Present and Future Energy Potential of Run-of-River Hydropower in Mainland Southeast Asia: Balancing Climate Change and Environmental Sustainability
Abstract
1. Introduction
2. Materials and Methods
2.1. General Assessment Framework
2.2. Study Area and Data
2.3. Preprocessing and Uncertainty Analysis
2.4. The HBV Hydrological Model
2.5. Potential and Available RHP Production—Environmental Considerations
- PP: Potential power (MW);
- FDP: Flow discharge at P exceedance probability level;
- g: Gravity acceleration = 9.8 m·s−2;
- Wd: Water density = ~1000 kg·m−3;
- ηT: Turbine efficiency = 0.88 [48];
- ηG: Generator efficiency = 0.96 [48];
- UH: Upstream Head (m);
- TH: Turbine Head (m);
- AP: Available power (MW);
- EFC: Environmental Flow Coefficient;
- FF: Forced outage factor;
- MF: Maintenance outage factor.
2.6. CO2 Emission Assessment
- THP: Total hydropower production in wet or dry periods (MWh);
- ND: Number of days per period;
- NH: Number of operating hours per day;
- DHP: Declined hydropower production in the future compared to the historical period (MWh);
- CE: CO2 emissions (tCO2);
- WEF: Weighted average emissions factor (tCO2 per MWh).
3. Results
3.1. Flow/Power Duration Curve in Historical Period
3.2. Current RHP Production
3.3. Projected Change in Flow Discharge
3.4. Climate Change Impact on RHP Production
3.5. Spatial Analysis of Optimal Energy Production Potential
3.6. Potential Changes in CO2 Emissions
4. Discussion
5. Research Limitations
6. Conclusions and Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GCMs | General Circulation Models |
MSEA | Mainland Southeast Asia |
FDC | Flow Duration Curve |
PDC | Power Duration Curve |
GloFAS | Global Flood Awareness System |
HBV | Hydrologiska Byrans Vattenavdelning |
PP | Potential Power |
AP | Available Power |
FF | Outage Factor |
MF | Maintenance Factor |
References
- Paris 2024. Available online: https://www.iea.org/reports/co2-emissions-in-2023 (accessed on 11 November 2024).
- UNCC: United Nations Climate Change Annual Report 2020. 2021. Available online: https://unfccc.int/sites/default/files/resource/UNFCCC_Annual_Report_2020.pdf (accessed on 11 November 2024).
- Zhang, C.; Chen, S.; Qiao, H.; Dong, L.; Huang, Z.; Ou, C. Small hydropower sustainability evaluation for the countries along the Belt and Road. Environ. Dev. 2020, 34, 100528. [Google Scholar] [CrossRef]
- Grodzicki, T.; Jankiewicz, M. The impact of renewable energy and urbanization on CO2 emissions in Europe–Spatio-temporal approach. Environ. Dev. 2022, 44, 100755. [Google Scholar] [CrossRef]
- Jakimavičius, D.; Adžgauskas, G.; Šarauskienė, D.; Kriaučiūnienė, J. Climate change impact on hydropower resources in gauged and ungauged Lithuanian river catchments. Water 2020, 12, 3265. [Google Scholar] [CrossRef]
- Tang, S.; Chen, J.; Sun, P.; Li, Y.; Yu, P.; Chen, E. Current and future hydropower development in Southeast Asia countries (Malaysia, Indonesia, Thailand and Myanmar). Energy Policy 2019, 129, 239–249. [Google Scholar] [CrossRef]
- Lau, H.C.; Zhang, K.; Bokka, H.K.; Ramakrishna, S. A review of the status of fossil and renewable energies in Southeast Asia and its implications on the decarbonization of ASEAN. Energies 2022, 15, 2152. [Google Scholar] [CrossRef]
- Sakti, A.D.; Rohayani, P.; Izzah, N.A.; Toya, N.A.; Hadi, P.O.; Octavianti, T.; Harjupa, W.; Caraka, R.E.; Kim, Y.; Avtar, R.; et al. Spatial integration framework of solar, wind, and hydropower energy potential in Southeast Asia. Sci. Rep. 2023, 13, 340. [Google Scholar] [CrossRef] [PubMed]
- Mosier, T.M.; Sharp, K.V.; Hill, D.F. The Hydropower Potential Assessment Tool (HPAT): Evaluation of run-of-river resource potential for any global land area and application to Falls Creek, Oregon, USA. Renew. Energy 2016, 97, 492–503. [Google Scholar] [CrossRef]
- Balat, H. A renewable perspective for sustainable energy development in Turkey: The case of small hydropower plants. Renew. Sustain. Energy Rev. 2007, 11, 2152–2165. [Google Scholar] [CrossRef]
- Michels-Brito, A.; Rodriguez, D.A.; Junior, W.L.C.; de Souza Vianna, J.N. The climate change potential effects on the run-of-river plant and the environmental and economic dimensions of sustainability. Renew. Sustain. Energy Rev. 2021, 147, 111238. [Google Scholar] [CrossRef]
- Arias, M.E.; Farinosi, F.; Lee, E.; Livino, A.; Briscoe, J.; Moorcroft, P.R. Impacts of climate change and deforestation on hydropower planning in the Brazilian Amazon. Nat. Sustain. 2020, 3, 430–436. [Google Scholar] [CrossRef]
- Tobias, W.; Manfred, S.; Klaus, J.; Massimiliano, Z.; Bettina, S. The future of Alpine Run-of-River hydropower production: Climate change, environmental flow requirements, and technical production potential. Sci. Total Environ. 2023, 890, 163934. [Google Scholar] [CrossRef]
- Mohsin, M.; Orynbassarov, D.; Anser, M.K.; Oskenbayev, Y. Does hydropower energy help to reduce CO2 emissions in European Union countries? evidence from quantile estimation. Environ. Dev. 2023, 45, 100794. [Google Scholar] [CrossRef]
- Destek, M.A.; Aslan, A. Disaggregated renewable energy consumption and environmental pollution nexus in G-7 countries. Renew. Energy 2020, 151, 1298–1306. [Google Scholar] [CrossRef]
- Almeida, R.M.; Fleischmann, A.S.; Brêda, J.P.; Cardoso, D.S.; Angarita, H.; Collischonn, W.; Forsberg, B.; García-Villacorta, R.; Hamilton, S.K.; Hannam, P.M.; et al. Climate change may impair electricity generation and economic viability of future Amazon hydropower. Glob. Environ. Change 2021, 71, 102383. [Google Scholar] [CrossRef]
- Qin, P.; Xu, H.; Liu, M.; Du, L.; Xiao, C.; Liu, L.; Tarroja, B. Climate change impacts on Three Gorges Reservoir impoundment and hydropower generation. J. Hydrol. 2020, 580, 123922. [Google Scholar] [CrossRef]
- Arias, M.E.; Cochrane, T.A.; Kummu, M.; Lauri, H.; Holtgrieve, G.W.; Koponen, J.; Piman, T. Impacts of hydropower and climate change on drivers of ecological productivity of Southeast Asia’s most important wetland. Ecol. Model. 2014, 272, 252–263. [Google Scholar] [CrossRef]
- Aroonrat, K.; Wongwises, S. Current status and potential of hydro energy in Thailand: A review. Renew. Sustain. Energy Rev. 2015, 46, 70–78. [Google Scholar] [CrossRef]
- Purwanto, W.W.; Afifah, N. Assessing the impact of techno socioeconomic factors on sustainability indicators of microhydro power projects in Indonesia: A comparative study. Renew. Energy 2016, 93, 312–322. [Google Scholar] [CrossRef]
- Yah, N.F.; Oumer, A.N.; Idris, M.S. Small scale hydro-power as a source of renewable energy in Malaysia: A review. Renewable and Sustainable Energy Rev. 2017, 72, 228–239. [Google Scholar] [CrossRef]
- Siala, K.; Chowdhury, A.K.; Dang, T.D.; Galelli, S. Solar energy and regional coordination as a feasible alternative to large hydropower in Southeast Asia. Nat. Commun. 2021, 12, 4159. [Google Scholar] [CrossRef]
- MRC. Mekong River Commission for Sustainable Development (MRC)-Hydropower. 2020. Available online: https://www.mrcmekong.org (accessed on 5 December 2024).
- Thui, P.C. Cambodia Halts Mainstream Mekong River Dam Plans for 10 Years, Official Says. 2020. Available online: https://www.reuters.com/article/us-mekong-river-cambodia/cambodia-halts-mainstream-mekong-river-dam-plans-for-10-years-official-says-idUSKBN215187/ (accessed on 5 December 2024).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998; Volume 56, p. e156. [Google Scholar]
- Grimaldi, S.; Salamon, P.; Disperati, J.; Zsoter, E.; Russo, C.; Ramos, A.; Carton De Wiart, C.; Barnard, C.; Hansford, E.; Gomes, G.; et al. River Discharge and Related Historical Data from the Global Flood Awareness System, v4.0; European Commission, Joint Research Centre (JRC) Climate Copernicus EU/CDSAPP: Brussels, Belgium, 2022. [Google Scholar]
- De Roo, A.; Wesseling, C.; Van Deursen, W. Physically based river basin modelling within a GIS: The LISFLOOD model. Hydrol. Process. 2000, 14, 1981–1992. [Google Scholar] [CrossRef]
- Lei, H.; Zhao, H.; Ao, T. Ground validation and error decomposition for six state-of-the-art satellite precipitation products over mainland China. Atmos. Res. 2022, 269, 106017. [Google Scholar] [CrossRef]
- Thrasher, B.; Wang, W.; Michaelis, A.; Melton, F.; Lee, T.; Nemani, R. NASA global daily downscaled projections, CMIP6. Sci. Data 2022, 9, 262. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.W.; Leung, L.R.; Sridhar, V.; Lettenmaier, D. Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim. Change 2004, 62, 189–216. [Google Scholar] [CrossRef]
- Thrasher, B.; Maurer, E.P.; McKellar, C.; Duffy, P.B. Bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol. Earth Syst. Sci. 2012, 16, 3309–3314. [Google Scholar] [CrossRef]
- Punys, P.; Kvaraciejus, A.; Dumbrauskas, A.; Šilinis, L.; Popa, B. An assessment of micro-hydropower potential at historic watermill, weir, and non-powered dam sites in selected EU countries. Renew. Energy 2019, 133, 1108–1123. [Google Scholar] [CrossRef]
- Vogel, R.M.; Fennessey, N.M. Flow duration curves II: A review of applications in water resources planning 1. JAWRA J. Am. Water Resour. Assoc. 1995, 31, 1029–1039. [Google Scholar] [CrossRef]
- Hänggi, P.; Weingartner, R. Variations in discharge volumes for hydropower generation in Switzerland. Water Resour. Manag. 2012, 26, 1231–1252. [Google Scholar] [CrossRef]
- Wagner, T.; Themeßl, M.; Schüppel, A.; Gobiet, A.; Stigler, H.; Birk, S. Impacts of climate change on stream flow and hydro power generation in the Alpine region. Environ. Earth Sci. 2017, 76, 1–22. [Google Scholar] [CrossRef]
- Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Garrote, L. Flow regime aspects in determining environmental flows and maximising energy production at run-of-river hydropower plants. Appl. Energy 2019, 256, 113980. [Google Scholar] [CrossRef]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Selected Papers of Hirotugu Akaike; Springer: New York, NY, USA, 1998; pp. 199–213. [Google Scholar]
- Bergström, S. The HBV Model–Its Structure and Applications; SMHI: Norrköping, Sweden, 1992. [Google Scholar]
- Bergström, S. Development and Application of a Conceptual Runoff Model for Scandinavian Catchments; SMHI: Norrköping, Sweden, 1976. [Google Scholar]
- Lindström, G.; Johansson, B.; Persson, M.; Gardelin, M.; Bergström, S. Development and test of the distributed HBV-96 hydrological model. J. Hydrol. 1997, 201, 272–288. [Google Scholar] [CrossRef]
- Hernández, J.G.; Foehn, A.; Fluixá-Sanmartín, J.; Roquier, B.; Brauchli, T.; Arquiola, J.P.; De Cesare, G. RS MINERVE—Technical Manual; Centre de recherche sur l’environnement alpin (CREALP): Sion, Switzerland; HydroCosmos SA: Martigny, Switzerland, 2020. [Google Scholar]
- Duan, Q.; Sorooshian, S.; Gupta, V.K. Optimal use of the SCE-UA global optimization method for calibrating watershed models. J. Hydrol. 1994, 158, 265–284. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef]
- Mohor, G.S.; Rodriguez, D.A.; Tomasella, J.; Júnior, J.L.S. Exploratory analyses for the assessment of climate change impacts on the energy production in an Amazon run-of-river hydropower plant. J. Hydrol. Reg. Stud. 2015, 4, 41–59. [Google Scholar] [CrossRef]
- Von Randow, R.C.S.; Rodriguez, D.A.; Tomasella, J.; Aguiar, A.P.D.; Kruijt, B.; Kabat, P. Response of the river discharge in the Tocantins River Basin, Brazil, to environmental changes and the associated effects on the energy potential. Reg. Environ. Change 2019, 19, 193–204. [Google Scholar] [CrossRef]
- Rojanamon, P.; Chaisomphob, T.; Bureekul, T. Application of geographical information system to site selection of small run-of-river hydropower project by considering engineering/economic/environmental criteria and social impact. Renew. Sustain. Energy Rev. 2009, 13, 2336–2348. [Google Scholar] [CrossRef]
- Farr, T.G.; Kobrick, M. Shuttle Radar Topography Mission produces a wealth of data. Eos Trans. Am. Geophys. Union 2000, 81, 583–585. [Google Scholar] [CrossRef]
- Lehner, B.; Grill, G. Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 2013, 27, 2171–2186. [Google Scholar] [CrossRef]
- Lehner, B.; Verdin, K.; Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos Trans. Am. Geophys. Union 2008, 89, 93–94. [Google Scholar] [CrossRef]
- Acreman, M.C.; Dunbar, M.J. Defining environmental river flow requirements—A review. Hydrol. Earth Syst. Sci. 2004, 8, 861–876. [Google Scholar] [CrossRef]
- Korkovelos, A.; Mentis, D.; Siyal, S.H.; Arderne, C.; Rogner, H.; Bazilian, M.; Howells, M.; Beck, H.; De Roo, A. A geospatial assessment of small-scale hydropower potential in Sub-Saharan Africa. Energies 2018, 11, 3100. [Google Scholar] [CrossRef]
- NDC. United Nations-National Determined Contribution (NDC) Registry. 2024. Available online: https://unfccc.int/NDCREG (accessed on 5 December 2024).
- GEC. Global Environment Centre Foundation-JCM Project Development by JFE. 2019. Available online: http://gec.jp/jcm/seminar/2019thailand/4-2_JFEE.pdf (accessed on 5 December 2024).
- MEI. Malaysia Energy Information Hub-Energy Commission. 2022. Available online: https://meih.st.gov.my/documents/10620/cdddb88f-aaa5-4e1a-9557-e5f4d779906b (accessed on 5 December 2024).
- TGO. Thailand Greenhouse Gas Management Organization (TGO)—Emission Factor from Electricity Generation/Consumption for Greenhouse Gas Mitigation Projects and Activities. 2022. Available online: https://ghgreduction.tgo.or.th/en/premium-t-ver-download/download/6966/3801/32.html (accessed on 11 November 2024).
- MONRE. Ministry of Natural Resources and Environment (MONRE)-Department of Climate Change 2022 Vietnam Electricity Grid Emission Coefficient. 2022. Available online: https://en.monre.gov.vn/ (accessed on 11 November 2024).
- Heng, B. Cost-Benefit Analysis for Biomass Options in Electricity Generation: The Case of Cambodia Technology Management, Economics and Policy Program-College of Engineering; Seoul National University: Seoul, Republic of Korea, 2019. [Google Scholar]
- Chowdhury, A.K.; Dang, T.D.; Bagchi, A.; Galelli, S. Expected benefits of Laos’ hydropower development curbed by hydroclimatic variability and limited transmission capacity: Opportunities to reform. J. Water Resour. Plan. Manag. 2020, 146, 05020019. [Google Scholar] [CrossRef]
- Sparkes, S. Hydropower development and food security in Laos. Aquat. Procedia 2013, 1, 138–149. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- NDC. United Nations—National Determined Contribution (NDC) Registry. 2022. Available online: https://www4.unfccc.int/sites/NDCStaging/Pages/All.aspx (accessed on 20 December 2024).
- IRENA. International Renewable Energy Agency (IRENA), IRENASTAT Online Data Query Tool. 2024. Available online: https://www.irena.org/Data/Downloads/IRENASTAT (accessed on 20 December 2024).
- Williams, J.C. Otherwise a mere clod: California rural electrification. IEEE Technol. Soc. Mag. 1988, 7, 13–19. [Google Scholar] [CrossRef]
- Alam, F.; Alam, Q.; Reza, S.; Khurshid-ul-Alam, S.; Saleque, K.; Chowdhury, H. A review of hydropower projects in Nepal. Energy Procedia 2017, 110, 581–585. [Google Scholar] [CrossRef]
- Amin, I.M.Z.b.M.; Ercan, A.; Ishida, K.; Kavvas, M.L.; Chen, Z.; Jang, S.-H. Impacts of climate change on the hydro-climate of peninsular Malaysia. Water 2019, 11, 1798. [Google Scholar] [CrossRef]
- Yang, S.; Tan, M.L.; Song, Q.; He, J.; Yao, N.; Li, X.; Yang, X. Coupling SWAT and Bi-LSTM for improving daily-scale hydro-climatic simulation and climate change impact assessment in a tropical river basin. J. Environ. Manag. 2023, 330, 117244. [Google Scholar] [CrossRef] [PubMed]
- Ich, I.; Sok, T.; Kaing, V.; Try, S.; Chan, R.; Oeurng, C. Climate change impact on water balance and hydrological extremes in the Lower Mekong Basin: A case study of Prek Thnot River Basin, Cambodia. J. Water Clim. Change 2022, 13, 2911–2939. [Google Scholar] [CrossRef]
- Ghimire, S.; Shrestha, S.; Hok, P.; Heng, S.; Nittivattanaon, V.; Sabo, J. Integrated assessment of climate change and reservoir operation on flow-regime and fisheries of the Sekong river basin in Lao PDR and Cambodia. Environ. Res. 2023, 220, 115087. [Google Scholar] [CrossRef]
- Gurung, P.; Dhungana, S.; Kyaw Kyaw, A.; Bharati, L. Hydrologic characterization of the Upper Ayeyarwaddy River Basin and the impact of climate change. J. Water Clim. Change 2022, 13, 2577–2596. [Google Scholar] [CrossRef]
- Khoi, D.N.; Sam, T.T.; Chi, N.T.T.; Linh, D.Q.; Nhi, P.T.T. Impact of future climate change on river discharge and groundwater recharge: A case study of Ho Chi Minh City, Vietnam. J. Water Clim. Change 2022, 13, 1313–1325. [Google Scholar] [CrossRef]
- Sawangphol, N.; Pharino, C. Status and outlook for Thailand’s low carbon electricity development. Renew. Sustain. Energy Rev. 2011, 15, 564–573. [Google Scholar] [CrossRef]
- Pode, R.; Pode, G.; Diouf, B. Solution to sustainable rural electrification in Myanmar. Renew. Sustain. Energy Rev. 2016, 59, 107–118. [Google Scholar] [CrossRef]
- Winyuchakrit, P.; Limmeechokchai, B.; Matsuoka, Y.; Gomi, K.; Kainuma, M.; Fujino, J.; Suda, M. CO2 mitigation in Thailand’s low-carbon society: The potential of renewable energy. Energy Sources Part B Econ. Plan. Policy 2016, 11, 553–561. [Google Scholar] [CrossRef]
- Kattelus, M.; Rahaman, M.M.; Varis, O. Myanmar under reform: Emerging pressures on water, energy and food security. Nat. Resour. Forum 2014, 38, 85–98. [Google Scholar] [CrossRef]
- Hossain, F.M.; Hasanuzzaman, M.; Rahim, N.; Ping, H. Impact of renewable energy on rural electrification in Malaysia: A review. Clean. Technol. Environ. Policy 2015, 17, 859–871. [Google Scholar] [CrossRef]
- Foo, K. A vision on the opportunities, policies and coping strategies for the energy security and green energy development in Malaysia. Renewable and Sustainable Energy Rev. 2015, 51, 1477–1498. [Google Scholar] [CrossRef]
- Borhanazad, H.; Mekhilef, S.; Saidur, R.; Boroumandjazi, G. Potential application of renewable energy for rural electrification in Malaysia. Renew. Energy 2013, 59, 210–219. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Wang, Y.; Li, C.; Ju, Q.; Jin, J.; Deng, X.; Sun, G.; Bao, Z. Applicability of the HBV model to a human-influenced catchment in northern China. Hydrol. Res. 2023, 54, 208–219. [Google Scholar] [CrossRef]
- De Rango, A.; Terranova, A.; D’Ambrosio, D.; Lupiano, V.; Mendicino, G.; Terranova, O.G.; Iovine, G. GASAKe 2.0—An advanced hydrological model for predicting the timing of landslide activations. J. Environ. Inform. 2025, 45, 84–102. [Google Scholar]
Exceedance Level | Malaysia (MW) 25 * | Myanmar (MW) 6 * | Thailand (MW) 94 * | Laos (MW) 33 * | Vietnam (MW) 25 * | Cambodia (MW) 16 * | |
---|---|---|---|---|---|---|---|
Historical (1986–2023) | 10% | 89.05 | 736.87 | 621.53 | 1016.91 | 53.34 | 455.78 |
30% | 77.00 | 438.63 | 389.60 | 634.17 | 31.37 | 269.34 | |
75% | 60.27 | 196.89 | 191.62 | 305.12 | 13.61 | 125.25 | |
90% | 53.03 | 132.28 | 136.80 | 211.67 | 9.13 | 87.68 | |
SSP245-F1 (2024–2061) | 10% | 87.80 | 1034.95 | 754.45 | 1487.11 | 60.69 | 675.51 |
30% | 78.20 | 729.89 | 495.74 | 897.41 | 35.52 | 484.75 | |
75% | 62.14 | 340.74 | 217.49 | 323.66 | 13.49 | 260.43 | |
90% | 52.83 | 200.85 | 129.43 | 167.47 | 7.44 | 181.55 | |
SSP245-F2 (2062–2099) | 10% | 88.44 | 1228.07 | 825.92 | 1609.44 | 61.32 | 793.51 |
30% | 80.00 | 859.43 | 542.20 | 968.84 | 36.22 | 567.15 | |
75% | 65.37 | 393.93 | 236.78 | 347.25 | 14.11 | 299.46 | |
90% | 56.67 | 229.12 | 140.30 | 179.03 | 7.95 | 204.43 | |
SSP585-F1 (2024–2061) | 10% | 85.52 | 826.85 | 562.37 | 1091.81 | 42.58 | 551.51 |
30% | 76.00 | 579.11 | 376.00 | 669.88 | 25.13 | 388.68 | |
75% | 59.55 | 266.78 | 171.26 | 250.97 | 10.44 | 212.30 | |
90% | 49.78 | 155.82 | 104.17 | 134.19 | 6.36 | 151.10 | |
SSP585-F2 (2062–2099) | 10% | 83.09 | 1210.45 | 618.41 | 1165.53 | 45.31 | 750.82 |
30% | 74.37 | 851.29 | 419.09 | 723.13 | 26.83 | 553.25 | |
75% | 59.57 | 394.98 | 197.74 | 278.77 | 11.12 | 313.75 | |
90% | 50.87 | 231.83 | 124.31 | 152.81 | 6.81 | 226.32 |
Exceedance Level | Malaysia (MW) 25 * | Myanmar (MW) 6 * | Thailand (MW) 94 * | Laos (MW) 33 * | Vietnam (MW) 25 * | Cambodia (MW) 16 * | |
---|---|---|---|---|---|---|---|
Historical (1986–2023) | 10% | 140.57 | 2878.49 | 2520.92 | 5384.35 | 136.43 | 2347.97 |
30% | 110.43 | 2120.36 | 1709.21 | 3644.17 | 82.94 | 1630.15 | |
75% | 73.02 | 1023.93 | 740.74 | 1550.41 | 33.00 | 782.38 | |
90% | 58.12 | 450.50 | 418.67 | 855.38 | 18.94 | 478.45 | |
SSP245-F1 (2024–2061) | 10% | 138.00 | 3130.58 | 2448.04 | 5297.85 | 126.49 | 2763.26 |
30% | 112.87 | 2072.41 | 1660.94 | 3533.31 | 78.95 | 1746.48 | |
75% | 73.44 | 835.50 | 731.84 | 1464.52 | 31.28 | 659.16 | |
90% | 54.06 | 441.52 | 419.32 | 798.33 | 17.21 | 340.50 | |
SSP245-F2 (2062–2099) | 10% | 148.30 | 3617.01 | 2738.04 | 5816.67 | 131.56 | 3327.56 |
30% | 121.23 | 2595.94 | 1846.42 | 3899.66 | 84.10 | 2065.87 | |
75% | 78.68 | 1176.10 | 806.26 | 1640.21 | 34.86 | 742.65 | |
90% | 57.74 | 554.74 | 459.64 | 905.24 | 18.40 | 368.74 | |
SSP585-F1 (2024–2061) | 10% | 126.46 | 2513.16 | 1971.70 | 4194.95 | 105.88 | 2508.74 |
30% | 107.06 | 1860.25 | 1403.78 | 2956.09 | 69.90 | 1497.81 | |
75% | 73.95 | 924.10 | 680.82 | 1381.75 | 31.24 | 579.44 | |
90% | 55.64 | 503.64 | 415.06 | 818.35 | 18.58 | 325.42 | |
SSP585-F2 (2062–2099) | 10% | 131.99 | 3960.81 | 2299.68 | 4732.77 | 114.96 | 3623.80 |
30% | 108.16 | 2986.24 | 1690.12 | 3456.59 | 81.82 | 2313.31 | |
75% | 71.26 | 1582.23 | 872.72 | 1744.81 | 39.25 | 909.61 | |
90% | 53.41 | 954.08 | 555.02 | 1088.78 | 20.61 | 488.98 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maroufpoor, S.; Qin, X. Present and Future Energy Potential of Run-of-River Hydropower in Mainland Southeast Asia: Balancing Climate Change and Environmental Sustainability. Water 2025, 17, 2256. https://doi.org/10.3390/w17152256
Maroufpoor S, Qin X. Present and Future Energy Potential of Run-of-River Hydropower in Mainland Southeast Asia: Balancing Climate Change and Environmental Sustainability. Water. 2025; 17(15):2256. https://doi.org/10.3390/w17152256
Chicago/Turabian StyleMaroufpoor, Saman, and Xiaosheng Qin. 2025. "Present and Future Energy Potential of Run-of-River Hydropower in Mainland Southeast Asia: Balancing Climate Change and Environmental Sustainability" Water 17, no. 15: 2256. https://doi.org/10.3390/w17152256
APA StyleMaroufpoor, S., & Qin, X. (2025). Present and Future Energy Potential of Run-of-River Hydropower in Mainland Southeast Asia: Balancing Climate Change and Environmental Sustainability. Water, 17(15), 2256. https://doi.org/10.3390/w17152256