Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (277)

Search Parameters:
Keywords = postural sway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4319 KiB  
Article
Four-Week Exoskeleton Gait Training on Balance and Mobility in Minimally Impaired Individuals with Multiple Sclerosis: A Pilot Study
by Micaela Schmid, Stefania Sozzi, Bruna Maria Vittoria Guerra, Caterina Cavallo, Matteo Vandoni, Alessandro Marco De Nunzio and Stefano Ramat
Bioengineering 2025, 12(8), 826; https://doi.org/10.3390/bioengineering12080826 (registering DOI) - 30 Jul 2025
Viewed by 261
Abstract
Multiple Sclerosis (MS) is a chronic neurological disorder affecting the central nervous system that significantly impairs postural control and functional abilities. Robotic-assisted gait training mitigates this functional deterioration. This preliminary study aims to investigate the effects of a four-week gait training with the [...] Read more.
Multiple Sclerosis (MS) is a chronic neurological disorder affecting the central nervous system that significantly impairs postural control and functional abilities. Robotic-assisted gait training mitigates this functional deterioration. This preliminary study aims to investigate the effects of a four-week gait training with the ExoAtlet II exoskeleton on static balance control and functional mobility in five individuals with MS (Expanded Disability Status Scale ≤ 2.5). Before and after the training, they were assessed in quiet standing under Eyes Open (EO) and Eyes Closed (EC) conditions and with the Timed Up and Go (TUG) test. Center of Pressure (CoP) Sway Area, Antero–Posterior (AP) and Medio–Lateral (ML) CoP displacement, Stay Time, and Total Instability Duration were computed. TUG test Total Duration, sit-to-stand, stand-to-sit, and linear walking phase duration were analyzed. To establish target reference values for rehabilitation advancement, the same evaluations were performed on a matched healthy cohort. After the training, an improvement in static balance with EO was observed towards HS values (reduced Sway Area, AP and ML CoP displacement, and Total Instability Duration and increased Stay Time). Enhancements under EC condition were less marked. TUG test performance improved, particularly in the stand-to-sit phase. These preliminary findings suggest functional benefits of exoskeleton gait training for individuals with MS. Full article
(This article belongs to the Special Issue Advances in Physical Therapy and Rehabilitation)
Show Figures

Figure 1

12 pages, 1747 KiB  
Article
The Effects of an Acute Exposure of Virtual vs. Real Slip and Trip Perturbations on Postural Control
by Nathan O. Conner, Harish Chander, Hunter Derby, William C. Pannell, Jacob B. Daniels and Adam C. Knight
Virtual Worlds 2025, 4(3), 34; https://doi.org/10.3390/virtualworlds4030034 - 21 Jul 2025
Viewed by 383
Abstract
Background: Current methods of postural control assessments and interventions to improve postural stability and thereby prevent falls often fail to incorporate the hazardous perturbation situations that frequently accompany falls. Virtual environments can safely incorporate these hazards. The purpose of the study was to [...] Read more.
Background: Current methods of postural control assessments and interventions to improve postural stability and thereby prevent falls often fail to incorporate the hazardous perturbation situations that frequently accompany falls. Virtual environments can safely incorporate these hazards. The purpose of the study was to identify if virtual slip and trip perturbations can be used as an exposure paradigm in place of real slip and trip perturbations to improve postural control. Methods: Fifteen healthy young adults were included in this study. Two paradigms, real gait exposure (real) and virtual environment gait exposure (virtual), consisting of real and virtual slip and trip trials, were performed by each participant in a counterbalanced order to avoid order effects. At baseline and following real and virtual paradigms, the modified clinical test for sensory integration and balance (mCTSIB), limits of stability (LOS), and single-leg stance (SLS) using BTracks balance plate were administered. Separate one-way (baseline vs. Real vs. Virtual) repeated measures analysis of variance were conducted on response variables. Results: In the posterior left quadrant of the LOS, significant differences were found after the real paradigm compared to baseline (p = 0.04). For the anterior left quadrant and total LOS, significant differences post real paradigm (p = 0.002 and p < 0.001) and virtual paradigm (p = 0.007 and p < 0.001) compared to baseline were observed. For the SLS, the left-leg significant differences were observed post real paradigm (p = 0.019) and virtual paradigm (p = 0.009) compared to BL in path length, while significant main effects were found for mean sway velocity for the left leg only (p = 0.004). For the right leg, significant differences were only observed after the virtual paradigm (p = 0.01) compared to BL. Conclusions: Both virtual and real paradigms were identified to improve postural control. The virtual paradigm led to increased postural control in the right-leg SLS condition, while the real paradigm did not, without any adverse effects. Findings suggest virtual reality perturbation exposure acutely improves postural control ability compared to baseline among healthy young adults. Full article
Show Figures

Figure 1

28 pages, 3409 KiB  
Article
Wobble Board Instability Enhances Compensatory CoP Responses to CoM Movement Across Timescales
by Mahsa Barfi, Theodoros Deligiannis, Brian Schlattmann, Karl M. Newell and Madhur Mangalam
Sensors 2025, 25(14), 4454; https://doi.org/10.3390/s25144454 - 17 Jul 2025
Viewed by 232
Abstract
This study investigated the interplay of bodily degrees of freedom (DoFs) governing the collective variable comprising the center of pressure (CoP) and center of mass (CoM) in postural control through the analytical lens of multiplicative interactions across scales. We employed a task combination [...] Read more.
This study investigated the interplay of bodily degrees of freedom (DoFs) governing the collective variable comprising the center of pressure (CoP) and center of mass (CoM) in postural control through the analytical lens of multiplicative interactions across scales. We employed a task combination involving a wobble board, introducing mechanical instability mainly along the mediolateral (ML) axis and the Trail Making Task (TMT), which imposes precise visual demands primarily along the anteroposterior (AP) axis. Using Multiscale Regression Analysis (MRA), a novel analytical method rooted in Detrended Fluctuation Analysis (DFA), we scrutinized CoP-to-CoM and CoM-to-CoP effects across multiple timescales ranging from 100ms to 10s. CoP was computed from ground reaction forces recorded via a force plate, and CoM was derived from full-body 3D motion capture using a biomechanical model. We found that the wobble board attenuated CoM-to-CoP effects across timescales ranging from 100to400ms. Further analysis revealed nuanced changes: while there was an overall reduction, this encompassed an accentuation of CoM-to-CoP effects along the AP axis and a decrease along the ML axis. Importantly, these alterations in CoP’s responses to CoM movements outweighed any nonsignificant effects attributable to the TMT. CoM exhibited no sensitivity to CoP movements, regardless of the visual and mechanical task demands. In addition to identifying the characteristic timescales associated with bodily DoFs in facilitating upright posture, our findings underscore the critical significance of directionally challenging biomechanical constraints, particularly evident in the amplification of CoP-to-CoM effects along the AP axis in response to ML instability. These results underscore the potential of wobble board training to enhance the coordinative and compensatory responses of bodily DoFs to the shifting CoM by prompting appropriate adjustments in CoP, thereby suggesting their application for reinstating healthy CoM–CoP dynamics in clinical populations with postural deficits. Full article
Show Figures

Figure 1

17 pages, 2328 KiB  
Article
Investigating Performance of an Embedded Machine Learning Solution for Classifying Postural Behaviors
by Bruno Andò, Salvatore Baglio, Mattia Manenti, Valeria Finocchiaro, Vincenzo Marletta, Sreeraman Rajan, Ebrahim Ali Nehary, Valeria Dibilio, Mario Zappia and Giovanni Mostile
Sensors 2025, 25(14), 4262; https://doi.org/10.3390/s25144262 - 9 Jul 2025
Viewed by 281
Abstract
Postural instability is one of the main critical aspects to be monitored in the case of degenerative diseases, and is also a predictor of potential falls. This paper presents a multi-layer perceptron approach for the classification of four different classes of postural behaviors [...] Read more.
Postural instability is one of the main critical aspects to be monitored in the case of degenerative diseases, and is also a predictor of potential falls. This paper presents a multi-layer perceptron approach for the classification of four different classes of postural behaviors that is implemented by an embedded sensing architecture. The robustness of the methodology against noisy data and the effects of using different sets of classification features have been investigated. In the case of noisy input data, a reliability index of almost 100% has been obtained, with a negligible drop (less than 5%) being shown for the whole range of noise levels that was investigated. Such an achievement substantiates the better robustness of this approach with respect to threshold-based algorithms, which have been also considered for the sake of comparison. Full article
(This article belongs to the Section Wearables)
Show Figures

Graphical abstract

13 pages, 1037 KiB  
Article
Assessment of Static Balance Metrics in Community-Dwelling Older Adults Categorized Using the Fall Risk Appraisal Matrix
by Jethro Raphael M. Suarez, Joon-Hyuk Park and Ladda Thiamwong
Int. J. Environ. Res. Public Health 2025, 22(7), 1079; https://doi.org/10.3390/ijerph22071079 - 6 Jul 2025
Viewed by 376
Abstract
The Fall Risk Appraisal Matrix (FRAM) is a simple fall risk assessment tool that categorizes older adults into four separate groups based on their fear of falling (FOF) and static balance performance. Static balance for the FRAM is evaluated solely by postural sway [...] Read more.
The Fall Risk Appraisal Matrix (FRAM) is a simple fall risk assessment tool that categorizes older adults into four separate groups based on their fear of falling (FOF) and static balance performance. Static balance for the FRAM is evaluated solely by postural sway distance, which does not account for other static balance parameters, such as sway area, anterior–posterior (AP) sway range, medial–lateral (ML) sway range, and sway velocity. The objective of this study was to compare these additional metrics across the FRAM groups to assess their relevance and validity for inclusion in static balance performance assessment. Hence, these measures were compared among the four different fall risk groups within the FRAM (203 participants; mean age = 75.0 ± 7.2 years) using Kruskal–Wallis test, followed by Dunn’s post hoc tests with Bonferroni correction. All balance metrics were significantly greater in the Incongruent (poor balance/low FOF) and Congruent (poor balance/high FOF) groups than the Rational (good balance/low FOF) group, as well as in the Congruent group than the Irrational (good balance/high FOF) group (p < 0.001). Additionally, AP sway range and sway velocity significantly differed between the Irrational and Incongruent groups (p < 0.001). The results suggest that the inclusion of these additional static balance measures, in addition to sway distance, reveals specific tendencies in static balance among different fall risk groups, which can serve as a reference for other researchers and future studies to develop more individually tailored intervention programs based on their static balance specificities. Full article
Show Figures

Figure 1

13 pages, 784 KiB  
Article
A Refined Vestibular Romberg Test to Differentiate Somatosensory from Vestibular-Induced Disequilibrium
by Evangelos Anagnostou, Anastasia Gamvroula, Maria Kouvli, Evangelia Karagianni, George Stranjalis, Maria Skoularidou and Theodosis Kalamatianos
Diagnostics 2025, 15(13), 1621; https://doi.org/10.3390/diagnostics15131621 - 26 Jun 2025
Viewed by 532
Abstract
Background: The vestibular Romberg test, which assesses the deterioration of balance while standing on rubber foam with closed eyes, is a well-established method in the physical neurological assessment of patients with peripheral vestibulopathy. This study aims to determine whether it can differentiate [...] Read more.
Background: The vestibular Romberg test, which assesses the deterioration of balance while standing on rubber foam with closed eyes, is a well-established method in the physical neurological assessment of patients with peripheral vestibulopathy. This study aims to determine whether it can differentiate peripheral vestibulopathy from its main differential diagnosis, namely sensory ataxia, as both conditions typically present with a positive classical Romberg test. Methods: Static balance was assessed in three groups: patients with peripheral vestibulopathy, patients with pure sensory neuropathy, and healthy age-matched controls. Participants stood quietly on a force platform under varying visual and proprioceptive feedback conditions. Conventional and advanced postural sway metrics were investigated to establish a quantitative analogy to both the clinical Romberg and vestibular Romberg tests. Results: Posturographic analysis revealed that, in contrast to healthy controls, patients with vestibular disorders exhibited higher vestibular Romberg quotient values. However, the classical vestibular Romberg quotient did not show diagnostic discrimination between vestibulopathy and sensory neuropathy patients. This lack of discrimination was mainly due to the increased body sway observed in all patient groups under the “eyes open” condition. Nevertheless, a refined vestibular Romberg quotient—comparing standing on foam versus standing on firm support with eyes closed—was able to reliably distinguish vestibulopathy from sensory ataxia. This distinction was evident in both conventional linear sway and spectral postural sway metrics. Conclusions: We conclude that a refined Romberg test, performed solely under conditions of visual deprivation, offers valuable classification potential in differentiating peripheral vestibulopathy not only from healthy controls but also from patients with disequilibrium due to sensory loss. Full article
(This article belongs to the Special Issue Neurological Diseases: Biomarkers, Diagnosis and Prognosis)
Show Figures

Figure 1

10 pages, 852 KiB  
Article
Correlates of Orthotic Prosthetic User Survey, Performance-Based Outcome Measures and Balance in Lower Limb Prosthesis Users
by John D. Smith and Gary Guerra
Prosthesis 2025, 7(3), 66; https://doi.org/10.3390/prosthesis7030066 - 19 Jun 2025
Viewed by 366
Abstract
Background: This study compared performance-based function and self-report function in lower-limb prosthesis users. Methods: Twenty-two lower-limb prosthesis users (aged 52.1 ± 14.2) were administered the Orthotic Prosthetic User Survey (OPUS) Lower Extremity Functional Status (LEF), Satisfaction With Devices (SWD), alongside the Godin Leisure-Time [...] Read more.
Background: This study compared performance-based function and self-report function in lower-limb prosthesis users. Methods: Twenty-two lower-limb prosthesis users (aged 52.1 ± 14.2) were administered the Orthotic Prosthetic User Survey (OPUS) Lower Extremity Functional Status (LEF), Satisfaction With Devices (SWD), alongside the Godin Leisure-Time Exercise Questionnaire (GLTQ), Timed Up and Go (TUG) test, two-minute walk test (2MWT), and six-minute walk test (6MWT). Body composition and standing postural sway displacement and velocity were also measured. Pearson’s Product Moment coefficients were used to assess relationships between the OPUS and other outcome variables. ANOVAs were used to identify differences in all outcome variables between lower unilateral (LU) and all other (AO) amputees. Results: There was a moderate correlation between LEF and center of pressure (CoP) path length with eyes open (r(19) = −0.43, p = 0.048) and eyes closed (r(19) = −0.43, p = 0.049). While the relationship between LEF and TUG was significant (r(20) = −0.49, p = 0.021), this was not so with SWD and TUG (r(20) = −0.17, p = 0.456). Both the 2MWT (r(20) = 0.48, p = 0.023) and 6MWT (r(20) = 0.47, p = 0.028) were moderately correlated with LEF. GLTQ was significantly correlated with LEF (r(20) = 0.70, p = 0.001). The LU group outperformed the AP group during the TUG and 6MWT (p < 0.05). LU group scored significantly higher on LEF compared to the AO group (p < 0.05). The reliability of LEF between the measurement on day 1 (54.3 ± 12.0) and day 2 (53.6 ± 12.8) was high (α = 0.94). Conclusions: This study provides an insight into associations of balance and self-reported function in lower limb prosthesis users. Future work can target rehabilitation strategies to address challenges faced by multiple limb prosthesis users. Full article
Show Figures

Figure 1

16 pages, 1218 KiB  
Article
Acute Effects of Static Stretching Duration on a Single-Leg Balance Task
by Takamasa Mizuno
Sports 2025, 13(6), 188; https://doi.org/10.3390/sports13060188 - 18 Jun 2025
Viewed by 397
Abstract
The purpose of this study was to determine the effect of static stretching (SS) duration on balance. Twenty-two participants performed passive dorsiflexion measurements and balance tests before and after SS. Passive dorsiflexion measurements determined the maximal dorsiflexion angle, passive torque, displacement of the [...] Read more.
The purpose of this study was to determine the effect of static stretching (SS) duration on balance. Twenty-two participants performed passive dorsiflexion measurements and balance tests before and after SS. Passive dorsiflexion measurements determined the maximal dorsiflexion angle, passive torque, displacement of the muscle–tendon junction, and electromyography amplitude during passive dorsiflexion. In the balance test, the participant stood on a single leg with their eyes open while the postural sway evaluated in the center of pressure (COP), standing duration, and electromyography amplitude were measured. The ankle and metatarsophalangeal joints underwent SS for 30 s × one set, two sets, and four sets. There were significant increases in COP displacement and COP velocity after two sets of SS but not after one and four sets. Standing duration and electromyography during balance tests were not changed after SS. No gender differences were found in changes in balance. Maximal dorsiflexion angle and passive torque were increased after SS, but the displacement of the muscle–tendon junction and electromyography during passive dorsiflexion were not changed. There was no significant correlation between changes in maximal dorsiflexion angle or passive torque and changes in COP variables after two sets of SS. These results therefore revealed that SS duration affects COP displacement and COP velocity. Full article
(This article belongs to the Special Issue Effects of Stretching on Performance)
Show Figures

Figure 1

12 pages, 1210 KiB  
Article
Evaluation of Change in Center of Pressure During Perturbation of Balance Including Blindfolding in Healthy Dogs
by Hayley Hall, Richard B. Evans, Makayla Balogh and Wanda J. Gordon-Evans
Animals 2025, 15(12), 1790; https://doi.org/10.3390/ani15121790 - 18 Jun 2025
Viewed by 319
Abstract
Physiotherapy aims to improve postural dysfunction, often using balance exercises. The effects of rehabilitation-based balance exercises on postural control in dogs remains understudied. This study aimed to assess the impact of specific balancing exercises and blindfolding on center of pressure parameters in healthy [...] Read more.
Physiotherapy aims to improve postural dysfunction, often using balance exercises. The effects of rehabilitation-based balance exercises on postural control in dogs remains understudied. This study aimed to assess the impact of specific balancing exercises and blindfolding on center of pressure parameters in healthy dogs. Thirteen healthy adult dogs participated in the study. Center of pressure parameters were measured using a pressure platform during quiet standing, external perturbation, head turn, and blindfolded trials. External perturbation significantly increased the area of the elliptical sway, cranio-caudal excursion, and right–left excursion. Head turning led to large effect sizes, but no significant differences compared to quiet standing. Blindfolding led to medium to large effect sizes, though no significant differences were observed. The study confirmed that external perturbation challenges postural stability, resulting in increased sway. Head turning induces sway but may require further training or different methodologies for reliable outcomes. Blindfolding increased sway but was not statistically different. These findings underscore the potential use of perturbation-based exercises in canine rehabilitation to improve balance, while also highlighting the need for further studies to standardize balance challenges and explore the effects in dogs with orthopedic or neurological conditions. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

21 pages, 2822 KiB  
Article
Non-Contact Platform for the Assessment of Physical Function in Older Adults: A Pilot Study
by Ana Sobrino-Santos, Pedro Anuarbe, Carlos Fernandez-Viadero, Roberto García-García, José Miguel López-Higuera, Luis Rodríguez-Cobo and Adolfo Cobo
Technologies 2025, 13(6), 225; https://doi.org/10.3390/technologies13060225 - 2 Jun 2025
Viewed by 507
Abstract
In the context of global population aging, identifying reliable, objective tools to assess physical function and postural stability in older adults is increasingly important to mitigate fall risk. This study presents a non-contact platform that uses a Microsoft Azure Kinect depth camera to [...] Read more.
In the context of global population aging, identifying reliable, objective tools to assess physical function and postural stability in older adults is increasingly important to mitigate fall risk. This study presents a non-contact platform that uses a Microsoft Azure Kinect depth camera to evaluate functional performance related to lower-limb muscular capacity and static balance through self-selected depth squats and four progressively challenging stances (feet apart, feet together, semitandem, and tandem). By applying markerless motion capture algorithms, the system provides key biomechanical parameters such as center of mass displacement, knee angles, and sway trajectories. A comparison of older and younger individuals showed that the older group tended to perform shallower squats and exhibit greater mediolateral and anteroposterior sway, aligning with age-related declines in strength and postural control. Longitudinal tracking also illustrated how performance varied following a fall, indicating potential for ongoing risk assessment. Notably, in 30 s balance trials, the first 10 s often captured meaningful differences in stability, suggesting that short-duration stance tests can reliably detect early signs of imbalance. These findings highlight the feasibility of low-cost, user-friendly depth-camera technologies to complement traditional clinical measures and guide targeted fall-prevention strategies in older populations. Full article
Show Figures

Graphical abstract

21 pages, 545 KiB  
Article
Effect of On-Duty Resistance Training Fatigue on Neuromuscular Function in Structural Firefighters
by Jamal L. Thruston, Stuart A. Best, Nicholas R. Heebner, Lance M. Bollinger and Mark G. Abel
Healthcare 2025, 13(11), 1278; https://doi.org/10.3390/healthcare13111278 - 28 May 2025
Viewed by 616
Abstract
Background: Participation in on-duty exercise is critical to enhance firefighter safety and readiness. However, these sessions are often interrupted with emergency responses and require firefighters to work in a fatigued state that may increase injury risk. Objective: To assess the impact of on-duty [...] Read more.
Background: Participation in on-duty exercise is critical to enhance firefighter safety and readiness. However, these sessions are often interrupted with emergency responses and require firefighters to work in a fatigued state that may increase injury risk. Objective: To assess the impact of on-duty resistance training on neuromuscular function. Methods: A sample of 18 firefighters (Age: 38.8 ± 8.0 y; Body fat: 24.9 ± 7.0%) completed three testing sessions, separated by at least 72 h to compare the effects of circuit (CT) versus heavy resistance training (HRT) fatigue on neuromuscular function. During Session 1, anthropometrics and familiarization trials of balance and neuromuscular function were completed, which included single-leg drop landing (SLDL), postural sway (PS), and modified Functional Balance Test (mFBT). Sessions 2 and 3 were randomized, where participants completed either HRT or CT. Isometric midthigh pull (IMTP), long jump (LJ), and lower body power (LBP) tests were conducted pre- and immediately post exercise, whereas static and dynamic balance assessments were conducted pre- and 10 min post exercise to simulate an emergency response time course. Repeated measures ANOVA, effect sizes, and difference scores were used to analyze the effects of condition and time. The level of significance was set at p < 0.05. Results: CT decreased IMTP, LJ, and LBP, whereas HRT decreased LJ and LBP (p ≤ 0.001, ES ≥ 0.476). Despite several significant condition by time interaction effects on balance outcomes, there were no differences within CT or HRT over time (p ≥ 0.066). Conclusions: These findings suggest that on-duty resistance training reduces firefighters’ power and/or strength immediately post exercise but does not influence most firefighters’ balance 10 min post exercise. Thus, firefighters are recommended to perform resistance training on-duty during low emergency call volume times. Full article
(This article belongs to the Special Issue Health and Readiness of Tactical Populations)
Show Figures

Figure 1

15 pages, 715 KiB  
Article
Salivary 1,5-Anhydroglucitol and AGEs Are Associated with Postural Instability in Diabetic Foot Patients
by Lorenzo Brognara, Mar Sempere-Bigorra and Omar Cauli
Medicina 2025, 61(6), 968; https://doi.org/10.3390/medicina61060968 - 23 May 2025
Viewed by 747
Abstract
Background and Objectives: Gait and posture alterations are reported in patients with diabetic foot. We evaluated whether gait and postural parameters are associated with a well-known parameter, e.g., glycated hemoglobin levels in blood, and the salivary markers 1,5-anhydro-D-glucitol (1,5-AG) and Advanced Glycation [...] Read more.
Background and Objectives: Gait and posture alterations are reported in patients with diabetic foot. We evaluated whether gait and postural parameters are associated with a well-known parameter, e.g., glycated hemoglobin levels in blood, and the salivary markers 1,5-anhydro-D-glucitol (1,5-AG) and Advanced Glycation End-Products (AGEs) measured in saliva samples. Materials and Methods: Gait and postural impairment was assessed using a wearable inertial sensor, and the evaluation of balance/gait and risk of fall was determined by the Tinetti Scale and Downton Index, respectively. Glycemic control was measured by glycated hemoglobin concentration and fasting glycemia. The salivary concentration of 1,5-AG and AGEs was measured using an enzyme-linked immunosorbent assay. Results: Eighty-five patients were evaluated, revealing significant associations (p < 0.05) between salivary 1,5-AG and sway path displacement along the medio-lateral axis (rho = 0.365, p = 0.017) and sway area (rho = 0.334, p = 0.031) during tandem position tests with eyes closed. Salivary AGEs were significantly associated with sway path displacement along the anterior–posterior axis (rho = 0.419, p = 0.004) and medio-lateral axis (rho = 0.436, p = 0.002) in the tests performed with eyes closed, feet close together, and foam pads, as well as with sway area (rho = 0.387, p = 0.007). The concentration of HbA1c was significantly correlated with sway path displacement along the anterior–posterior axis in the tests performed with eyes closed, feet close together, and foam pads (rho = 0.236, p = 0.043), as well as with sway area (rho = −0.236, p = 0.043). A significant difference was observed in the salivary AGE concentration between patients with previous ulcers versus those without (p = 0.035). By applying Bonferroni correction for multiple comparisons, the associations remained significant (p < 0.05) for AGE concentration in saliva and postural instability parameters. Conclusions: The results suggest a link between salivary glycemic control biomarkers, in particular AGEs and postural changes in patients with diabetic foot, indicating a new interesting filed for further studies on fall risk. Full article
(This article belongs to the Special Issue Physical Therapy: A New Perspective)
Show Figures

Figure 1

10 pages, 1113 KiB  
Article
Evaluation of Sensory and Motor Function in Spinal and Bulbar Muscular Atrophy Using Quiet Stance and Reactive Postural Control
by Joseph A. Shrader, Ashwini Sansare, Allison C. Niemic, Rafael Jiménez-Silva, Joshua G. Woolstenhulme, Galen O. Joe, Uma Jacobs, Angela Kokkinis, Kenneth Fischbeck, Chris Grunseich and Cris Zampieri
Neurol. Int. 2025, 17(6), 79; https://doi.org/10.3390/neurolint17060079 - 22 May 2025
Cited by 1 | Viewed by 713
Abstract
Introduction: Spinal and bulbar muscular atrophy (SBMA) is an X-linked neuromuscular disorder characterized by progressive muscle weakness, along with muscle cramps, tremors, and sensory neuropathy. Previous research has shown that patients with SBMA have difficulty with dynamic balance and sensory postural control during [...] Read more.
Introduction: Spinal and bulbar muscular atrophy (SBMA) is an X-linked neuromuscular disorder characterized by progressive muscle weakness, along with muscle cramps, tremors, and sensory neuropathy. Previous research has shown that patients with SBMA have difficulty with dynamic balance and sensory postural control during quiet stance. There have been no reports on automatic postural reactions in SBMA. Objectives: In this study, we aimed (1) to augment previous findings of sensory postural control, (2) to investigate automatic postural reactions in SBMA, and (3) to explore the relationship between strength and balance. Design: A cross-sectional design was used for the analysis. Participants: The participants were fifty male individuals with a confirmed diagnosis of SBMA. Outcome Measures: Balance testing included the NeuroCom modified Clinical Test of Sensory Interaction on Balance (mCTSIB), which measures sway velocity during quiet stance, and the NeuroCom Motor Control Test (MCT), which measures the latency and strength of postural reactions following sudden perturbations. Strength testing included maximal voluntary isometric contractions measured via fixed-frame dynamometry. Results: Forty-seven out of fifty participants were able to complete the mCTSIB test, but only thirty-eight completed the MCT test. Patients who were unable to complete the MCT were significantly weaker in all lower extremity muscles compared to those who were able to complete testing. Compared to normative data, participants showed significantly higher sway velocity during quiet stance across all conditions of the mCTSIB, except when standing on foam with eyes open. They also exhibited significantly slower postural reactions in response to sudden shifts of the force plate on the MCT. Plantarflexor weakness was significantly correlated with poor postural control on the mCTSIB and MCT. Conclusions: This study confirms previously reported abnormalities of sensory postural control in SBMA and highlights patients’ heavy reliance on visual inputs for postural control. Additionally, this study shows that automatic postural corrections are slower than normal in SBMA and provides a unique approach for measuring the combined sensory and motor components of the disease. Both the sensory and automatic balance abnormalities were found to be associated with plantarflexor weakness and may contribute to a higher risk of falls under challenging situations. Therefore, addressing this weakness may be an important step toward fall prevention in this population. Full article
(This article belongs to the Section Movement Disorders and Neurodegenerative Diseases)
Show Figures

Figure 1

18 pages, 868 KiB  
Review
The Effects of Deep Brain Stimulation on Balance in Parkinson’s Disease as Measured Using Posturography—A Narrative Review
by Bradley Lonergan, Barry M. Seemungal, Matteo Ciocca and Yen F. Tai
Brain Sci. 2025, 15(5), 535; https://doi.org/10.3390/brainsci15050535 - 21 May 2025
Cited by 1 | Viewed by 1027
Abstract
Background: Postural imbalance with falls affects 80% of patients with Parkinson’s disease (PD) at 10 years. Standard PD therapies (e.g., levodopa and/or deep brain stimulation—DBS) are poor at improving postural imbalance. Additionally, the mechanistic complexity of interpreting postural control is a major barrier [...] Read more.
Background: Postural imbalance with falls affects 80% of patients with Parkinson’s disease (PD) at 10 years. Standard PD therapies (e.g., levodopa and/or deep brain stimulation—DBS) are poor at improving postural imbalance. Additionally, the mechanistic complexity of interpreting postural control is a major barrier to improving our understanding of treatment effects. In this paper, we review the effects of DBS on balance as measured using posturography. We also critically appraise the quantitative measures and analyses used in these studies. Methods: A literature search was performed independently by 2 researchers using the PUBMED database. Thirty-eight studies are included in this review, with DBS at the subthalamic nucleus (STN-) (n = 25), globus pallidus internus (GPi-) (n = 6), ventral intermediate nucleus (VIM)/thalamus (n = 2), and pedunculopontine nucleus (PPN) (n = 5). Results: STN- and GPi-DBS reduce static sway in PD and mitigate the increased sway from levodopa. STN-DBS impairs automatic responses to perturbations, whilst GPi-DBS has a more neutral effect. STN-DBS may promote protective strategies following external perturbations but does not improve adaptation. The evidence regarding the effects on gait initiation is less clear. Insufficient evidence exists to make conclusions regarding VIM- and PPN-DBS. Conclusions: STN- and GPi-DBS have differing effects on posturography, which suggests site-specific and possibly non-dopaminergic mechanisms. Posturography tests should be utilised to answer specific questions regarding the mechanisms of and effects on postural control following DBS. We recommend standardising posturography measures and test conditions by expert consensus and greater long-term data collection, utilising ongoing DBS registries. Full article
Show Figures

Figure 1

21 pages, 1162 KiB  
Review
The Effects of Exercise Intervention in Older Adults With and Without Sarcopenia: A Systematic Review
by Jeremy Cabrolier-Molina, Alexandra Martín-Rodríguez and Vicente Javier Clemente-Suárez
Sports 2025, 13(5), 152; https://doi.org/10.3390/sports13050152 - 19 May 2025
Cited by 1 | Viewed by 2148
Abstract
This systematic review, conducted in accordance with PRISMA guidelines and registered in PROSPERO (CRD42024619693), aimed to evaluate the effects of physical exercise interventions on muscle function and fall risk in older adults with and without sarcopenia. Methods: A comprehensive search of PubMed [...] Read more.
This systematic review, conducted in accordance with PRISMA guidelines and registered in PROSPERO (CRD42024619693), aimed to evaluate the effects of physical exercise interventions on muscle function and fall risk in older adults with and without sarcopenia. Methods: A comprehensive search of PubMed and Web of Science databases identified 11 randomized controlled trials (RCTs) published between 2015 and 2025. A total of 792 participants (mean age 75.13 ± 4.71 years; 65.53% women, 34.47% men) were included. Interventions varied in type—strength, balance, aerobic, and multi-component programs—with a minimum duration of 8 weeks. Results: The reviewed studies showed that physical exercise interventions significantly improved neuromuscular function, physical performance, and postural control in older adults. Positive effects were observed in gait speed, stair-climbing ability, grip strength, muscle mass, and bone density. Specific modalities such as Tai Chi improved postural control and neuromuscular response; dynamic resistance and functional training increased muscle strength and improved posture; Nordic walking reduced postural sway; and multi-component and combined walking-resistance training enhanced mobility and force efficiency. Programs integrating strength and balance components yielded the most consistent benefits. However, reporting on FITT (Frequency, Intensity, Time, Type) principles was limited across studies. Conclusions: Exercise interventions are effective in improving neuromuscular outcomes and reducing fall risk in older adults, both with and without sarcopenia. The findings support the need for tailored, well-structured programs and greater methodological standardization in future research to facilitate broader clinical application and maximize health outcomes. Full article
(This article belongs to the Special Issue Physical Activity for Preventing and Managing Falls in Older Adults)
Show Figures

Figure 1

Back to TopTop