Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (768)

Search Parameters:
Keywords = potential energy curve

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3474 KiB  
Article
Energy Dispersion Relationship and Hofstadter Butterfly of Triangle and Rectangular Moiré Patterns in Tight Binding States
by Ziheng Li, Jiangwei Liu, Xiaoxiao Zheng, Yu Sun, Nan Han, Liang Wang, Muyang Li, Lei Han, Safia Khan, S. Hassan M. Jafri, Klaus Leifer, Yafei Ning and Hu Li
Physics 2025, 7(3), 34; https://doi.org/10.3390/physics7030034 - 5 Aug 2025
Abstract
Herein, the energy dispersion relationship and the density of states of triangular and rectangular moiré patterns are investigated using a tight binding model. Their characteristics of Hofstadter butterflies under different magnetic fields are also examined. The results indicate that, by analyzing different moiré [...] Read more.
Herein, the energy dispersion relationship and the density of states of triangular and rectangular moiré patterns are investigated using a tight binding model. Their characteristics of Hofstadter butterflies under different magnetic fields are also examined. The results indicate that, by analyzing different moiré superlattices, Hofstadter butterflies arising from different moiré pattern structures are obtained, exhibiting considerable fractal characteristics and self-similarities. Moreover, it is also observed that under an alternating magnetic field, the redistribution of electronic states leads to a significant change in the density of states curve, and the Van Hove peak changes with the increase in magnetic field intensity. This study enriches the understanding of the electronic behavior of moiré systems, but it also provides multiple potential application directions for future technological development. Full article
(This article belongs to the Section Statistical Physics and Nonlinear Phenomena)
Show Figures

Figure 1

15 pages, 3579 KiB  
Article
Dual-Control-Gate Reconfigurable Ion-Sensitive Field-Effect Transistor with Nickel-Silicide Contacts for Adaptive and High-Sensitivity Chemical Sensing Beyond the Nernst Limit
by Seung-Jin Lee, Seung-Hyun Lee, Seung-Hwa Choi and Won-Ju Cho
Chemosensors 2025, 13(8), 281; https://doi.org/10.3390/chemosensors13080281 - 2 Aug 2025
Viewed by 156
Abstract
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity [...] Read more.
In this study, we propose a bidirectional chemical sensor platform based on a reconfigurable ion-sensitive field-effect transistor (R-ISFET) architecture. The device incorporates Ni-silicide Schottky barrier source/drain (S/D) contacts, enabling ambipolar conduction and bidirectional turn-on behavior for both p-type and n-type configurations. Channel polarity is dynamically controlled via the program gate (PG), while the control gate (CG) suppresses leakage current, enhancing operational stability and energy efficiency. A dual-control-gate (DCG) structure enhances capacitive coupling, enabling sensitivity beyond the Nernst limit without external amplification. The extended-gate (EG) architecture physically separates the transistor and sensing regions, improving durability and long-term reliability. Electrical characteristics were evaluated through transfer and output curves, and carrier transport mechanisms were analyzed using band diagrams. Sensor performance—including sensitivity, hysteresis, and drift—was assessed under various pH conditions and external noise up to 5 Vpp (i.e., peak-to-peak voltage). The n-type configuration exhibited high mobility and fast response, while the p-type configuration demonstrated excellent noise immunity and low drift. Both modes showed consistent sensitivity trends, confirming the feasibility of complementary sensing. These results indicate that the proposed R-ISFET sensor enables selective mode switching for high sensitivity and robust operation, offering strong potential for next-generation biosensing and chemical detection. Full article
(This article belongs to the Section Electrochemical Devices and Sensors)
Show Figures

Figure 1

11 pages, 261 KiB  
Review
Minimally Invasive Surgical Strategies for the Treatment of Atrial Fibrillation: An Evolving Role in Contemporary Cardiac Surgery
by Luciana Benvegnù, Giorgia Cibin, Fabiola Perrone, Vincenzo Tarzia, Augusto D’Onofrio, Giovanni Battista Luciani, Gino Gerosa and Francesco Onorati
J. Cardiovasc. Dev. Dis. 2025, 12(8), 289; https://doi.org/10.3390/jcdd12080289 - 29 Jul 2025
Viewed by 316
Abstract
Atrial fibrillation remains the most frequent sustained arrhythmia, particularly in the elderly population, and is associated with increased risks of stroke, heart failure, and reduced quality of life. While catheter ablation is widely used for rhythm control, its efficacy is limited in persistent [...] Read more.
Atrial fibrillation remains the most frequent sustained arrhythmia, particularly in the elderly population, and is associated with increased risks of stroke, heart failure, and reduced quality of life. While catheter ablation is widely used for rhythm control, its efficacy is limited in persistent and long-standing atrial fibrillation. Over the past two decades, minimally invasive surgical strategies have emerged as effective alternatives, aiming to replicate the success of the Cox-Maze procedure while reducing surgical trauma. This overview critically summarizes the current minimally invasive techniques available for atrial fibrillation treatment, including mini-thoracotomy ablation, thoracoscopic ablation, and hybrid procedures such as the convergent approach. These methods offer the potential for durable sinus rhythm restoration by enabling direct visualization, transmural lesion creation, and left atrial appendage exclusion, with lower perioperative morbidity compared to traditional open surgery. The choice of energy source plays a key role in lesion efficacy and safety. Particular attention is given to the technical steps of each procedure, patient selection criteria, and the role of left atrial appendage closure in stroke prevention. Hybrid strategies, which combine epicardial surgical ablation with endocardial catheter-based procedures, have shown encouraging outcomes in patients with refractory or long-standing atrial fibrillation. Despite the steep learning curve, minimally invasive techniques provide significant benefits in terms of recovery time, reduced hospital stay, and fewer complications. As evidence continues to evolve, these approaches represent a key advancement in the surgical management of atrial fibrillation, deserving integration into contemporary treatment algorithms and multidisciplinary heart team planning. Full article
(This article belongs to the Special Issue Hybrid Ablation of the Atrial Fibrillation)
Show Figures

Graphical abstract

25 pages, 10240 KiB  
Article
Present and Future Energy Potential of Run-of-River Hydropower in Mainland Southeast Asia: Balancing Climate Change and Environmental Sustainability
by Saman Maroufpoor and Xiaosheng Qin
Water 2025, 17(15), 2256; https://doi.org/10.3390/w17152256 - 29 Jul 2025
Viewed by 317
Abstract
Southeast Asia relies heavily on hydropower from dams and reservoir projects, but this dependence comes at the cost of ecological damage and increased vulnerability to extreme events. This dilemma necessitates a choice between continued dam development and adopting alternative renewable options. Concerns over [...] Read more.
Southeast Asia relies heavily on hydropower from dams and reservoir projects, but this dependence comes at the cost of ecological damage and increased vulnerability to extreme events. This dilemma necessitates a choice between continued dam development and adopting alternative renewable options. Concerns over these environmental impacts have already led to halts in dam construction across the region. This study assesses the potential of run-of-river hydropower plants (RHPs) across 199 hydrometric stations in Mainland Southeast Asia (MSEA). The assessment utilizes power duration curves for the historical period and projections from the HBV hydrological model, which is driven by an ensemble of 31 climate models for future scenarios. Energy production was analyzed at four levels (minimum, maximum, balanced, and optimal) for both historical and future periods under varying Shared Socioeconomic Pathways (SSPs). To promote sustainable development, environmental flow constraints and carbon dioxide (CO2) emissions were evaluated for both historical and projected periods. The results indicate that the aggregate energy production potential during the historical period ranges from 111.15 to 229.62 MW (Malaysia), 582.78 to 3615.36 MW (Myanmar), 555.47 to 3142.46 MW (Thailand), 1067.05 to 6401.25 MW (Laos), 28.07 to 189.77 MW (Vietnam), and 566.13 to 2803.75 MW (Cambodia). The impact of climate change on power production varies significantly across countries, depending on the level and scenarios. At the optimal level, an average production change of −9.2–5.9% is projected for the near future, increasing to 15.3–19% in the far future. Additionally, RHP development in MSEA is estimated to avoid 32.5 Mt of CO2 emissions at the optimal level. The analysis further shows avoidance change of 8.3–25.3% and −8.6–25.3% under SSP245 and SSP585, respectively. Full article
Show Figures

Graphical abstract

17 pages, 1725 KiB  
Article
Ring Opening upon Valence Shell Excitation in β-Butyrolactone: Experimental and Theoretical Methods
by Pedro A. S. Randi, Márcio H. F. Bettega, Nykola C. Jones, Søren V. Hoffmann, Małgorzata A. Śmiałek and Paulo Limão-Vieira
Molecules 2025, 30(15), 3137; https://doi.org/10.3390/molecules30153137 - 26 Jul 2025
Viewed by 256
Abstract
The valence-shell electronic state spectroscopy of β-butyrolactone (CH3CHCH2CO2) is comprehensively investigated by employing experimental and theoretical methods. We report a novel vacuum ultraviolet (VUV) absorption spectrum in the photon wavelength range from 115 to 320 nm (3.9–10.8 [...] Read more.
The valence-shell electronic state spectroscopy of β-butyrolactone (CH3CHCH2CO2) is comprehensively investigated by employing experimental and theoretical methods. We report a novel vacuum ultraviolet (VUV) absorption spectrum in the photon wavelength range from 115 to 320 nm (3.9–10.8 eV), together with ab initio quantum chemical calculations at the time-dependent density functional (TD-DFT) level of theory. The dominant electronic excitations are assigned to mixed valence-Rydberg and Rydberg transitions. The fine structure in the CH3CHCH2CO2 photoabsorption spectrum has been assigned to C=O stretching, v7a, CH2 wagging, v14a, C–O stretching, v22a, and C=O bending, v26a modes. Photolysis lifetimes in the Earth’s atmosphere from 0 km up to 50 km altitude have been estimated, showing to be a non-relevant sink mechanism compared to reactions with the OH radical. The nuclear dynamics along the C=O and C–C–C coordinates have been investigated at the TD-DFT level of theory, where, upon electronic excitation, the potential energy curves show important carbonyl bond breaking and ring opening, respectively. Within such an intricate molecular landscape, the higher-lying excited electronic states may keep their original Rydberg character or may undergo Rydberg-to-valence conversion, with vibronic coupling as an important mechanism contributing to the spectrum. Full article
(This article belongs to the Special Issue Advances in Density Functional Theory (DFT) Calculation)
Show Figures

Figure 1

19 pages, 2243 KiB  
Article
Theoretical Calculation of Ground and Electronically Excited States of MgRb+ and SrRb+ Molecular Ions: Electronic Structure and Prospects of Photo-Association
by Mohamed Farjallah, Hela Ladjimi, Wissem Zrafi and Hamid Berriche
Atoms 2025, 13(8), 69; https://doi.org/10.3390/atoms13080069 - 25 Jul 2025
Viewed by 304
Abstract
In this work, a comprehensive theoretical investigation is carried out to explore the electronic and spectroscopic properties of selected diatomic molecular ions MgRb+ and SrRb+. Using high-level ab initio calculations based on a pseudopotential approach, along with large Gaussian basis [...] Read more.
In this work, a comprehensive theoretical investigation is carried out to explore the electronic and spectroscopic properties of selected diatomic molecular ions MgRb+ and SrRb+. Using high-level ab initio calculations based on a pseudopotential approach, along with large Gaussian basis sets and full valence configuration interaction (FCI), we accurately determine adiabatic potential energy curves, spectroscopic constants, transition dipole moments (TDMs), and permanent electric dipole moments (PDMs). To deepen our understanding of these systems, we calculate radiative lifetimes for vibrational levels in both ground and low-lying excited electronic states. This includes evaluating spontaneous and stimulated emission rates, as well as the effects of blackbody radiation. We also compute Franck–Condon factors and analyze photoassociation processes for both ions. Furthermore, to explore low-energy collisional dynamics, we investigate elastic scattering in the first excited states (21Σ+) describing the collision between the Ra atom and Mg+ or Sr+ ions. Our findings provide detailed insights into the theoretical electronic structure of these molecular ions, paving the way for future experimental studies in the field of cold and ultracold molecular ion physics. Full article
Show Figures

Figure 1

17 pages, 4549 KiB  
Article
Failure Mode Discrimination and Stochastic Behavior Study of RC Beams Under Impact Loads
by Taochun Yang, Yating Jiang, Xiaoyan Zhang, Qinghai Liu and Yin Wang
Modelling 2025, 6(3), 70; https://doi.org/10.3390/modelling6030070 - 22 Jul 2025
Viewed by 214
Abstract
To clarify the potential failure modes of reinforced concrete (RC) beams under impact and understand their impact resistance safety, a comprehensive study was conducted by focusing on the failure mode discrimination and failure probability of RC beams under impact loads. This research utilized [...] Read more.
To clarify the potential failure modes of reinforced concrete (RC) beams under impact and understand their impact resistance safety, a comprehensive study was conducted by focusing on the failure mode discrimination and failure probability of RC beams under impact loads. This research utilized drop hammer impact tests, ABAQUS2022 software, and theoretical methods. The study examined three typical failure modes of RC beams under impact loads: flexural failure, flexural-shear failure, and shear failure. A discrimination criterion based on the flexural-shear capacity–effect curve was developed. Utilizing this criterion, along with the basic principles of structural reliability theory, the failure probability of RC beams under impact loads was calculated and analyzed using the Monte Carlo method. The results indicate that the criterion based on the flexural-shear capacity–effect curve can be used for discriminating failure modes of RC beams under impact loads. The impact velocity and stirrup ratio were identified as crucial factors that influenced the failure modes of RC beams under impact. Specifically, an increase in the stirrup spacing reduced the reliability of the RC beams under impact, while an increase in the stirrup ratio could significantly enhance their impact resistance. Furthermore, with a constant impact energy, an increase in beam span correlated with the improved reliability of RC beams under impact, where larger spans yielded a better impact resistance. Full article
(This article belongs to the Special Issue Finite Element Simulation and Analysis)
Show Figures

Graphical abstract

22 pages, 4829 KiB  
Article
Development of a Flexible and Conductive Heating Membrane via BSA-Assisted Electroless Plating on Electrospun PVDF-HFP Nanofibers
by Mun Jeong Choi, Dae Hyeob Yoon, Yoo Sei Park, Hyoryung Nam and Geon Hwee Kim
Appl. Sci. 2025, 15(14), 8023; https://doi.org/10.3390/app15148023 - 18 Jul 2025
Viewed by 275
Abstract
Planar heaters are designed to deliver uniform heat across broad surfaces and serve as critical components in applications requiring energy efficiency, safety, and mechanical flexibility, such as wearable electronics and smart textiles. However, conventional metal-based heaters are limited by poor adaptability to curved [...] Read more.
Planar heaters are designed to deliver uniform heat across broad surfaces and serve as critical components in applications requiring energy efficiency, safety, and mechanical flexibility, such as wearable electronics and smart textiles. However, conventional metal-based heaters are limited by poor adaptability to curved or complex surfaces, low mechanical compliance, and susceptibility to oxidation-induced degradation. To overcome these challenges, we applied a protein-assisted electroless copper (Cu) plating strategy to electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofiber substrates to fabricate flexible, conductive planar heating membranes. For interfacial functionalization, a protein-based engineering approach using bovine serum albumin (BSA) was employed to facilitate palladium ion coordination and seed formation. The resulting membrane exhibited a dense, continuous Cu coating, low sheet resistance, excellent durability under mechanical deformation, and stable heating performance at low voltages. These results demonstrate that the BSA-assisted strategy can be effectively extended to complex three-dimensional fibrous membranes, supporting its scalability and practical potential for next-generation conformal and wearable planar heaters. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

21 pages, 1910 KiB  
Article
Optimizing Residential Electricity Demand with Bipartite Models for Enhanced Demand Response
by Jonathan Campoverde, Marcelo Garcia Torres and Luis Tipan
Energies 2025, 18(14), 3819; https://doi.org/10.3390/en18143819 - 17 Jul 2025
Cited by 1 | Viewed by 291
Abstract
This study presents an advanced energy demand management approach within residential microgrids using bipartite models for optimal demand response. The methodology relies on linear programming, specifically the Simplex algorithm, to optimize power distribution while minimizing costs. The model aims to reduce residential energy [...] Read more.
This study presents an advanced energy demand management approach within residential microgrids using bipartite models for optimal demand response. The methodology relies on linear programming, specifically the Simplex algorithm, to optimize power distribution while minimizing costs. The model aims to reduce residential energy consumption by flattening the demand curve through demand response programs. Additionally, the Internet of Things (IoT) is integrated as a communication channel to ensure efficient energy management without compromising user comfort. The research evaluates energy resource allocation using bipartite graphs, modeling the generation of energy from renewable and conventional high-efficiency sources. Various case studies analyze scenarios with and without market constraints, assessing the impact of demand response at different levels (5%, 10%, 15%, and 20%). Results demonstrate a significant reduction in reliance on external grids, with optimized energy distribution leading to potential cost savings for consumers. The findings suggest that intelligent demand response strategies can enhance microgrid efficiency, supporting sustainability and reducing carbon footprints. Full article
Show Figures

Figure 1

23 pages, 4418 KiB  
Article
Optimization of Electric Transformer Operation Through Load Estimation Based on the K-Means Algorithm
by Pedro Torres-Bermeo, José Varela-Aldás, Kevin López-Eugenio, Nancy Velasco and Guillermo Palacios-Navarro
Energies 2025, 18(14), 3755; https://doi.org/10.3390/en18143755 - 15 Jul 2025
Viewed by 382
Abstract
This study presents an innovative methodology to optimize the operation of distribution transformers through the estimation of hourly load curves, aimed at minimizing technical losses due to oversizing, particularly in systems lacking advanced metering infrastructure. The proposed approach combines clustering techniques, K-Means with [...] Read more.
This study presents an innovative methodology to optimize the operation of distribution transformers through the estimation of hourly load curves, aimed at minimizing technical losses due to oversizing, particularly in systems lacking advanced metering infrastructure. The proposed approach combines clustering techniques, K-Means with DTW, to identify representative daily consumption patterns and a supervised model based on LightGBM to estimate hourly load curves for unmetered transformers, using customer characteristics as input. These estimated curves are integrated into a process that calculates technical losses, both no-load and load losses, for different transformer sizes, selecting the optimal rating that minimizes losses without compromising demand. Empirical validation showed accuracy levels of 95.6%, 95.29%, and 98.14% at an individual transformer, feeder, and a complete electrical system with 16,864 transformers, respectively. The application of the methodology to a real distribution system revealed a potential annual energy savings of 3004 MWh, equivalent to an estimated economic reduction of 150,238 USD. Full article
Show Figures

Figure 1

25 pages, 5341 KiB  
Article
Design of a Methodology to Evaluate the Energy Flexibility of Residential Consumers to Enhance Household Demand Side Management: The Case of a Spanish Municipal Network
by Caterina Lamanna, Andrés Ondó Oná-Ayécaba, Lina Montuori, Manuel Alcázar-Ortega and Javier Rodríguez-García
Appl. Sci. 2025, 15(14), 7827; https://doi.org/10.3390/app15147827 - 12 Jul 2025
Viewed by 300
Abstract
Climate change and global warming are causing growing environmental concerns, prompting many countries to increase investments in renewable energies. The high growth rate of renewables in the energy systems brings significant intermittency challenges. Demand-side flexibility is presented as a viable solution to address [...] Read more.
Climate change and global warming are causing growing environmental concerns, prompting many countries to increase investments in renewable energies. The high growth rate of renewables in the energy systems brings significant intermittency challenges. Demand-side flexibility is presented as a viable solution to address this phenomenon. In this framework, this research study proposes a novel methodology to evaluate the flexibility potential that residential consumers can offer to the Distribution System Operator (DSO). Moreover, it pretends to provide guidelines and design of standardized parameters to disaggregate the aggregated energy consumption data of end-users. This step is essential to identify and characterize the primary energy consumption processes in the residential sector, laying the groundwork for future flexibility evaluation. Furthermore, the modeling of the energy consumption curves will enhance residential sector demand-side flexibility enabling end-users to modify their usual consumption patterns. The implemented methodology has been applied to real consumer data provided by the DSO of a Spanish municipality of about 29,000 habitants in the Alicante Province (Spain). Results achieved allowed the validation of the proposed methodology enabling the disaggregation of residential energy profiles and facilitating the subsequent dynamic assessment of residential end-user’s demand flexibility. Moreover, this work will provide valuable guidelines to carry out short-term energy resource planning and solve operational problems of the energy systems. Full article
(This article belongs to the Special Issue Challenges and Opportunities of Microgrids)
Show Figures

Figure 1

16 pages, 4848 KiB  
Article
A Novel Hierarchical Multi-Stable Cylindrical Structure with Superior Energy Trapping
by Yu Wang, Maosheng Huang, Qiang Tao, Xiaoyu Chen, Jirong Wang and Qingxiang Ji
Appl. Sci. 2025, 15(14), 7748; https://doi.org/10.3390/app15147748 - 10 Jul 2025
Viewed by 209
Abstract
Multi-stable mechanical metamaterials based on the snap-through behavior of cosine beams have been shown to have significant potential in the field of capacity absorption due to their advantages such as reusability and structural simplicity. However, traditional multi-stable metamaterials have exhibited limitations in both [...] Read more.
Multi-stable mechanical metamaterials based on the snap-through behavior of cosine beams have been shown to have significant potential in the field of capacity absorption due to their advantages such as reusability and structural simplicity. However, traditional multi-stable metamaterials have exhibited limitations in both energy absorption and trapping ability. Inspired by the bionic multilevel structure, a novel hierarchical multi-stable cylindrical structure (HMCS) based on cosine curved beams is proposed. We investigated the snap-through behaviors and energy absorption capacity of the HMCS. Both finite element simulation results and experimental results show that the hierarchical multi-stable structure exhibits excellent specific energy absorption and energy trapping capabilities compared to traditional multi-stable cylindrical structures (TMCSs). Furthermore, by analyzing the effect of height h and thickness t on the snap-through behavior of the structure, the key parameters determining the mono-stable or bi-stable response are identified. In addition, a gradient-based study of the structure reveals the dominant role of stiffness in the snap-through behavior of multilayer structures. This work provides insights into the application of multi-stable cylindrical structures in energy trapping and absorption and offers a new strategy for designing high-efficiency energy-absorbing metamaterials. Full article
Show Figures

Figure 1

12 pages, 7037 KiB  
Article
Microwave-Assisted Reduction Technology for Recycling of Hematite Nanoparticles from Ferrous Sulfate Residue
by Genkuan Ren
Materials 2025, 18(14), 3214; https://doi.org/10.3390/ma18143214 - 8 Jul 2025
Viewed by 281
Abstract
Accumulation of ferrous sulfate residue (FSR) not only occupies land but also results in environmental pollution and waste of iron resource; thus, recycling of iron from FSR has attracted widespread concern. To this end, this article shows fabrication and system analysis of hematite [...] Read more.
Accumulation of ferrous sulfate residue (FSR) not only occupies land but also results in environmental pollution and waste of iron resource; thus, recycling of iron from FSR has attracted widespread concern. To this end, this article shows fabrication and system analysis of hematite (HM) nanoparticles from FSR via microwave-assisted reduction technology. Physicochemical properties of HM nanoparticles were investigated by multiple analytical techniques including X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), Raman spectroscopy, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), ultraviolet visible (UV-Vis) spectrum, vibrating sample magnetometer (VSM), and the Brunauer–Emmett–Teller (BET) method. Analytic results indicated that the special surface area, pore volume, and pore size of HM nanoparticles with the average particle size of 45 nm were evaluated to be ca. 20.999 m2/g, 0.111 cm3/g, and 0.892 nm, respectively. Magnetization curve indicated that saturation magnetization Ms for as-synthesized HM nanoparticles was calculated to be approximately 1.71 emu/g and revealed weakly ferromagnetic features at room temperature. In addition, HM nanoparticles exhibited noticeable light absorption performance for potential applications in many fields such as electronics, optics, and catalysis. Hence, synthesis of HM nanoparticles via microwave-assisted reduction technology provides an effective way for utilizing FSR and easing environmental burden. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Graphical abstract

27 pages, 7874 KiB  
Article
Electronic Structure of the Ground and Low-Lying States of MoLi
by Constantinos Demetriou and Demeter Tzeli
Molecules 2025, 30(13), 2874; https://doi.org/10.3390/molecules30132874 - 6 Jul 2025
Viewed by 267
Abstract
Molybdenum lithium compounds and materials are being researched and applied in cutting-edge industries; however, their bonding has not been explored in a systematic way. The present study investigates the MoLi molecule, to shed light on its bonding. Specifically, the electronic structure and bonding [...] Read more.
Molybdenum lithium compounds and materials are being researched and applied in cutting-edge industries; however, their bonding has not been explored in a systematic way. The present study investigates the MoLi molecule, to shed light on its bonding. Specifically, the electronic structure and bonding of the ground and 40 low-lying states of the MoLi molecule are explored, employing multireference methodologies, i.e., CASSCF and MRCISD(+Q) in conjunction with the aug-cc-pV5z(-PP) basis set. Bond distances, dissociation energies, dipole moments as well as common spectroscopic constants are given, while the potential energy curves are plotted. For the ground state, XΣ+6, it is found that Re = 2.708 Å, De = 24.1 kcal/mol, ωe = 316.8 cm1, ωexe = 2.11 cm1, and μ = 3.63 D. Overall, the calculated states present a variety of bonds, from weak van der Waals up to the formation of 2.5 bonds. The dissociation energies of the calculated states range from 2.3 kcal/mol (aΣ+8) to 34.7 (cΠ4), while the bond distances range from 2.513 Å to 3.354 Å. Finally, dipole moment values up to 3.72 D are calculated. In most states, a 2s2pz hybridization on Li and a 4dz25s5pz or 5s5pz hybridization on Mo are found. Moreover, it is observed that the excited Li(P2) atom forms the shortest bonds because its empty 2s0 orbital can easily accept electrons, resulting in a strong σ dative bond. Finally, the present work highlights the exceptional ability of lithium atoms to participate in a variety of bonding schemes, and it could provide the opening gate for further investigation of this species or associated material and complexes. Full article
Show Figures

Figure 1

15 pages, 2849 KiB  
Article
Improving the Corrosion Resistance of Titanium by PAA/Chitosan Bilayer Architecture Through the Layer-by-Layer Method
by Daniele Morais Dias, Murilo Oliveira Alves Ferreira, Ana Paula Ramos, Witor Wolf, Jéferson Aparecido Moreto and Rodrigo Galo
Polysaccharides 2025, 6(3), 57; https://doi.org/10.3390/polysaccharides6030057 - 1 Jul 2025
Viewed by 340
Abstract
To enhance interaction with the host tissue and protect the metal surface, various surface treatments can be applied to dental implants. This study aimed to produce layer-by-layer (LbL) films by alternated immersion of the titanium sample into polyacrylic acid (PAA) and chitosan solutions, [...] Read more.
To enhance interaction with the host tissue and protect the metal surface, various surface treatments can be applied to dental implants. This study aimed to produce layer-by-layer (LbL) films by alternated immersion of the titanium sample into polyacrylic acid (PAA) and chitosan solutions, obtaining a PAA/chitosan bilayer architecture, seeking to improve the corrosion resistance. For this purpose, 03 experimental groups (n = 05) were performed: Ti-Cp (as control), Ti-Cp+8 bilayers PAA/chitosan, and Ti-Cp+12 bilayers PAA/chitosan. The corrosion behavior was assessed by using open-circuit potential (OCP), potentiodynamic polarization curves (PPcs) and electrochemical impedance spectroscopy (EIS) techniques, conducted in 0.9 wt% NaCl solution at a controlled temperature of 25 ± 1 °C. The samples were characterized morphologically and structurally by atomic force microscope (AFM), scanning electron microscopy/energy-dispersive X-ray (SEM/EDX), and X-ray diffraction (XRD) techniques before and after the corrosion tests. The electrochemical results significantly highlight the beneficial influence of coatings based on PAA/chitosan in enhancing the corrosion resistance of titanium. These findings not only corroborate the feasibility of using alternative materials for the protection of titanium but also open new possibilities for the development of innovative coatings that can be applied within the biomedical sector, serving as mediators for medicinal purposes, particularly in osteoconductive interventions. Full article
Show Figures

Figure 1

Back to TopTop