Acute Effects of Static Stretching Duration on a Single-Leg Balance Task
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Experimental Design
2.3. Passive Dorsiflexion Measurement
2.4. Balance Test
2.5. Electromyography
2.6. Static Stretching
2.7. Measurement Reproducibility
2.8. Statistical Analysis
3. Results
3.1. Balance Test
3.1.1. Single-Leg Standing Duration
3.1.2. Center of Pressure Displacement
3.1.3. Center of Pressure Velocity
3.1.4. Center of Pressure Area
3.1.5. Electromyography Amplitude in the Balance Test
3.2. Gender Difference in Balance Test
3.2.1. Single-Leg Standing Duration
3.2.2. Center of Pressure Displacement
3.2.3. Center of Pressure Velocity
3.2.4. Center of Pressure Area
3.2.5. Electromyography Amplitude in the Balance Test
3.3. Passive Dorsiflexion Test
3.3.1. Maximal Dorsiflexion Angle
3.3.2. Passive Torque
3.3.3. Displacement of the Muscle–Tendon Junction
3.3.4. Electromyography Amplitude in Passive Dorsiflexion Measurement
3.4. Correlation Coefficient
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SS | Static stretching |
COP | Center of pressure |
CON | Control |
EMG | Electromyography |
References
- Osoba, M.Y.; Rao, A.K.; Agrawal, S.K.; Lalwani, A.K. Balance and gait in the elderly: A contemporary review. Laryngoscope Investig. Otolaryngol. 2019, 4, 143–153. [Google Scholar] [CrossRef]
- Hrysomallis, C. Balance ability and athletic performance. Sports Med. 2011, 41, 221–232. [Google Scholar] [CrossRef] [PubMed]
- Bryant, E.; Trew, M.; Bruce, A.; Kuisma, R.; Smith, A. Gender differences in balance performance at the time of retirement. Clin. Biomech. 2005, 20, 330–335. [Google Scholar] [CrossRef] [PubMed]
- Zemková, E. Sport-specific balance. Sports Med. 2014, 44, 579–590. [Google Scholar] [CrossRef]
- Bergen, G. Falls and fall injuries among adults aged ≥ 65 years—United States, 2014. MMWR Morb. Mortal. Wkly. Rep. 2016, 65, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, R.; McCloskey, D. Proprioceptive, visual and vestibular thresholds for the perception of sway during standing in humans. J. Physiol. 1994, 478, 173–186. [Google Scholar] [CrossRef]
- Muehlbauer, T.; Gollhofer, A.; Granacher, U. Associations between measures of balance and lower-extremity muscle strength/power in healthy individuals across the lifespan: A systematic review and meta-analysis. Sports Med. 2015, 45, 1671–1692. [Google Scholar] [CrossRef]
- Avela, J.; Kyrolainen, H.; Komi, P.V. Altered reflex sensitivity after repeated and prolonged passive muscle stretching. J. Appl. Physiol. 1999, 86, 1283–1291. [Google Scholar] [CrossRef]
- Behm, D.G.; Bambury, A.; Cahill, F.; Power, K. Effect of acute static stretching on force, balance, reaction time, and movement time. Med. Sci. Sports Exerc. 2004, 36, 1397–1402. [Google Scholar] [CrossRef]
- Hemmati, L.; Rojhani-Shirazi, Z.; Ebrahimi, S. Effects of plantar flexor muscle static stretching alone and combined with massage on postural balance. Ann. Rehabil. Med. 2016, 40, 845. [Google Scholar] [CrossRef]
- Lima, B.N.; Lucareli, P.R.; Gomes, W.A.; Silva, J.J.; Bley, A.S.; Hartigan, E.H.; Marchetti, P.H. The acute effects of unilateral ankle plantar flexors static-stretching on postural sway and gastrocnemius muscle activity during single-leg balance tasks. J. Sports Sci. Med. 2014, 13, 564. [Google Scholar] [PubMed]
- Trajano, G.S.; Nosaka, K.; Blazevich, A.J. Neurophysiological mechanisms underpinning stretch-induced force loss. Sports Med. 2017, 47, 1531–1541. [Google Scholar] [CrossRef]
- Walsh, G.S. Effect of static and dynamic muscle stretching as part of warm up procedures on knee joint proprioception and strength. Hum. Mov. Sci. 2017, 55, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Overmoyer, G.V.; Reiser, R.F. Relationships between lower-extremity flexibility, asymmetries, and the Y balance test. J. Strength Cond. Res. 2015, 29, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Amin, D.J.; Herrington, L.C. The relationship between ankle joint physiological characteristics and balance control during unilateral stance. Gait Posture 2014, 39, 718–722. [Google Scholar] [CrossRef]
- Chiacchiero, M.; Dresely, B.; Silva, U.; DeLosReyes, R.; Vorik, B. The relationship between range of movement, flexibility, and balance in the elderly. Top. Geriatr. Rehabil. 2010, 26, 148–155. [Google Scholar] [CrossRef]
- Morse, C.I.; Degens, H.; Seynnes, O.R.; Maganaris, C.N.; Jones, D.A. The acute effect of stretching on the passive stiffness of the human gastrocnemius muscle tendon unit. J. Physiol. 2008, 586, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Palmer, T.B.; Jenkins, N.D.; Thompson, B.J.; Cramer, J.T. Influence of stretching velocity on musculotendinous stiffness of the hamstrings during passive straight-leg raise assessments. Musculoskelet. Sci. Pract. 2017, 30, 80–85. [Google Scholar] [CrossRef]
- Costa, P.B.; Graves, B.S.; Whitehurst, M.; Jacobs, P.L. The acute effects of different durations of static stretching on dynamic balance performance. J. Strength Cond. Res. 2009, 23, 141–147. [Google Scholar] [CrossRef]
- Handrakis, J.P.; Southard, V.N.; Abreu, J.M.; Aloisa, M.; Doyen, M.R.; Echevarria, L.M.; Hwang, H.; Samuels, C.; Venegas, S.A.; Douris, P.C. Static stretching does not impair performance in active middle-aged adults. J. Strength Cond. Res. 2010, 24, 825–830. [Google Scholar] [CrossRef]
- Oba, K.; Ohta, M.; Mani, H.; Suzuki, T.; Ogasawara, K.; Samukawa, M. The effects of static stretching on dynamic postural control during maximum forward leaning task. J. Mot. Behav. 2023, 55, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Oba, K.; Samukawa, M.; Ohta, M.; Oka, I.; Kasahara, S.; Suzuki, T.; Ogasawara, K. Acute effects of static stretching on postural control during a maximum forward-leaning task in young and older adults. Isokinet. Exerc. Sci. 2024, 33, 131–137. [Google Scholar] [CrossRef]
- Jung, E.-Y.; Jung, J.-H.; Cho, H.-Y.; Kim, S.-H. Effects of Plantar Flexor Stretching on Static and Dynamic Balance in Healthy Adults. Int. J. Environ. Res. Public Health 2023, 20, 1462. [Google Scholar] [CrossRef]
- Nelson, A.G.; Kokkonen, J.; Arnall, D.A.; Li, L. Acute stretching increases postural stability in nonbalance trained individuals. J. Strength Cond. Res. 2012, 26, 3095–3100. [Google Scholar] [CrossRef]
- Martínez-Jiménez, E.M.; Losa-Iglesias, M.E.; Becerro-de-Bengoa-Vallejo, R.; Díaz-Velázquez, J.I.; López-López, D.; Calvo-Lobo, C.; Rodríguez-Sanz, D. Immediate effects of intermittent bilateral ankle plantar flexors static stretching on balance and plantar pressures. J. Manip. Physiol. Ther. 2020, 43, 24–31. [Google Scholar] [CrossRef]
- Palmer, T.B.; Agu-Udemba, C.C.; Palmer, B.M. Acute effects of static stretching on passive stiffness and postural balance in healthy, elderly men. Phys. Sportsmed. 2018, 46, 78–86. [Google Scholar] [CrossRef] [PubMed]
- Chatzopoulos, D.; Galazoulas, C.; Patikas, D.; Kotzamanidis, C. Acute effects of static and dynamic stretching on balance, agility, reaction time and movement time. J. Sports Sci. Med. 2014, 13, 403. [Google Scholar]
- Leblebici, H.; Yarar, H.; Aydın, E.M.; Zorlu, Z.; Ertaş, U.; Kıngır, M. The acute effects of different stretching on dynamic balance performance. Int. J. Sport Stud. 2017, 7, 153–159. [Google Scholar]
- Lim, K.-I.; Nam, H.-C.; Jung, K.-S. Effects on hamstring muscle extensibility, muscle activity, and balance of different stretching techniques. J. Phys. Ther. Sci. 2014, 26, 209–213. [Google Scholar] [CrossRef]
- Oba, K.; Kyotani, N.; Tanaka, M.; Komatsuzaki, M.; Kasahara, S.; Ogasawara, K.; Samukawa, M. Acute effects of static and dynamic stretching for ankle plantar flexors on postural control during the single-leg standing task. Sports Biomech. 2024, 23, 3268–3278. [Google Scholar] [CrossRef]
- Thomas, E.; Ficarra, S.; Scardina, A.; Bellafiore, M.; Palma, A.; Maksimovic, N.; Drid, P.; Bianco, A. Positional transversal release is effective as stretching on range of movement, performance and balance: A cross-over study. BMC Sports Sci. Med. Rehabil. 2022, 14, 202. [Google Scholar] [CrossRef] [PubMed]
- Wallmann, H.W.; Player, K.R.; Bugnet, M. Acute effects of static stretching on balance in young versus elderly adults. Phys. Occup. Ther. Geriatr. 2012, 30, 301–315. [Google Scholar] [CrossRef]
- Behm, D.G.; Kay, A.D.; Trajano, G.S.; Alizadeh, S.; Blazevich, A.J. Effects of stretching on injury risk reduction and balance. J. Clin. Exerc. Physiol. 2021, 10, 106–116. [Google Scholar] [CrossRef]
- Lohmann, L.H.; Zech, A.; Plöschberger, G.; Oraže, M.; Jochum, D.; Warneke, K. Acute and chronic effects of stretching on balance: A systematic review with multilevel meta-analysis. Front. Med. 2024, 11, 1451180. [Google Scholar] [CrossRef]
- Azevedo, J.; Sousa, J.; Moreira-Silva, I.; Cardoso, R.; Seixas, A. Acute effects of static-stretching on the shoulder joint-position sense: A randomized controlled crossover trial. Athena Health Res. J. 2024, 1, 1–7. [Google Scholar] [CrossRef]
- Behm, D.G.; Chaouachi, A. A review of the acute effects of static and dynamic stretching on performance. Eur. J. Appl. Physiol. 2011, 111, 2633–2651. [Google Scholar] [CrossRef]
- Boyce, D.; Brosky, J.A., Jr. Determining the minimal number of cyclic passive stretch repetitions recommended for an acute increase in an indirect measure of hamstring length. Physiother. Theory Pract. 2008, 24, 113–120. [Google Scholar] [CrossRef]
- Ryan, E.D.; Herda, T.J.; Costa, P.B.; Defreitas, J.M.; Beck, T.W.; Stout, J.; Cramer, J.T. Determining the minimum number of passive stretches necessary to alter musculotendinous stiffness. J. Sports Sci. 2009, 27, 957–961. [Google Scholar] [CrossRef]
- Mizuno, T. Acute effects of combined static stretching and electrical stimulation on joint range of motion and passive stiffness. Transl. Sports Med. 2021, 4, 378–385. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988; 567p. [Google Scholar]
- Zech, A.; Steib, S.; Hentschke, C.; Eckhardt, H.; Pfeifer, K. Effects of localized and general fatigue on static and dynamic postural control in male team handball athletes. J. Strength Cond. Res. 2012, 26, 1162–1168. [Google Scholar] [CrossRef]
- Behm, D.G.; Blazevich, A.J.; Kay, A.D.; McHugh, M. Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: A systematic review. Appl. Physiol. Nutr. Metab. 2016, 41, 1–11. [Google Scholar] [CrossRef]
- Sugino, Y.; Yoshimura, I.; Hagio, T.; Ishimatsu, T.; Nagatomo, M.; Yamamoto, T. Effect of plantar fascia-specific stretching and Achilles tendon stretching on shear wave elasticity of the plantar fascia in healthy subjects. Foot Ankle Surg. 2023, 29, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Young, W.; Elliott, S. Acute effects of static stretching, proprioceptive neuromuscular facilitation stretching, and maximum voluntary contractions on explosive force production and jumping performance. Res. Q. Exerc. Sport 2001, 72, 273–279. [Google Scholar] [CrossRef]
- Gonçalves, G.A.; Kamonseki, D.H.; Martinez, B.R.; Nascimento, M.A.; Lombardi, I.; Yi, L.C. Static, dynamic balance and functional performance in subjects with and without plantar fasciitis. Fisioter. Mov. 2017, 30, 19–27. [Google Scholar] [CrossRef]
- Petrofsky, J.; Lee, H. Greater reduction of balance as a result of increased plantar fascia elasticity at ovulation during the menstrual cycle. Tohoku J. Exp. Med. 2015, 237, 219–226. [Google Scholar] [CrossRef]
- Taş, S.; Bek, N. Effects of morphological and mechanical properties of plantar fascia and heel pad on balance performance in asymptomatic females. Foot 2018, 36, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Coratella, G.; Longo, S.; Rampichini, S.; Doria, C.; Borrelli, M.; Limonta, E.; Michielon, G.; Cè, E.; Esposito, F. Passive stretching decreases muscle efficiency in balance tasks. PLoS ONE 2021, 16, e0256656. [Google Scholar] [CrossRef]
- Tokuno, C.D.; Carpenter, M.; Thorstensson, A.; Garland, S.; Cresswell, A.G. Control of the triceps surae during the postural sway of quiet standing. Acta Physiol. 2007, 191, 229–236. [Google Scholar] [CrossRef]
- Kohn, A.F. Cross-correlation between EMG and center of gravity during quiet stance: Theory and simulations. Biol. Cybern. 2005, 93, 382–388. [Google Scholar] [CrossRef]
- Hoge, K.M.; Ryan, E.D.; Costa, P.B.; Herda, T.J.; Walter, A.A.; Stout, J.R.; Cramer, J.T. Gender differences in musculotendinous stiffness and range of motion after an acute bout of stretching. J. Strength Cond. Res. 2010, 24, 2618–2626. [Google Scholar] [CrossRef]
- Samuel, M.N.; Holcomb, W.R.; Guadagnoli, M.A.; Rubley, M.D.; Wallmann, H. Acute effects of static and ballistic stretching on measures of strength and power. J. Strength Cond. Res. 2008, 22, 1422–1428. [Google Scholar] [CrossRef] [PubMed]
Gastrocnemius Medialis Muscle | Tibialis Anterior Muscle | ||||||
---|---|---|---|---|---|---|---|
1 set | Pre | 9.5 | ± | 9.2 | 3.3 | ± | 2.1 |
Post | 9.4 | ± | 9.6 | 3.2 | ± | 2.5 | |
2 sets | Pre | 8.3 | ± | 5.3 | 3.0 | ± | 1.9 |
Post | 8.2 | ± | 5.4 | 4.0 | ± | 2.5 | |
4 sets | Pre | 9.3 | ± | 9.2 | 3.2 | ± | 2.1 |
Post | 10.1 | ± | 13 | 3.4 | ± | 2.6 | |
CON | Pre | 8.4 | ± | 5.2 | 2.8 | ± | 1.6 |
Post | 7.3 | ± | 5.3 | 3.2 | ± | 1.9 |
EMG Amplitude | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Standing Duration | COP Displacement | COP Velocity | COP Area | Gastrocnemius Medialis Muscle | Tibialis Anterior Muscle | ||||||||||||||
1 set | |||||||||||||||||||
Pre | men | 20.0 | ± | 0.0 | 298.0 | ± | 73.7 | 29.8 | ± | 7.4 | 334.3 | ± | 83.2 | 5.6 | ± | 3.1 | 3.3 | ± | 1.6 |
women | 20.0 | ± | 0.0 | 255.6 | ± | 57.5 | 25.6 | ± | 5.7 | 307.6 | ± | 167.5 | 13.9 | ± | 12 | 3.3 | ± | 2.7 | |
Post | men | 20.0 | ± | 0.0 | 310.3 | ± | 80.8 | 31.0 | ± | 8.1 | 382.8 | ± | 132.6 | 6.2 | ± | 4.8 | 2.6 | ± | 1.5 |
women | 20.0 | ± | 0.0 | 258.7 | ± | 67.1 | 25.9 | ± | 6.7 | 306.4 | ± | 137.1 | 13.0 | ± | 13 | 3.8 | ± | 3.2 | |
2 sets | |||||||||||||||||||
Pre | men | 20.0 | ± | 0.0 | 287.2 | ± | 49.0 | 28.7 | ± | 4.9 | 303.6 | ± | 160.1 | 5.9 | ± | 3.6 | 2.6 | ± | 1.9 |
women | 20.0 | ± | 0.0 | 255.4 | ± | 71.5 | 25.5 | ± | 7.1 | 279.4 | ± | 159.0 | 10.9 | ± | 5.8 | 3.4 | ± | 2.0 | |
Post | men | 20.0 | ± | 0.0 | 351.7 | ± | 88.4 | 35.2 | ± | 8.8 | 505.1 | ± | 243.9 | 7.2 | ± | 3.5 | 3.2 | ± | 1.8 |
women | 19.0 | ± | 3.6 | 278.4 | ± | 80.4 | 27.8 | ± | 8.0 | 306.0 | ± | 125.8 | 9.3 | ± | 7 | 4.7 | ± | 3.0 | |
3 sets | |||||||||||||||||||
Pre | men | 20.0 | ± | 0.0 | 306.3 | ± | 62.8 | 30.6 | ± | 6.3 | 338.2 | ± | 137.4 | 6.3 | ± | 3.2 | 3.2 | ± | 1.8 |
women | 20.0 | ± | 0.0 | 251.8 | ± | 53.6 | 25.2 | ± | 5.4 | 286.9 | ± | 170.4 | 12.7 | ± | 12 | 3.3 | ± | 2.6 | |
Post | men | 20.0 | ± | 0.0 | 333.3 | ± | 107.6 | 33.3 | ± | 10.8 | 435.8 | ± | 221.2 | 6.2 | ± | 3.5 | 2.6 | ± | 0.8 |
women | 20.0 | ± | 0.0 | 256.4 | ± | 82.4 | 25.6 | ± | 8.2 | 307.6 | ± | 151.2 | 14.5 | ± | 18 | 4.6 | ± | 3.7 | |
CON | |||||||||||||||||||
Pre | men | 20.0 | ± | 0.0 | 323.8 | ± | 58.4 | 32.4 | ± | 5.8 | 390.5 | ± | 115.6 | 7.5 | ± | 4.2 | 3.3 | ± | 2.0 |
women | 20.0 | ± | 0.0 | 242.6 | ± | 64.3 | 24.3 | ± | 6.4 | 268.7 | ± | 98.7 | 9.5 | ± | 6.2 | 2.3 | ± | 0.9 | |
Post | men | 19.4 | ± | 1.8 | 311.7 | ± | 76.6 | 31.2 | ± | 7.7 | 347.1 | ± | 105.4 | 6.8 | ± | 5.3 | 3.9 | ± | 2.1 |
women | 20.0 | ± | 0.0 | 242.4 | ± | 68.0 | 24.3 | ± | 6.8 | 282.4 | ± | 131.6 | 7.8 | ± | 5.5 | 2.3 | ± | 1.1 |
Final 1° | Final 5° | Final 9° | Final 13° | Maximal Dorsiflexed Position | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 set | Pre | 10.2 | ± | 7.2 | 13.0 | ± | 9.0 | 16.7 | ± | 11.0 | 21.7 | ± | 13.8 | 21.8 | ± | 13.7 |
Post | 10.5 | ± | 8.2 | 13.5 | ± | 9.8 | 17.1 | ± | 12.0 | 21.7 | ± | 14.6 | 25.0 | ± | 16.8 *,† | |
2 sets | Pre | 10.0 | ± | 7.7 | 12.9 | ± | 9.2 | 16.8 | ± | 11.6 | 21.2 | ± | 13.8 | 21.7 | ± | 14.3 |
Post | 10.9 | ± | 8.1 * | 13.8 | ± | 9.9 * | 17.3 | ± | 11.6 | 21.6 | ± | 14.0 | 25.1 | ± | 16.4 * | |
4 sets | Pre | 9.6 | ± | 6.2 | 12.4 | ± | 7.8 | 16.1 | ± | 9.9 | 20.5 | ± | 12.3 | 20.7 | ± | 12.6 |
Post | 10.1 | ± | 6.4 * | 13.0 | ± | 8.1 * | 16.6 | ± | 10.0 | 20.9 | ± | 12.3 | 25.8 | ± | 15.4 * | |
CON | Pre | 9.6 | ± | 7.2 | 12.1 | ± | 8.8 | 15.7 | ± | 11.0 | 20.3 | ± | 13.8 | 21.1 | ± | 14.0 |
Post | 10.0 | ± | 7.7 * | 12.7 | ± | 9.5 | 16.1 | ± | 11.5 | 20.4 | ± | 14.5 | 22.5 | ± | 15.3 |
Final 1° | Final 5° | Final 9° | Final 13° | Maximal Dorsiflexed Position | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 set | Pre | 0 | ± | 0 | 1.9 | ± | 1.2 | 3.6 | ± | 1.6 | 5.3 | ± | 1.8 | 5.5 | ± | 2.0 |
Post | 0 | ± | 0 | 2.0 | ± | 1.0 | 3.9 | ± | 1.3 | 5.0 | ± | 1.5 | 6.1 | ± | 2.0 | |
2 sets | Pre | 0 | ± | 0 | 2.0 | ± | 1.0 | 4.0 | ± | 1.2 | 5.5 | ± | 1.6 | 5.6 | ± | 1.8 |
Post | 0 | ± | 0 | 1.6 | ± | 1.1 | 3.5 | ± | 1.3 | 5.1 | ± | 1.2 | 6.0 | ± | 1.8 | |
4 sets | Pre | 0 | ± | 0 | 2.4 | ± | 1.0 | 4.2 | ± | 1.4 | 5.7 | ± | 1.9 | 5.7 | ± | 1.8 |
Post | 0 | ± | 0 | 2.1 | ± | 1.1 | 3.8 | ± | 1.6 | 5.5 | ± | 1.7 | 6.9 | ± | 2.3 | |
CON | Pre | 0 | ± | 0 | 2.3 | ± | 0.9 | 4.1 | ± | 0.9 | 5.5 | ± | 1.4 | 5.8 | ± | 1.5 |
Post | 0 | ± | 0 | 2.2 | ± | 1.4 | 3.8 | ± | 1.6 | 5.4 | ± | 1.6 | 6.2 | ± | 1.8 |
Initial Period | Final Period | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gastrocnemius Medialis Muscle | Tibialis Anterior Muscle | Gastrocnemius Medialis Muscle | Tibialis Anterior Muscle | ||||||||||
1 set | Pre | 1.3 | ± | 2.2 | 0.8 | ± | 0.7 | 2.9 | ± | 5.9 | 1.0 | ± | 1.2 |
Post | 1.3 | ± | 2.4 | 0.8 | ± | 0.8 | 2.1 | ± | 3.3 | 1.0 | ± | 1.4 | |
2 sets | Pre | 1.3 | ± | 2.6 | 1.3 | ± | 2.0 | 1.7 | ± | 2.8 | 1.3 | ± | 1.9 |
Post | 1.3 | ± | 2.6 | 1.3 | ± | 1.8 | 1.8 | ± | 2.9 | 1.3 | ± | 1.8 | |
4 sets | Pre | 1.4 | ± | 2.3 | 0.8 | ± | 1.2 | 1.9 | ± | 2.2 | 1.0 | ± | 1.4 |
Post | 1.1 | ± | 1.3 | 0.8 | ± | 1.1 | 1.8 | ± | 1.9 | 1.0 | ± | 1.4 | |
CON | Pre | 0.9 | ± | 0.7 | 0.6 | ± | 0.6 | 2.0 | ± | 2.4 | 0.8 | ± | 1.4 |
Post | 0.9 | ± | 0.7 | 0.6 | ± | 0.7 | 1.7 | ± | 1.9 | 0.8 | ± | 1.0 |
Change in COP Displacement | Change in COP Velocity | Change in COP Area | |
---|---|---|---|
Change in ROM | r = −0.280 (p = 0.232) | r = −0.280 (p = 0.231) | r = 0.123 (p = 0.605) |
Change in passive torque at | |||
Final 1° | r = 0.049 (p = 0.839) | r = 0.048 (p = 0.841) | r = 0.082 (p = 0.732) |
Final 5° | r = 0.032 (p = 0.894) | r = 0.031 (p = 0.898) | r = 0.049 (p = 0.836) |
Final 9° | r = −0.008 (p = 0.973) | r = −0.008 (p = 0.973) | r = 0.001 (p = 0.998) |
Final 13° | r = −0.009 (p = 0.969) | r = −0.010 (p = 0.966) | r = 0.031 (p = 0.896) |
Maximal dorsiflexed position | r = −0.166 (p = 0.485) | r = −0.167 (p = 0.483) | r = 0.221 (p = 0.350) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mizuno, T. Acute Effects of Static Stretching Duration on a Single-Leg Balance Task. Sports 2025, 13, 188. https://doi.org/10.3390/sports13060188
Mizuno T. Acute Effects of Static Stretching Duration on a Single-Leg Balance Task. Sports. 2025; 13(6):188. https://doi.org/10.3390/sports13060188
Chicago/Turabian StyleMizuno, Takamasa. 2025. "Acute Effects of Static Stretching Duration on a Single-Leg Balance Task" Sports 13, no. 6: 188. https://doi.org/10.3390/sports13060188
APA StyleMizuno, T. (2025). Acute Effects of Static Stretching Duration on a Single-Leg Balance Task. Sports, 13(6), 188. https://doi.org/10.3390/sports13060188