water-based drilling fluid: A review. J. Nat. Gas Sci. Eng. 2021, 92, 103987. [Google Scholar] [CrossRef]
- Kassim, T.A. Waste Minimization and Molecular Nanotechnology: Toward Total Environmental Sustainability. In Water Pollution: Environmental Impact Assessment of Recycled Wastes on Surface and Ground Waters; Engineering Modeling and Sustainability; Kassim, T.A., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 191–229. [Google Scholar]
- Das, B.; Dutta, D. A review of nanotechnology applications in the oil and gas industries. Resour.-Effic. Technol. 2019, 4, 1–19. [Google Scholar]
- Cheraghian, G.; Hendraningrat, L. A review on applications of nanotechnology in the enhanced oil recovery part A: Effects of nanoparticles on interfacial tension. Int. Nano Lett. 2016, 6, 129–138. [Google Scholar] [CrossRef]
- Alsedrani, M.Q.; Chala, G.T. Investigation of the Effects of Silica Nanofluid for Enhanced Oil Recovery Applications: CFD Simulation Study. Arab. J. Sci. Eng. 2023, 48, 9139–9158. [Google Scholar] [CrossRef]
- Tahr, Z.; Ali, J.A.; Mohammed, A.S. Sustainable aspects behind nano-biodegradable drilling fluids: A critical review. Geoenergy Sci. Eng. 2023, 222, 211443. [Google Scholar] [CrossRef]
- Davarpanah, A.; Razmjoo, A.; Mirshekari, B. An overview of management, recycling, and wasting disposal in the drilling operation of oil and gas wells in Iran. Cogent Environ. Sci. 2018, 4, 1537066. [Google Scholar] [CrossRef]
- Ko, S.; Huh, C. Use of nanoparticles for oil production applications. J. Pet. Sci. Eng. 2019, 172, 97–114. [Google Scholar] [CrossRef]
- Khalil, M.; Jan, B.M.; Tong, C.W.; Berawi, M.A. Advanced nanomaterials in oil and gas industry: Design, application and challenges. Appl. Energy 2017, 191, 287–310. [Google Scholar] [CrossRef]
- Cheraghian, G.; Rostami, S.; Afrand, M. Nanotechnology in Enhanced Oil Recovery. Processes 2020, 8, 1073. [Google Scholar] [CrossRef]
- Cheraghian, G. Nanoparticles in drilling fluid: A review of the state-of-the-art. J. Mater. Res. Technol. 2021, 13, 737–753. [Google Scholar] [CrossRef]
- Davoodi, S.; Al-Shargabi, M.; Wood, D.A.; Rukavishnikov, V.S.; Minaev, K.M. Experimental and field applications of nanotechnology for enhanced oil recovery purposes: A review. Fuel 2022, 324, 124669. [Google Scholar] [CrossRef]
- Franco, C.A.; Zabala, R.; Cortés, F.B. Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. J. Pet. Sci. Eng. 2017, 157, 39–55. [Google Scholar] [CrossRef]
- Alsaba, M.T.; Al Dushaishi, M.F.; Abbas, A.K. A comprehensive review of nanoparticles applications in the oil and gas industry. J. Pet. Explor. Prod. Technol. 2020, 10, 1389–1399. [Google Scholar] [CrossRef]
- Ijaola, A.O.; Farayibi, P.K.; Asmatulu, E. Superhydrophobic coatings for steel pipeline protection in oil and gas industries: A comprehensive review. J. Nat. Gas Sci. Eng. 2020, 83, 103544. [Google Scholar] [CrossRef]
- Kianfar, E. Importance & Applications of Nanotechnology; MedDocs Publishers: Reno, NV, USA, 2020. [Google Scholar]
- Negin, C.; Ali, S.; Xie, Q. Application of nanotechnology for enhancing oil recovery—A review. Petroleum 2016, 2, 324–333. [Google Scholar] [CrossRef]
- Jain, M.; Choudhary, S.; Kumar, V.J.A.E.T. Application of nanotechnology in farm power, machinery and operations: A review. Agric. Eng. Today 2021, 45, 1–9. [Google Scholar] [CrossRef]
- Gbadamosi, A.; Junin, R.; Manan, M.; Agi, A.; Oseh, J. Nanotechnology application in chemical enhanced oil recovery: Current opinion and recent advances. In Enhanced Oil Recovery Processes: New Technologies; IntechOpen: London, UK, 2019. [Google Scholar]
- Sharma, A.K.; Tiwari, A.K.; Dixit, A.R. Effects of Minimum Quantity Lubrication (MQL) in machining processes using conventional and nanofluid based cutting fluids: A comprehensive review. J. Clean. Prod. 2016, 127, 1–18. [Google Scholar] [CrossRef]
- Nagarajan, R. Nanoparticles: Building Blocks for Nanotechnology. In Nanoparticles: Synthesis, Stabilization, Passivation, and Functionalization; American Chemical Society: Washington, DC, USA, 2008; Volume 996, pp. 2–14. [Google Scholar]
- Zhe, Z.; An, Y. Nanotechnology for the oil and gas industry—An overview of recent progress. Naotechnol. Rev. 2018, 7, 341–353. [Google Scholar] [CrossRef]
- Lau, H.C.; Yu, M.; Nguyen, Q.P. Nanotechnology for oilfield applications: Challenges and impact. J. Pet. Sci. Eng. 2017, 157, 1160–1169. [Google Scholar] [CrossRef]
- Saleh, T.A.; Ibrahim, M.A. Advances in functionalized Nanoparticles based drilling inhibitors for oil production. Energy Rep. 2019, 5, 1293–1304. [Google Scholar] [CrossRef]
- Salem Ragab, A.M.; Hannora, A.E. A Comparative investigation of nano particle effects for improved oil recovery–experimental work. In Proceedings of the SPE Kuwait Oil and Gas Show and Conference, Mishref, Kuwait, 11–14 October 2015. [Google Scholar]
- Sergeev, V.; Tanimoto, K.; Abe, M. Innovative emulsion-suspension systems based on nanoparticles for drilling and well workover operation. In Proceedings of the Abu Dhabi International Petroleum Exhibition and Conference, Abu Dhabi, United Arab Emirates, 11–14 November 2019; p. D031S097R003. [Google Scholar]
- Shanmugam, S.; Hari, A.; Pandey, A.; Mathimani, T.; Felix, L.; Pugazhendhi, A. Comprehensive review on the application of inorganic and organic nanoparticles for enhancing biohydrogen production. Fuel 2020, 270, 117453. [Google Scholar] [CrossRef]
- Bageri, B.S.; Adebayo, A.R.; Barri, A.; Al Jaberi, J.; Patil, S.; Hussaini, S.R.; Babu, R.S. Evaluation of secondary formation damage caused by the interaction of chelated barite with formation rocks during filter cake removal. J. Pet. Sci. Eng. 2019, 183, 106395. [Google Scholar] [CrossRef]
- Mohamed, A.; Benaafi, M.; Elkatatny, S.; Bageri, B. Effect of high-density water-based drilling fluid on the mechanical properties of the drilled formation in horizontal wells. In Proceedings of the ARMA US Rock Mechanics/Geomechanics Symposium, New York, NY, USA, 23–26 June 2019; p. ARMA-2019-1683. [Google Scholar]
- Bageri, B.S.; Adebayo, A.R.; Al Jaberi, J.; Patil, S. Effect of perlite particles on the filtration properties of high-density barite weighted water-based drilling fluid. Powder Technol. 2020, 360, 1157–1166. [Google Scholar] [CrossRef]
- Wang, B.; Sun, J.; Shen, F.; Li, W.; Zhang, W. Mechanism of wellbore instability in continental shale gas horizontal sections and its water-based drilling fluid countermeasures. Nat. Gas Ind. B 2020, 7, 680–688. [Google Scholar] [CrossRef]
- You, L.; Kang, Y.; Chen, Z.; Chen, Q.; Yang, B. Wellbore instability in shale gas wells drilled by oil-based fluids. Int. J. Rock Mech. Min. Sci. 2014, 72, 294–299. [Google Scholar] [CrossRef]
- Bloys, B.; Davis, N.; Smolen, B.; Bailey, L.; Houwen, O.; Reid, P.; Sherwood, J.; Fraser, L.; Hodder, M.; Montrouge, F.J.O.R. Designing and managing drilling fluid. Oilfield Rev. 1994, 6, 33–43. [Google Scholar]
- Pašić, B.; Gaurina-Međimurec, N.; Mijić, P.; Medved, I. Experimental Research of Shale Pellet Swelling in Nano-Based Drilling Muds. Energies 2020, 13, 6246. [Google Scholar] [CrossRef]
- Mukhametshin, V.S.; Zeigman, Y.V.; Andreev, A.V. Rapid assessment of deposit production capacity for determination of nanotechnologies application efficiency and necessity to stimulate their development. Nanotekhnologii V Stroit. 2017, 9, 20–34. [Google Scholar] [CrossRef]
- Nagarajan, K.; Ramanujam, N.; Sanjay, M.; Siengchin, S.; Surya Rajan, B.; Sathick Basha, K.; Madhu, P.; Raghav, G. A comprehensive review on cellulose nanocrystals and cellulose nanofibers: Pretreatment, preparation, and characterization. Polym. Compos. 2021, 42, 1588–1630. [Google Scholar] [CrossRef]
- Khan, F.; Kesarwani, H.; Kataria, G.; Mittal, G.; Sharma, S. Application of titanium dioxide nanoparticles for the design of oil well cement slurry—A study based on compressive strength, setting time and rheology. J. Adhes. Sci. Technol. 2023, 37, 1666–1682. [Google Scholar] [CrossRef]
- Afolabi, R.O.; Yusuf, E.O. Nanotechnology and global energy demand: Challenges and prospects for a paradigm shift in the oil and gas industry. J. Pet. Explor. Prod. Technol. 2019, 9, 1423–1441. [Google Scholar] [CrossRef]
- Afolabi, R.O.; Orodu, O.D.; Efeovbokhan, V.E. Properties and application of Nigerian bentonite clay deposits for drilling mud formulation: Recent advances and future prospects. Appl. Clay Sci. 2017, 143, 39–49. [Google Scholar] [CrossRef]
- Aftab, A.; Ismail, A.R.; Ibupoto, Z.H.; Akeiber, H.; Malghani, M.G.K. Nanoparticles based drilling muds a solution to drill elevated temperature wells: A review. Renew. Sustain. Energy Rev. 2017, 76, 1301–1313. [Google Scholar] [CrossRef]
- Agista, M.N.; Guo, K.; Yu, Z. A State-of-the-Art Review of Nanoparticles Application in Petroleum with a Focus on Enhanced Oil Recovery. Appl. Sci. 2018, 8, 871. [Google Scholar] [CrossRef]
- Ali, M.; Jarni, H.H.; Aftab, A.; Ismail, A.R.; Saady, N.M.C.; Sahito, M.F.; Keshavarz, A.; Iglauer, S.; Sarmadivaleh, M. Nanomaterial-Based Drilling Fluids for Exploitation of Unconventional Reservoirs: A Review. Energies 2020, 13, 3417. [Google Scholar] [CrossRef]
- Li, X.-L.; Jiang, G.-C.; Xu, Y.; Deng, Z.-Q.; Wang, K. A new environmentally friendly water-based drilling fluids with laponite nanoparticles and polysaccharide/polypeptide derivatives. Pet. Sci. 2022, 19, 2959–2968. [Google Scholar] [CrossRef]
- Ali, J.A.; Kolo, K.; Manshad, A.K.; Mohammadi, A.H. Recent advances in application of nanotechnology in chemical enhanced oil recovery: Effects of nanoparticles on wettability alteration, interfacial tension reduction, and flooding. Egypt. J. Pet. 2018, 27, 1371–1383. [Google Scholar] [CrossRef]
- Ali, J.A.; Kalhury, A.M.; Sabir, A.N.; Ahmed, R.N.; Ali, N.H.; Abdullah, A.D. A state-of-the-art review of the application of nanotechnology in the oil and gas industry with a focus on drilling engineering. J. Pet. Sci. Eng. 2020, 191, 107118. [Google Scholar] [CrossRef]
- El-Masry, J.F.; Bou-Hamdan, K.F.; Abbas, A.H.; Martyushev, D.A. A Comprehensive Review on Utilizing Nanomaterials in Enhanced Oil Recovery Applications. Energies 2023, 16, 691. [Google Scholar] [CrossRef]
- Bennetzen, M.V.; Mogensen, K. Novel applications of nanoparticles for future enhanced oil recovery. In Proceedings of the International Petroleum Technology Conference, Kuala Lumpur, Malaysia, 10 December 2014; p. IPTC-17857-MS. [Google Scholar]
- Seyedmohammadi, J. The effects of drilling fluids and environment protection from pollutants using some models. Model. Earth Syst. Environ. 2017, 3, 23. [Google Scholar] [CrossRef]
- Razali, S.Z.; Yunus, R.; Abdul Rashid, S.; Lim, H.N.; Mohamed Jan, B. Review of biodegradable synthetic-based drilling fluid: Progression, performance and future prospect. Renew. Sustain. Energy Rev. 2018, 90, 171–186. [Google Scholar] [CrossRef]
- Bera, A.; Belhaj, H. Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery—A comprehensive review. J. Nat. Gas Sci. Eng. 2016, 34, 1284–1309. [Google Scholar] [CrossRef]
- Borisov, A.S.; Husein, M.; Hareland, G. A field application of nanoparticle-based invert emulsion drilling fluids. J. Nanopart. Res. 2015, 17, 340. [Google Scholar] [CrossRef]
- Cheraghian, G.; Wu, Q.; Mostofi, M.; Li, M.-C.; Afrand, M.; Sangwai, J.S. Effect of a novel clay/silica nanocomposite on water-based drilling fluids: Improvements in rheological and filtration properties. Colloids Surf. A Physicochem. Eng. Asp. 2018, 555, 339–350. [Google Scholar] [CrossRef]
- Zamora-Ledezma, C.; Narváez-Muñoz, C.; Guerrero, V.H.; Medina, E.; Meseguer-Olmo, L. Nanofluid Formulations Based on Two-Dimensional Nanoparticles, Their Performance, and Potential Application as Water-Based Drilling Fluids. ACS Omega 2022, 7, 20457–20476. [Google Scholar] [CrossRef] [PubMed]
- Kök, M.V.; Bal, B. Effects of silica nanoparticles on the performance of water-based drilling fluids. J. Pet. Sci. Eng. 2019, 180, 605–614. [Google Scholar] [CrossRef]
- Smith, S.R.; Rafati, R.; Sharifi Haddad, A.; Cooper, A.; Hamidi, H. Application of aluminium oxide nanoparticles to enhance rheological and filtration properties of water based muds at HPHT conditions. Colloids Surf. A Physicochem. Eng. Asp. 2018, 537, 361–371. [Google Scholar] [CrossRef]
- Singh, R.; Singh, D.; Pandey, G. Comprehensive review on nanoparticles and its applications in petroleum industry. AIP Conf. Proc. 2023, 2521, 030011. [Google Scholar]
- Pervaiz, S.; Kannan, S.; Kishawy, H.A. An extensive review of the water consumption and cutting fluid based sustainability concerns in the metal cutting sector. J. Clean. Prod. 2018, 197, 134–153. [Google Scholar] [CrossRef]
- Vryzas, Z.; Kelessidis, V.C. Nano-Based Drilling Fluids: A Review. Energies 2017, 10, 540. [Google Scholar] [CrossRef]
- Sabet, M.; Hosseini, S.; Zamani, A.; Hosseini, Z.; Soleimani, H. Application of nanotechnology for enhanced oil recovery: A review. In Defect and Diffusion Forum; Trans Tech Publications: Wallerau, Switzerland, 2016; pp. 149–156. [Google Scholar]
- Yang, J.; Ji, S.; Li, R.; Qin, W.; Lu, Y. Advances of Nanotechnologies in Oil and Gas Industries. Energy Explor. Exploit. 2015, 33, 639–657. [Google Scholar] [CrossRef]
- Al-Shargabi, M.; Davoodi, S.; Wood, D.A.; Al-Musai, A.; Rukavishnikov, V.S.; Minaev, K.M. Nanoparticle applications as beneficial oil and gas drilling fluid additives: A review. J. Mol. Liq. 2022, 352, 118725. [Google Scholar] [CrossRef]
- Peng, B.; Tang, J.; Luo, J.; Wang, P.; Ding, B.; Tam, K.C. Applications of nanotechnology in oil and gas industry: Progress and perspective. Can. J. Chem. Eng. 2018, 96, 91–100. [Google Scholar] [CrossRef]
- Lee, J.; Babadagli, T. Comprehensive review on heavy-oil emulsions: Colloid science and practical applications. Chem. Eng. Sci. 2020, 228, 115962. [Google Scholar] [CrossRef]
- Hemath, M.; Mavinkere Rangappa, S.; Kushvaha, V.; Dhakal, H.N.; Siengchin, S. A comprehensive review on mechanical, electromagnetic radiation shielding, and thermal conductivity of fibers/inorganic fillers reinforced hybrid polymer composites. Polym. Compos. 2020, 41, 3940–3965. [Google Scholar] [CrossRef]
- Muhammed, N.S.; Olayiwola, T.; Elkatatny, S. A review on clay chemistry, characterization and shale inhibitors for water-based drilling fluids. J. Pet. Sci. Eng. 2021, 206, 109043. [Google Scholar] [CrossRef]
- Hussain Qaiser, M.S.; Ahmad, I.; Ahmad, S.R.; Afzal, M.; Qayyum, A. Assessing Heavy Metal Contamination in Oil and Gas Well Drilling Waste and Soil in Pakistan. Pol. J. Environ. Stud. 2019, 28, 785–793. [Google Scholar] [CrossRef]
- Alkalbani, A.M.; Chala, G.T.; Zar Myint, M.T. Insightful study on the effect of zinc oxide nanoparticle diameter on the rheology of water base mud at elevated temperature. J. Pet. Sci. Eng. 2022, 217, 110878. [Google Scholar] [CrossRef]
- Alkalbani, A.M.; Chala, G.T.; Myint, M.T.Z. Experimental investigation of rheological properties of water-base mud with zinc oxide nanoparticles using response surface methodology. J. Pet. Sci. Eng. 2022, 208, 109781. [Google Scholar] [CrossRef]
- Alkalbani, A.K.; Chala, G.T.; Alkalbani, A.M. Experimental investigation of the rheological properties of water base mud with silica nanoparticles for deep well application. Ain Shams Eng. J. 2023, 14, 102147. [Google Scholar] [CrossRef]
- Singh, D.; Ruhil, D.; Khandelwal, H.; Rawat, H.; Aggarwal, H.; Ranjan, A.; Thakur, N.K. Investigation of rheological and filtration properties of water-based drilling mud using commercially available additives. Mater. Today Proc. 2022, 68, 1003–1010. [Google Scholar] [CrossRef]
- Hajiabadi, S.H.; Aghaei, H.; Kalateh-Aghamohammadi, M.; Shorgasthi, M. An overview on the significance of carbon-based nanomaterials in upstream oil and gas industry. J. Pet. Sci. Eng. 2020, 186, 106783. [Google Scholar] [CrossRef]
- Gautam, R.; Sahai, M.; Kumar, S. Recent advances in application of nanomaterials as additives for drilling fluids. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–24. [Google Scholar] [CrossRef]
- Hussein, A.K. Applications of nanotechnology in renewable energies—A comprehensive overview and understanding. Renew. Sustain. Energy Rev. 2015, 42, 460–476. [Google Scholar] [CrossRef]
- Hoelscher, K.P.; De Stefano, G.; Riley, M.; Young, S. Application of nanotechnology in drilling fluids. In Proceedings of the SPE International Oilfield Nanotechnology Conference and Exhibition, Noordwijk, The Netherlands, 12 June 2012; p. SPE-157031-MS. [Google Scholar]
- Koh, J.K.; Lai, C.W.; Johan, M.R.; Gan, S.S.; Chua, W.W. Recent advances of modified polyacrylamide in drilling technology. J. Pet. Sci. Eng. 2022, 215, 110566. [Google Scholar] [CrossRef]
- Lysakova, E.; Skorobogatova, A.; Neverov, A.; Pryazhnikov, M.; Zhigarev, V.; Voronin, A.; Shabanova, K.; Minakov, A. Comparative analysis of the effect of single-walled and multi-walled carbon nanotube additives on the properties of hydrocarbon-based drilling fluids. Colloids Surf. A Physicochem. Eng. Asp. 2023, 678, 132434. [Google Scholar] [CrossRef]
- Mangadlao, J.D.; Cao, P.; Advincula, R.C. Smart cements and cement additives for oil and gas operations. J. Pet. Sci. Eng. 2015, 129, 63–76. [Google Scholar] [CrossRef]
- Shafiei, M.; Kazemzadeh, Y.; Martyushev, D.A.; Dai, Z.; Riazi, M. Effect of chemicals on the phase and viscosity behavior of water in oil emulsions. Sci. Rep. 2023, 13, 4100. [Google Scholar] [CrossRef]
- Agwu, O.E.; Akpabio, J.U.; Ekpenyong, M.E.; Inyang, U.G.; Asuquo, D.E.; Eyoh, I.J.; Adeoye, O.S. A comprehensive review of laboratory, field and modelling studies on drilling mud rheology in high temperature high pressure (HTHP) conditions. J. Nat. Gas Sci. Eng. 2021, 94, 104046. [Google Scholar] [CrossRef]
- Abdullah, A.H.; Ridha, S.; Mohshim, D.F.; Yusuf, M.; Kamyab, H.; Krishna, S.; Maoinser, M.A. A comprehensive review of nanoparticles: Effect on water-based drilling fluids and wellbore stability. Chemosphere 2022, 308, 136274. [Google Scholar] [CrossRef]
- Jiang, G.; Dong, T.; Cui, K.; He, Y.; Quan, X.; Yang, L.; Fu, Y. Research status and development directions of intelligent drilling fluid technologies. Pet. Explor. Dev. 2022, 49, 660–670. [Google Scholar] [CrossRef]
- Nemati, M.M.; Saboori, R.; Sabbaghi, S. Hydrogen sulfide removal using various metal oxide nanocomposite from drilling fluid: Optimization, kinetic and adsorption isotherms. Beilstein Arch. 2019, 2019, 133. [Google Scholar]
- Vryzas, Z.; Mahmoud, O.; Nasr-El-Din, H.A.; Kelessidis, V.C. Development and testing of novel drilling fluids using Fe2O3 and SiO2 nanoparticles for enhanced drilling operations. In Proceedings of the International Petroleum Technology Conference, Doha, Qatar, 6–9 December 2015. [Google Scholar]
- Mahmoud, O.; Nasr-El-Din, H.A.; Vryzas, Z.; Kelessidis, V.C. Nanoparticle-based drilling fluids for minimizing formation damage in HP/HT applications. In Proceedings of the SPE International Conference and Exhibition on Formation Damage Control, Lafayette, LA, USA, 24–26 February 2016. [Google Scholar]
- Okoro, E.E.; Oladejo, B.R.; Sanni, S.E.; Obomanu, T.; Ibe, A.A.; Orodu, O.D.; Olawole, O.C. A new model for curbing filtrate loss in dynamic application of nano-treated aqueous mud systems. Adv. Nano Res. 2020, 9, 59–67. [Google Scholar]
- Oseh, J.O.; Mohd, N.M.N.A.; Gbadamosi, A.O.; Agi, A.; Blkoor, S.O.; Ismail, I.; Igwilo, K.C.; Igbafe, A.I. Polymer nanocomposites application in drilling fluids: A review. Geoenergy Sci. Eng. 2023, 222, 211416. [Google Scholar] [CrossRef]
- Sirajunnisa, A.R.; Surendhiran, D. Algae—A quintessential and positive resource of bioethanol production: A comprehensive review. Renew. Sustain. Energy Rev. 2016, 66, 248–267. [Google Scholar] [CrossRef]
- Witherspoon, T.A. Nano-Steel-Co. Available online: https://www.nanosteelco.com/ (accessed on 10 October 2023).
- Skandon, G.; Singhal, A. Nanomaterials; Recent Advances in Technology and Industry; Taylor & Francis: Boca Raton, FL, USA, 2004. [Google Scholar]
- Arizona, U.o. SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing (ERC). Available online: http://erc.arizona.edu/ (accessed on 23 August 2023).
- Sun, Y.; Yang, D.; Shi, L.; Wu, H.; Cao, Y.; He, Y.; Xie, T. Properties of Nanofluids and Their Applications in Enhanced Oil Recovery: A Comprehensive Review. Energy Fuels 2020, 34, 1202–1218. [Google Scholar] [CrossRef]
- Thibaud, M.; Chi, H.; Zhou, W.; Piramuthu, S. Internet of Things (IoT) in high-risk Environment, Health and Safety (EHS) industries: A comprehensive review. Decis. Support Syst. 2018, 108, 79–95. [Google Scholar] [CrossRef]
- Umaraw, P.; Verma, A.K. Comprehensive review on application of edible film on meat and meat products: An eco-friendly approach. Crit. Rev. Food Sci. Nutr. 2017, 57, 1270–1279. [Google Scholar] [CrossRef]
- Yekeen, N.; Padmanabhan, E.; Idris, A.K.; Chauhan, P.S. Nanoparticles applications for hydraulic fracturing of unconventional reservoirs: A comprehensive review of recent advances and prospects. J. Pet. Sci. Eng. 2019, 178, 41–73. [Google Scholar] [CrossRef]
- Zhang, W.; Zheng, Q.; Ashour, A.; Han, B. Self-healing cement concrete composites for resilient infrastructures: A review. Compos. Part B Eng. 2020, 189, 107892. [Google Scholar] [CrossRef]
- Vipulanandan, C.; Krishnamoorti, R.; Mohammed, A.; Boncan, V.; Narvaez, G.; Head, B.; Pappas, J. Iron nanoparticle modified smart cement for real time monitoring of ultra deepwater oil well cementing applications. In Proceedings of the Offshore Technology Conference, Houston, TX, USA, 7 May 2015; p. OTC-25842-MS. [Google Scholar]
- Thakkar, A.; Raval, A.; Chandra, S.; Shah, M.; Sircar, A. A comprehensive review of the application of nano-silica in oil well cementing. Petroleum 2020, 6, 123–129. [Google Scholar] [CrossRef]
- Zhu, D.; Peng, S.; Zhao, S.; Wei, M.; Bai, B. Comprehensive Review of Sealant Materials for Leakage Remediation Technology in Geological CO2 Capture and Storage Process. Energy Fuels 2021, 35, 4711–4742. [Google Scholar] [CrossRef]
- Shah, S.S.; Shaikh, M.N.; Khan, M.Y.; Alfasane, M.A.; Rahman, M.M.; Aziz, M.A. Present status and future prospects of jute in nanotechnology: A review. Chem. Rec. 2021, 21, 1631–1665. [Google Scholar] [CrossRef]
- Ejileugha, C.; Ezejiofor, A.N.; Ezealisiji, K.M.; Orisakwe, O.E. Metal oxide nanoparticles in oil drilling: Aquatic toxicological concerns. J. Hazard. Mater. Adv. 2022, 7, 100116. [Google Scholar] [CrossRef]
- Fakoya, M.F.; Shah, S.N. Emergence of nanotechnology in the oil and gas industry: Emphasis on the application of silica nanoparticles. Petroleum 2017, 3, 391–405. [Google Scholar] [CrossRef]
- Fakoya, M.F.; Shah, S.N. Effect of silica nanoparticles on the rheological properties and filtration performance of surfactant-based and polymeric fracturing fluids and their blends. SPE Drill. Complet. 2018, 33, 100–114. [Google Scholar] [CrossRef]
- Ikram, R.; Jan, B.M.; Ahmad, W.; Sidek, A.; Khan, M.; Kenanakis, G. Rheological Investigation of Welding Waste-Derived Graphene Oxide in Water-Based Drilling Fluids. Materials 2022, 15, 8266. [Google Scholar] [CrossRef]
- Jia, X.; Zhao, X.; Chen, B.; Egwu, S.B.; Huang, Z. Polyanionic cellulose/hydrophilic monomer copolymer grafted silica nanocomposites as HTHP drilling fluid-loss control agent for water-based drilling fluids. Appl. Surf. Sci. 2022, 578, 152089. [Google Scholar] [CrossRef]
- Jiang, G.; Sun, J.; He, Y.; Cui, K.; Dong, T.; Yang, L.; Yang, X.; Wang, X. Novel Water-Based Drilling and Completion Fluid Technology to Improve Wellbore Quality During Drilling and Protect Unconventional Reservoirs. Engineering 2022, 18, 129–142. [Google Scholar] [CrossRef]
- Khorshidia, S.; Sabbaghia, S.; Saboorib, R. Removal of hydrogen sulfide from water-based drilling fluid using titania/carbon nanotubes nano-hybrid: Optimization, kinetics, and isotherms. Desalin. Water Treat. 2020, 200, 154–166. [Google Scholar] [CrossRef]
- Misbah, B.; Sedaghat, A.; Rashidi, M.; Sabati, M.; Vaidyan, K.; Ali, N.; Omar, M.A.A.; Hosseini Dehshiri, S.S. Friction reduction of Al2O3, SiO2, and TiO2 nanoparticles added to non-Newtonian water based mud in a rotating medium. J. Pet. Sci. Eng. 2022, 217, 110927. [Google Scholar] [CrossRef]
- Moghadam, I.P.; Afrand, M.; Hamad, S.M.; Barzinjy, A.A.; Talebizadehsardari, P. Curve-fitting on experimental data for predicting the thermal-conductivity of a new generated hybrid nanofluid of graphene oxide-titanium oxide/water. Phys. A Stat. Mech. Appl. 2020, 548, 122140. [Google Scholar] [CrossRef]
- Mohamed, A.; Salehi, S.; Ahmed, R. Significance and complications of drilling fluid rheology in geothermal drilling: A review. Geothermics 2021, 93, 102066. [Google Scholar] [CrossRef]
- Technologies, I. Breaking Boundaries. Driving Innovation. Available online: https://unctad.org/system/files/official-document/tir2023_en.pdf (accessed on 2 April 2023).
- Razali, S.Z.; Yunus, R.; Kania, D.; Rashid, S.A.; Ngee, L.H.; Abdulkareem-Alsultan, G.; Jan, B.M. Effects of morphology and graphitization of carbon nanomaterials on the rheology, emulsion stability, and filtration control ability of drilling fluids. J. Mater. Res. Technol. 2022, 21, 2891–2905. [Google Scholar] [CrossRef]
- Ng, L.Y.; Mohammad, A.W.; Leo, C.P.; Hilal, N. Polymeric membranes incorporated with metal/metal oxide nanoparticles: A comprehensive review. Desalination 2013, 308, 15–33. [Google Scholar] [CrossRef]
- Srivastava, V.; Beg, M.; Sharma, S.; Choubey, A.K. Application of manganese oxide nanoparticles synthesized via green route for improved performance of water-based drilling fluids. Appl. Nanosci. 2021, 11, 2247–2260. [Google Scholar] [CrossRef]
- Franco, C.A.; Franco, C.A.; Zabala, R.D.; Bahamón, Í.; Forero, Á.; Cortés, F.B. Field Applications of Nanotechnology in the Oil and Gas Industry: Recent Advances and Perspectives. Energy Fuels 2021, 35, 19266–19287. [Google Scholar] [CrossRef]
- Baig, U.; Gondal, M.A.; Dastageer, M.A. Oil-water separation using surface engineered superhydrophobic and superoleophilic membrane for the production of clean water. J. Water Process Eng. 2022, 45, 102473. [Google Scholar] [CrossRef]
- Bardhan, A.; Khan, F.; Kesarwani, H.; Vats, S.; Sharma, S.; Kumar, S. Performance Evaluation of Novel Silane Coated Nanoparticles as an Additive for High-Performance Drilling Fluid Applications. In Proceedings of the International Petroleum Technology Conference, Bangkok, Thailand, 28 February–2 March 2023. [Google Scholar]
- Boopathi, S.; Davim, J.P. Applications of Nanoparticles in Various Manufacturing Processes. In Sustainable Utilization of Nanoparticles and Nanofluids in Engineering Applications; IGI Global: Hershey, PA, USA, 2023; pp. 1–31. [Google Scholar]
- Chala, G.T.; Sulaiman, S.A.; Japper-Jaafar, A. Flow start-up and transportation of waxy crude oil in pipelines-A review. J. Non-Newton. Fluid Mech. 2018, 251, 69–87. [Google Scholar] [CrossRef]
- Hussain, A.; Emadi, H.; Botchway, K. How nanoparticles have ameliorated the challenges in drilling operations. J. Pet. Sci. Eng. 2021, 197, 107931. [Google Scholar] [CrossRef]
- Ikram, R.; Mohamed Jan, B.; Vejpravova, J.; Choudhary, M.I.; Zaman Chowdhury, Z. Recent Advances of Graphene-Derived Nanocomposites in Water-Based Drilling Fluids. Nanomaterials 2020, 10, 2004. [Google Scholar] [CrossRef]
- Mohanty, U.S.; Aftab, A.; Awan, F.U.R.; Ali, M.; Yekeen, N.; Keshavarz, A.; Iglauer, S. Toward Improvement of Water-Based Drilling Mud via Zirconia Nanoparticle/API Bentonite Material. Energy Fuels 2022, 36, 12116–12125. [Google Scholar] [CrossRef]
- Okyere, M.S. Corrosion Protection for the Oil and Gas Industry: Pipelines, Subsea Equipment, and Structures; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Khan, F.S.A.; Mubarak, N.M.; Tan, Y.H.; Khalid, M.; Karri, R.R.; Walvekar, R.; Abdullah, E.C.; Nizamuddin, S.; Mazari, S.A. A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes. J. Hazard. Mater. 2021, 413, 125375. [Google Scholar] [CrossRef]
- Medhi, S.; Chowdhury, S.; Gupta, D.K.; Mazumdar, A. An investigation on the effects of silica and copper oxide nanoparticles on rheological and fluid loss property of drilling fluids. J. Pet. Explor. Prod. Technol. 2020, 10, 91–101. [Google Scholar] [CrossRef]
- Sircar, A.; Rayavarapu, K.; Bist, N.; Yadav, K.; Singh, S. Applications of nanoparticles in enhanced oil recovery. Pet. Res. 2022, 7, 77–90. [Google Scholar] [CrossRef]
- Kaur, R.; Sharma, S.K.; Tripathy, S.K. Chapter 7—Advantages and Limitations of Environmental Nanosensors. In Advances in Nanosensors for Biological and Environmental Analysis; Deep, A., Kumar, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 119–132. [Google Scholar]
- Joshi, A.; Appold, M.S.; Nunn, J.A. Evaluation of solitary waves as a mechanism for oil transport in poroelastic media: A case study of the South Eugene Island field, Gulf of Mexico basin. Mar. Pet. Geol. 2012, 37, 53–69. [Google Scholar] [CrossRef]
- Murtaza, M.; Alarifi, S.A.; Kamal, M.S.; Onaizi, S.A.; Al-Ajmi, M.; Mahmoud, M. Experimental Investigation of the Rheological Behavior of an Oil-Based Drilling Fluid with Rheology Modifier and Oil Wetter Additives. Molecules 2021, 26, 4877. [Google Scholar] [CrossRef] [PubMed]
- Al-Saba, M.; Amadi, K.; Al-Hadramy, K.; Dushaishi, M.; Al-Hameedi, A.; Alkinani, H. Experimental investigation of bio-degradable environmental friendly drilling fluid additives generated from waste. In Proceedings of the SPE International Conference and Exhibition on Health, Safety, Security, Environment, and Social Responsibility, Abu Dhabi, United Arab Emirates, 16–18 April 2018. [Google Scholar]
- Ahmadi, M.H.; Ghazvini, M.; Alhuyi Nazari, M.; Ahmadi, M.A.; Pourfayaz, F.; Lorenzini, G.; Ming, T.J.I.J.o.E.R. Renewable energy harvesting with the application of nanotechnology: A review. Int. J. Energy Res. 2019, 43, 1387–1410. [Google Scholar] [CrossRef]
- Ghaderi, S.; Clarkson, C.; Kaviani, D. Investigation of Primary Recovery in Low-Permeability Oil Formations: A Look at the Cardium Formation, Alberta (Canada). J. Oil Gas Sci. Technol.–Rev. D’ifp Energ. Nouv. 2014, 69, 1155–1170. [Google Scholar] [CrossRef]
- Al-Hameedi, A.T.T.; Alkinani, H.H.; Alkhamis, M.M.; Dunn-Norman, S. Utilizing a new eco-friendly drilling mud additive generated from wastes to minimize the use of the conventional chemical additives. J. Pet. Explor. Prod. Technol. 2020, 10, 3467–3481. [Google Scholar] [CrossRef]
- Shekdar, A.V. Sustainable solid waste management: An integrated approach for Asian countries. Waste Manag. 2009, 29, 1438–1448. [Google Scholar] [CrossRef] [PubMed]
- Taran, M.; Safaei, M.; Karimi, N.; Almasi, A. Benefits and application of nanotechnology in environmental science: An overview. J Biointerface Res. Appl. Chem. 2021, 11, 7860–7870. [Google Scholar]
- Sharmin, T.; Khan, N.R.; Akram, M.S.; Ehsan, M.M. A State-of-the-Art Review on Geothermal Energy Extraction, Utilization, and Improvement Strategies: Conventional, Hybridized, and Enhanced Geothermal Systems. Int. J. Thermofluids 2023, 18, 100323. [Google Scholar] [CrossRef]
- Kiran, R.; Dansena, P.; Salehi, S.; Rajak, V.K. Application of machine learning and well log attributes in geothermal drilling. Geothermics 2022, 101, 102355. [Google Scholar] [CrossRef]
- Reinsch, T.; Regenspurg, S.; Feldbusch, E.; Saadat, A.; Huenges, E.; Erbas, K.; Zimmermann, G.; Henninges, J. Operations. Reverse cleanout in a geothermal well: Analysis of a failed coiled-tubing operation. SPE Prod. 2015, 30, 312–320. [Google Scholar] [CrossRef]
- Basfar, S.; Elkatatny, S. Micronized calcium carbonate to enhance water-based drilling fluid properties. Sci. Rep. 2023, 13, 18295. [Google Scholar] [CrossRef]
- Al-Ghanimi, G.F.; Al-Zubaidi, N.S. Effect of Ferric Oxide and Magnesium Oxide Nanoparticles on Iraqi Bentonite Performance in Water Based Drilling Fluid. Assoc. Arab Univ. J. Eng. Sci. 2020, 27, 14–23. [Google Scholar] [CrossRef]
- Gasser, M.; Mahmoud, O.; Ibrahim, F.; Abadir, M. Using artificial intelligence techniques in modeling and predicting the rheological behavior of nano-based drilling fluids. In Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering, Virtual, 21–30 June 2021; American Society of Mechanical Engineers: New York, NY, USA, 2021; p. V010T011A070. [Google Scholar]
- Gupta, D.; Chauhan, V.; Kumar, R. A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: Past and recent developments. Inorg. Chem. Commun. 2020, 121, 108200. [Google Scholar] [CrossRef]
- Alihosseini, A.; Hassan Zadeh, A.; Monajjemi, M.; Nazary Sarem, M. Effectiveness of Alumina Nanoparticles in Improving the Rheological Properties of Water-Based Drilling Mud. Iran. J. Oil Gas Sci. Technol. 2021, 10, 12–27. [Google Scholar]
- Mehmood, A.; Khan, F.S.A.; Mubarak, N.M.; Mazari, S.A.; Jatoi, A.S.; Khalid, M.; Tan, Y.H.; Karri, R.R.; Walvekar, R.; Abdullah, E.C.; et al. Carbon and polymer-based magnetic nanocomposites for oil-spill remediation—A comprehensive review. Environ. Sci. Pollut. Res. 2021, 28, 54477–54496. [Google Scholar] [CrossRef]
- Minakov, A.V.; Mikhienkova, E.I.; Voronenkova, Y.O.; Neverov, A.L.; Zeer, G.M.; Zharkov, S.M. Systematic experimental investigation of filtration losses of drilling fluids containing silicon oxide nanoparticles. J. Nat. Gas Sci. Eng. 2019, 71, 102984. [Google Scholar] [CrossRef]
- Rafati, R.; Smith, S.R.; Sharifi Haddad, A.; Novara, R.; Hamidi, H. Effect of nanoparticles on the modifications of drilling fluids properties: A review of recent advances. J. Pet. Sci. Eng. 2018, 161, 61–76. [Google Scholar] [CrossRef]
- Ramasamy, J.; Amanullah, M. Nanocellulose for oil and gas field drilling and cementing applications. J. Pet. Sci. Eng. 2020, 184, 106292. [Google Scholar] [CrossRef]
- Rana, A.; Khan, I.; Saleh, T.A. Advances in Carbon Nanostructures and Nanocellulose as Additives for Efficient Drilling Fluids: Trends and Future Perspective—A Review. Energy Fuels 2021, 35, 7319–7339. [Google Scholar] [CrossRef]
- Saleh, T.A. Nanotechnology in Oil and Gas Industries; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Al-Yasiri, M.S.; Al-Sallami, W.T. How the drilling fluids can be made more efficient by using nanomaterials. Am. J. Nano Res. Appl. 2015, 3, 41–45. [Google Scholar]
- Boul, P.J.; Ajayan, P.M. Nanotechnology research and development in upstream oil and gas. Energy Technol. 2020, 8, 1901216. [Google Scholar] [CrossRef]
- Ciambelli, P.; La Guardia, G.; Vitale, L. Chapter 7—Nanotechnology for green materials and processes. In Studies in Surface Science and Catalysis; Basile, A., Centi, G., Falco, M.D., Iaquaniello, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 179, pp. 97–116. [Google Scholar]
- Debnath, B.K.; Saha, U.K.; Sahoo, N. A comprehensive review on the application of emulsions as an alternative fuel for diesel engines. Renew. Sustain. Energy Rev. 2015, 42, 196–211. [Google Scholar] [CrossRef]
- Karakosta, K.; Mitropoulos, A.C.; Kyzas, G.Z. A review in nanopolymers for drilling fluids applications. J. Mol. Struct. 2021, 1227, 129702. [Google Scholar] [CrossRef]
- Medhi, S.; Chowdhury, S.; Sangwai, J.S.; Gupta, D.K. Effect of Al2O3 nanoparticle on viscoelastic and filtration properties of a salt-polymer-based drilling fluid. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 2385–2397. [Google Scholar] [CrossRef]
- Jia, B.; Xian, C.; Tsau, J.-S.; Zuo, X.; Jia, W. Status and Outlook of Oil Field Chemistry-Assisted Analysis during the Energy Transition Period. Energy Fuels 2022, 36, 12917–12945. [Google Scholar] [CrossRef]
Material | Percentage |
---|---|
Aluminium Oxide | 9% |
Copper Oxide | 2% |
Graphene Based | 5% |
Iron Oxide | 5% |
Magnesium Oxide | 5% |
MWCNT | 3% |
Silicon Dioxide | 23% |
Titanium Oxide | 4% |
Nickle Oxide | 2% |
Zinc Oxide | 3% |
Others | 39% |
Property Improvement | Percentage |
---|---|
Improving Foam Stability | 3% |
Increase Oil Recovery | 29% |
Improving Rheological Properties | 12% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alkalbani, A.M.; Chala, G.T. A Comprehensive Review of Nanotechnology Applications in Oil and Gas Well Drilling Operations. Energies 2024, 17, 798. https://doi.org/10.3390/en17040798
Alkalbani AM, Chala GT. A Comprehensive Review of Nanotechnology Applications in Oil and Gas Well Drilling Operations. Energies. 2024; 17(4):798. https://doi.org/10.3390/en17040798
Chicago/Turabian StyleAlkalbani, Alhaitham M., and Girma T. Chala. 2024. "A Comprehensive Review of Nanotechnology Applications in Oil and Gas Well Drilling Operations" Energies 17, no. 4: 798. https://doi.org/10.3390/en17040798
APA StyleAlkalbani, A. M., & Chala, G. T. (2024). A Comprehensive Review of Nanotechnology Applications in Oil and Gas Well Drilling Operations. Energies, 17(4), 798. https://doi.org/10.3390/en17040798