Wobble Board Instability Enhances Compensatory CoP Responses to CoM Movement Across Timescales
Abstract
1. Introduction
1.1. Overview of Postural Control
1.2. Challenges in Understanding CoM–CoP Coupling
1.3. CoM–CoP as a Collective Variable
1.4. Postural Control Across Multiple Scales
1.5. Motivation for Multiscale Analysis
1.6. Directionality of CoM–CoP Coupling
1.7. Study Objectives and Hypotheses
2. Methods
2.1. Participants
2.2. Tasks, Procedure, and Instructions to Participants
2.3. Stabilography
2.4. Motion Tracking
2.5. Data Processing
2.5.1. Postural Center of Mass (CoM)
2.5.2. Postural Center of Pressure (CoP)
2.5.3. Signal Processing
2.6. Detrended Fluctuation Analysis (DFA)-Based Multiscale Regression Analysis
2.7. Linear Mixed-Effects Modeling of
3. Results
3.1. Depicting the Wobble-Board Induced Accentuation of ML Sway
3.2. Hypothesis 1: Wobble Board Attenuates CoP’s Responses to CoM Changes
3.3. Hypothesis 2: Wobble Board Accentuates CoP’s Responses to CoM Changes Along the AP Axis and Attenuates Along the ML Axis
3.4. Hypothesis 3: The Wobble-Board Induced Changes in CoP’s Responses to CoM Changes Exceed Any Effects of TMT
3.5. TMT Had No Significant Effect on CoM–CoP Dynamics
4. Discussion
4.1. Key Findings
4.2. Interpretation of Wobble Board Effects
4.3. Interpretation of TMT Effects
4.4. Theoretical Implications
4.5. Clinical Implications and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hof, A.L.; Gazendam, M.; Sinke, W. The condition for dynamic stability. J. Biomech. 2005, 38, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Winter, D.A. Human balance and posture control during standing and walking. Gait Posture 1995, 3, 193–214. [Google Scholar] [CrossRef]
- Winter, D.A.; Patla, A.E.; Prince, F.; Ishac, M.; Gielo-Perczak, K. Stiffness control of balance in quiet standing. J. Neurophysiol. 1998, 80, 1211–1221. [Google Scholar] [CrossRef] [PubMed]
- Dutt-Mazumder, A.; Newell, K. Transitions of postural coordination as a function of frequency of the moving support platform. Hum. Mov. Sci. 2017, 52, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Kilby, M.C.; Molenaar, P.C.; Newell, K.M. Models of postural control: Shared variance in joint and COM motions. PLoS ONE 2015, 10, e0126379. [Google Scholar] [CrossRef] [PubMed]
- Kilby, M.C.; Slobounov, S.M.; Newell, K.M. Augmented feedback of COM and COP modulates the regulation of quiet human standing relative to the stability boundary. Gait Posture 2016, 47, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Kilby, M.C.; Molenaar, P.C.; Slobounov, S.M.; Newell, K.M. Real-time visual feedback of COM and COP motion properties differentially modifies postural control structures. Exp. Brain Res. 2017, 235, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.H.; Challis, J.H.; Newell, K.M. Transition of COM–COP relative phase in a dynamic balance task. Hum. Mov. Sci. 2014, 38, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Ko, J.H.; Challis, J.H.; Newell, K.M. The degrees of freedom problem in human standing posture: Collective and component dynamics. PLoS ONE 2014, 9, e85414. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, N. The Co-Ordination and Regulation of Movements; Pergamon Press: Oxford, UK, 1996. [Google Scholar]
- Bernstein, N.A. Dexterity and Its Development; Lawrence Erlbaum: Mahwah, NJ, USA, 1996. [Google Scholar]
- Profeta, V.L.; Turvey, M.T. Bernstein’s levels of movement construction: A contemporary perspective. Hum. Mov. Sci. 2018, 57, 111–133. [Google Scholar] [CrossRef] [PubMed]
- Gage, W.H.; Winter, D.A.; Frank, J.S.; Adkin, A.L. Kinematic and kinetic validity of the inverted pendulum model in quiet standing. Gait Posture 2004, 19, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.B.; Nashner, L.M. Central programming of postural movements: Adaptation to altered support-surface configurations. J. Neurophysiol. 1986, 55, 1369–1381. [Google Scholar] [CrossRef] [PubMed]
- Kuo, A.D. An optimal control model for analyzing human postural balance. IEEE Trans. Biomed. Eng. 1995, 42, 87–101. [Google Scholar] [CrossRef] [PubMed]
- Alexandrov, A.; Aurenty, R.; Massion, J.; Mesure, S.; Viallet, F. Axial synergies in parkinsonian patients during voluntary trunk bending. Gait Posture 1998, 8, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Aramaki, Y.; Nozaki, D.; Masani, K.; Sato, T.; Nakazawa, K.; Yano, H. Reciprocal angular acceleration of the ankle and hip joints during quiet standing in humans. Exp. Brain Res. 2001, 136, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Corriveau, H.; Hébert, R.; Prince, F.; Raîche, M. Postural control in the elderly: An analysis of test-retest and interrater reliability of the COP-COM variable. Arch. Phys. Med. Rehabil. 2001, 82, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Corriveau, H.; Hébert, R.; Raıche, M.; Dubois, M.F.; Prince, F. Postural stability in the elderly: Empirical confirmation of a theoretical model. Arch. Gerontol. Geriatr. 2004, 39, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Hof, A.L. The equations of motion for a standing human reveal three mechanisms for balance. J. Biomech. 2007, 40, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.L.; Scholz, J.P.; Schoner, G.; Jeka, J.J.; Kiemel, T. Control and estimation of posture during quiet stance depends on multijoint coordination. J. Neurophysiol. 2007, 97, 3024–3035. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsov, N.A.; Riley, M.A. Effects of breathing on multijoint control of center of mass position during upright stance. J. Mot. Behav. 2012, 44, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Morasso, P.G.; Schieppati, M. Can muscle stiffness alone stabilize upright standing? J. Neurophysiol. 1999, 82, 1622–1626. [Google Scholar] [CrossRef] [PubMed]
- Morasso, P. Centre of pressure versus centre of mass stabilization strategies: The tightrope balancing case. R. Soc. Open Sci. 2020, 7, 200111. [Google Scholar] [CrossRef] [PubMed]
- Otten, E. Balancing on a narrow ridge: Biomechanics and control. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1999, 354, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Pinter, I.J.; Van Swigchem, R.; van Soest, A.K.; Rozendaal, L.A. The dynamics of postural sway cannot be captured using a one-segment inverted pendulum model: A PCA on segment rotations during unperturbed stance. J. Neurophysiol. 2008, 100, 3197–3208. [Google Scholar] [CrossRef] [PubMed]
- Takeda, K.; Mani, H.; Hasegawa, N.; Sato, Y.; Tanaka, S.; Maejima, H.; Asaka, T. Adaptation effects in static postural control by providing simultaneous visual feedback of center of pressure and center of gravity. J. Physiol. Anthropol. 2017, 36, 31. [Google Scholar] [CrossRef] [PubMed]
- Cavanaugh, J.T.; Kelty-Stephen, D.G.; Stergiou, N. Multifractality, interactivity, and the adaptive capacity of the human movement system: A perspective for advancing the conceptual basis of neurologic physical therapy. J. Neurol. Phys. Ther. 2017, 41, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Kelty-Stephen, D.G.; Palatinus, K.; Saltzman, E.; Dixon, J.A. A tutorial on multifractality, cascades, and interactivity for empirical time series in ecological science. Ecol. Psychol. 2013, 25, 1–62. [Google Scholar] [CrossRef]
- Kelty-Stephen, D.G.; Mangalam, M. Turing’s cascade instability supports the coordination of the mind, brain, and behavior. Neurosci. Biobehav. Rev. 2022, 141, 104810. [Google Scholar] [CrossRef] [PubMed]
- Kelty-Stephen, D.G.; Lane, E.; Bloomfield, L.; Mangalam, M. Multifractal test for nonlinearity of interactions across scales in time series. Behav. Res. Methods 2023, 55, 2249–2282. [Google Scholar] [CrossRef] [PubMed]
- Matthis, J.S.; Muller, K.S.; Bonnen, K.L.; Hayhoe, M.M. Retinal optic flow during natural locomotion. PLoS Comput. Biol. 2022, 18, e1009575. [Google Scholar] [CrossRef] [PubMed]
- Stoffregen, T.A.; Smart, L.J.; Bardy, B.G.; Pagulayan, R.J. Postural stabilization of looking. J. Exp. Psychol. Hum. Percept. Perform. 1999, 25, 1641–1658. [Google Scholar] [CrossRef]
- Bonnet, C.T.; Baudry, S. A functional synergistic model to explain postural control during precise visual tasks. Gait Posture 2016, 50, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Klous, M.; Mikulic, P.; Latash, M.L. Two aspects of feedforward postural control: Anticipatory postural adjustments and anticipatory synergy adjustments. J. Neurophysiol. 2011, 105, 2275–2288. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.B.; Dimitrova, D.; Nutt, J.G. Direction-specific postural instability in subjects with Parkinson’s disease. Exp. Neurol. 2005, 193, 504–521. [Google Scholar] [CrossRef] [PubMed]
- Marigold, D.S.; Eng, J.J. The relationship of asymmetric weight-bearing with postural sway and visual reliance in stroke. Gait Posture 2006, 23, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Minshew, N.J.; Sung, K.; Jones, B.L.; Furman, J.M. Underdevelopment of the postural control system in autism. Neurology 2004, 63, 2056–2061. [Google Scholar] [CrossRef] [PubMed]
- Salomonczyk, D.; Panzera, R.; Pirogovosky, E.; Goldstein, J.; Corey-Bloom, J.; Simmons, R.; Gilbert, P.E. Impaired postural stability as a marker of premanifest Huntington’s disease. Mov. Disord. 2010, 25, 2428–2433. [Google Scholar] [CrossRef] [PubMed]
- Sawacha, Z.; Gabriella, G.; Cristoferi, G.; Guiotto, A.; Avogaro, A.; Cobelli, C. Diabetic gait and posture abnormalities: A biomechanical investigation through three dimensional gait analysis. Clin. Biomech. 2009, 24, 722–728. [Google Scholar] [CrossRef] [PubMed]
- Wurdeman, S.R.; Koutakis, P.; Myers, S.A.; Johanning, J.M.; Pipinos, I.I.; Stergiou, N. Patients with peripheral arterial disease exhibit reduced joint powers compared to velocity-matched controls. Gait Posture 2012, 36, 506–509. [Google Scholar] [CrossRef] [PubMed]
- Van Orden, G.; Hollis, G.; Wallot, S. The blue-collar brain. Front. Physiol. 2012, 3, 23006. [Google Scholar] [CrossRef] [PubMed]
- Wallot, S.; Van Orden, G. Ultrafast cognition. J. Conscious. Stud. 2012, 19, 141–160. [Google Scholar]
- Chen, Y.S.; Zhou, S. Soleus H-reflex and its relation to static postural control. Gait Posture 2011, 33, 169–178. [Google Scholar] [CrossRef] [PubMed]
- Colebatch, J.G.; Govender, S.; Dennis, D.L. Postural responses to anterior and posterior perturbations applied to the upper trunk of standing human subjects. Exp. Brain Res. 2016, 234, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Nashner, L. Adapting reflexes controlling the human posture. Exp. Brain Res. 1976, 26, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Schieppati, M.; Nardone, A.; Siliotto, R.; Grasso, M. Early and late stretch responses of human foot muscles induced by perturbation of stance. Exp. Brain Res. 1990, 105, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Shimba, S.; Kawashima, N.; Ohta, Y.; Yamamoto, S.I.; Nakazawa, K. Enhanced stretch reflex excitability in the soleus muscle during passive standing posture in humans. J. Electromyogr. Kinesiol. 2010, 20, 406–412. [Google Scholar] [CrossRef] [PubMed]
- Woollacott, M.H.; Nashner, L.M. Inhibition of the achilles tendon reflex by antagonist long-latency postural responses in humans. Exp. Neurol. 1982, 75, 420–439. [Google Scholar] [CrossRef] [PubMed]
- Kanekar, N.; Aruin, A.S. Aging and balance control in response to external perturbations: Role of anticipatory and compensatory postural mechanisms. Age 2014, 36, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- Kubo, A.; Hagio, S.; Kibushi, B.; Moritani, T.; Kouzaki, M. Action direction of muscle synergies in voluntary multi-directional postural control. Front. Hum. Neurosci. 2017, 11, 434. [Google Scholar] [CrossRef] [PubMed]
- Peterka, R.J.; Loughlin, P.J. Dynamic regulation of sensorimotor integration in human postural control. J. Neurophysiol. 2004, 91, 410–423. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.J.; Kanekar, N.; Aruin, A.S. The role of anticipatory postural adjustments in compensatory control of posture: 1. Electromyographic analysis. J. Electromyogr. Kinesiol. 2010, 20, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.J.; Kanekar, N.; Aruin, A.S. The role of anticipatory postural adjustments in compensatory control of posture: 2. Biomechanical analysis. J. Electromyogr. Kinesiol. 2010, 20, 398–405. [Google Scholar] [CrossRef] [PubMed]
- Mangalam, M.; Kelty-Stephen, D.G.; Barfi, M.; Deligiannis, T.; Schlattmann, B.; Likens, A.D.; Kiyono, K.; Stergiou, N. Aging alters postural sway responsivity to the center of mass movement. J. R. Soc. Interface 2025, 22, 20250220. [Google Scholar] [CrossRef]
- Likens, A.D.; Amazeen, P.G.; West, S.G.; Gibbons, C.T. Statistical properties of Multiscale Regression Analysis: Simulation and application to human postural control. Phys. A Stat. Mech. Appl. 2019, 532, 121580. [Google Scholar] [CrossRef]
- Kristoufek, L. Detrended fluctuation analysis as a regression framework: Estimating dependence at different scales. Phys. Rev. E 2015, 91, 022802. [Google Scholar] [CrossRef] [PubMed]
- Kristoufek, L. Fractality in market risk structure: Dow Jones industrial components case. Chaos Solitons Fractals 2018, 110, 69–75. [Google Scholar] [CrossRef]
- Allum, J.; Carpenter, M.; Honegger, F.; Adkin, A.; Bloem, B. Age-dependent variations in the directional sensitivity of balance corrections and compensatory arm movements in man. J. Physiol. 2002, 542, 643–663. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, M.G.; Allum, J.H.; Honegger, F. Directional sensitivity of stretch reflexes and balance corrections for normal subjects in the roll and pitch planes. Exp. Brain Res. 1999, 129, 93–113. [Google Scholar] [CrossRef] [PubMed]
- Carpenter, M.; Allum, J.; Honegger, F. Vestibular influences on human postural control in combinations of pitch and roll planes reveal differences in spatiotemporal processing. Exp. Brain Res. 2001, 140, 95–111. [Google Scholar] [CrossRef] [PubMed]
- Küng, U.M.; Horlings, C.; Honegger, F.; Duysens, J.; Allum, J. Control of roll and pitch motion during multi-directional balance perturbations. Exp. Brain Res. 2009, 194, 631–645. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.; Rushmer, D.; Windus, S.; Nashner, L. Human automatic postural responses: Responses to horizontal perturbations of stance in multiple directions. Exp. Brain Res. 1988, 73, 648–658. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, S.M.; Kuo, A.D. Direction-dependent control of balance during walking and standing. J. Neurophysiol. 2009, 102, 1411–1419. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.; Nantel, J. Older adults prioritize postural stability in the anterior–posterior direction to regain balance following volitional lateral step. Gait Posture 2015, 41, 666–669. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Newell, K.M. Inter-foot coordination dynamics of quiet standing postures. Neurosci. Biobehav. Rev. 2014, 47, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Black, A.A.; Wood, J.M.; Hoang, S.; Thomas, E.; Webber, A.L. Impact of amblyopia on visual attention and visual search in children. Investig. Ophthalmol. Vis. Sci. 2021, 62, 15. [Google Scholar] [CrossRef] [PubMed]
- Crowe, S.F. The differential contribution of mental tracking, cognitive flexibility, visual search, and motor speed to performance on parts A and B of the Trail Making Test. J. Clin. Psychol. 1998, 54, 585–591. [Google Scholar] [CrossRef]
- Hagen, K.; Ehlis, A.C.; Haeussinger, F.B.; Heinzel, S.; Dresler, T.; Mueller, L.D.; Herrmann, M.J.; Fallgatter, A.J.; Metzger, F.G. Activation during the Trail Making Test measured with functional near-infrared spectroscopy in healthy elderly subjects. NeuroImage 2014, 85, 583–591. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, A.; McDonald, S.; Cranney, J.; McMahon, M. Cognitive flexibility in the normal elderly and in persons with dementia as measured by the written and oral Trail Making Tests. Brain Impair. 2001, 2, 11–21. [Google Scholar] [CrossRef]
- Misdraji, E.L.; Gass, C.S. The Trail Making Test and its neurobehavioral components. J. Clin. Exp. Neuropsychol. 2010, 32, 159–163. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Park, C.; Zhou, H.; Najafi, B.; Thrasher, T.A. Evaluation of motor and cognitive performance in people with Parkinson’s disease using instrumented Trail-Making Test. Gerontology 2022, 68, 234–240. [Google Scholar] [CrossRef] [PubMed]
- Murphy, P. Cognitive functioning in adults with attention-deficit/hyperactivity disorder. J. Atten. Disord. 2001, 5, 203–209. [Google Scholar] [CrossRef]
- Oosterman, J.M.; Vogels, R.L.; van Harten, B.; Gouw, A.A.; Poggesi, A.; Scheltens, P.; Kessels, R.P.; Scherder, E.J. Assessing mental flexibility: Neuroanatomical and neuropsychological correlates of the Trail Making Test in elderly people. Clin. Neuropsychol. 2010, 24, 203–219. [Google Scholar] [CrossRef] [PubMed]
- Salthouse, T.A. What cognitive abilities are involved in trail-making performance? Intelligence 2011, 39, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Cubillo, I.; Periáñez, J.A.; Adrover-Roig, D.; Rodríguez-Sánchez, J.M.; Ríos-Lago, M.; Tirapu, J.; Barceló, F. Construct validity of the Trail Making Test: Role of task-switching, working memory, inhibition/interference control, and visuomotor abilities. J. Int. Neuropsychol. Soc. 2009, 15, 438–450. [Google Scholar] [CrossRef] [PubMed]
- Blackwood, J.; Shubert, T.; Forgarty, K.; Chase, C. Relationships between performance on assessments of executive function and fall risk screening measures in community-dwelling older adults. J. Geriatr. Phys. Ther. 2016, 39, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.Y.; Peronto, C.L.; Edwards, J.D. Cognitive function as a prospective predictor of falls. J. Gerontol. Ser. B Psychol. Sci. Soc. Sci. 2012, 67, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Hobert, M.A.; Niebler, R.; Meyer, S.I.; Brockmann, K.; Becker, C.; Huber, H.; Gaenslen, A.; Godau, J.; Eschweiler, G.W.; Berg, D.; et al. Poor Trail Making Test performance is directly associated with altered dual task prioritization in the elderly–baseline results from the TREND study. PLoS ONE 2011, 6, e27831. [Google Scholar] [CrossRef] [PubMed]
- Mateen, B.A.; Bussas, M.; Doogan, C.; Waller, D.; Saverino, A.; Király, F.J.; Playford, E.D. The Trail Making test: A study of its ability to predict falls in the acute neurological in-patient population. Clin. Rehabil. 2018, 32, 1396–1405. [Google Scholar] [CrossRef] [PubMed]
- Saverino, A.; Waller, D.; Rantell, K.; Parry, R.; Moriarty, A.; Playford, E.D. The role of cognitive factors in predicting balance and fall risk in a neuro-rehabilitation setting. PLoS ONE 2016, 11, e0153469. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Fraizer, E. Effects of explicit sway-minimization on postural–suprapostural dual-task performance. Hum. Mov. Sci. 2004, 23, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Cappozzo, A.; Della Croce, U.; Leardini, A.; Chiari, L. Human movement analysis using stereophotogrammetry: Part 1: Theoretical background. Gait Posture 2005, 21, 186–196. [Google Scholar] [CrossRef] [PubMed]
- Chiari, L.; Della Croce, U.; Leardini, A.; Cappozzo, A. Human movement analysis using stereophotogrammetry: Part 2: Instrumental errors. Gait Posture 2005, 21, 197–211. [Google Scholar] [CrossRef] [PubMed]
- Dempster, W.T. Space Requirements of the Seated Operator: Geometrical, Kinematic, and Mechanical Aspects of the Body with Special Reference to the Limbs; Wright Air Development Center: Wright-Patterson Air Force Base, OH, USA, 1955. [Google Scholar]
- Hanavan, E.P. A Mathematical Model of the Human Body; AMRL-TR-64-102, AD-608-463; Aerospace Medical Research Laboratories (Wright-Patterson AFB, OH): Dayton, OH, USA, 1964; pp. 1–149. Available online: https://apps.dtic.mil/sti/tr/pdf/AD0608463.pdf (accessed on 1 January 2025).
- Bell, A.L.; Brand, R.A.; Pedersen, D.R. Prediction of hip joint centre location from external landmarks. Hum. Mov. Sci. 1989, 8, 3–16. [Google Scholar] [CrossRef]
- Kepple, T.M.; Sommer, H., III; Siegel, K.L.; Stanhope, S.J. A three-dimensional musculoskeletal database for the lower extremities. J. Biomech. 1997, 31, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Robertson, D.G.E.; Caldwell, G.E.; Hamill, J.; Kamen, G.; Whittlesey, S. Research Methods in Biomechanics; Human Kinetics: Champaign, IL, USA, 2013. [Google Scholar]
- Kennedy, M.W.; Crowell, C.R.; Villano, M.; Schmiedeler, J.P. Effects of filtering the center of pressure feedback provided in visually guided mediolateral weight shifting. PLoS ONE 2016, 11, e0151393. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.K.; Havlin, S.; Stanley, H.E.; Goldberger, A.L. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 1995, 5, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Podobnik, B.; Stanley, H.E. Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series. Phys. Rev. Lett. 2008, 100, 084102. [Google Scholar] [CrossRef] [PubMed]
- Podobnik, B.; Horvatic, D.; Petersen, A.M.; Stanley, H.E. Cross-correlations between volume change and price change. Proc. Natl. Acad. Sci. USA 2009, 106, 22079–22084. [Google Scholar] [CrossRef] [PubMed]
- Zebende, G.F. DCCA cross-correlation coefficient: Quantifying level of cross-correlation. Phys. A Stat. Mech. Appl. 2011, 390, 614–618. [Google Scholar] [CrossRef]
- R Core Team. R: A language and Environment for Statistical Computing. R Version 4.0.4. 2024. Available online: https://www.R-project.org/ (accessed on 1 January 2025).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S.; Christensen, R.H.B.; Singmann, H.; Dai, B.; Scheipl, F.; Grothendieck, G.; Green, P.; et al. Package ‘lme4’. R Package Version 1.1-34. 2009. Available online: http://lme4.r-forge.r-project.org (accessed on 1 January 2025).
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Hof, A.; Duysens, J. Responses of human hip abductor muscles to lateral balance perturbations during walking. Exp. Brain Res. 2013, 230, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Wada, O.; Tateuchi, H.; Ichihashi, N. The correlation between movement of the center of mass and the kinematics of the spine, pelvis, and hip joints during body rotation. Gait Posture 2014, 39, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Shen, F.; Wang, L.; Ma, Y.; Niu, H.; Fan, Y. Two-dimensional dynamic walking stability of elderly females with a history of falls. Med. Biol. Eng. Comput. 2021, 59, 1575–1583. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Mendoza, T.; Huang, C.H.; Sun, T.L. Comparative analysis of fall risk assessment features in community-elderly and stroke survivors: Insights from sensor-based data. Healthcare 2023, 11, 1938. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Sun, T.L. Evaluation of postural stability based on a force plate and inertial sensor during static balance measurements. J. Physiol. Anthropol. 2018, 37, 27. [Google Scholar] [CrossRef] [PubMed]
- Lemay, J.F.; Gagnon, D.H.; Nadeau, S.; Grangeon, M.; Gauthier, C.; Duclos, C. Center-of-pressure total trajectory length is a complementary measure to maximum excursion to better differentiate multidirectional standing limits of stability between individuals with incomplete spinal cord injury and able-bodied individuals. J. Neuroeng. Rehabil. 2014, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Pai, Y.C.; Wening, J.; Runtz, E.; Iqbal, K.; Pavol, M. Role of feedforward control of movement stability in reducing slip-related balance loss and falls among older adults. J. Neurophysiol. 2003, 90, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Kelty-Stephen, D.G.; Lee, I.C.; Carver, N.S.; Newell, K.M.; Mangalam, M. Multifractal roots of suprapostural dexterity. Hum. Mov. Sci. 2021, 76, 102771. [Google Scholar] [CrossRef] [PubMed]
- Mangalam, M.; Lee, I.C.; Newell, K.M.; Kelty-Stephen, D.G. Visual effort moderates postural cascade dynamics. Neurosci. Lett. 2021, 742, 135511. [Google Scholar] [CrossRef] [PubMed]
- Kuo, A.D. An optimal state estimation model of sensory integration in human postural balance. J. Neural Eng. 2005, 2, S235. [Google Scholar] [CrossRef] [PubMed]
- Maurer, C.; Mergner, T.; Peterka, R. Multisensory control of human upright stance. Exp. Brain Res. 2006, 171, 231–250. [Google Scholar] [CrossRef] [PubMed]
- Mittelstaedt, H. Origin and processing of postural information. Neurosci. Biobehav. Rev. 1998, 22, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Lund, S.; Broberg, C. Effects of different head positions on postural sway in man induced by a reproducible vestibular error signal. Acta Physiol. Scand. 1983, 117, 307–309. [Google Scholar] [CrossRef] [PubMed]
- Massion, J. Postural control systems in developmental perspective. Neurosci. Biobehav. Rev. 1998, 22, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Schweigart, G.; Mergner, T. Human stance control beyond steady state response and inverted pendulum simplification. Exp. Brain Res. 2008, 185, 635–653. [Google Scholar] [CrossRef] [PubMed]
- Kelty-Stephen, D.G.; Mangalam, M. Fractal and multifractal descriptors restore ergodicity broken by non-Gaussianity in time series. Chaos Solitons Fractals 2022, 163, 112568. [Google Scholar] [CrossRef]
- Kelty-Stephen, D.G.; Mangalam, M. Multifractal descriptors ergodically characterize non-ergodic multiplicative cascade processes. Phys. A Stat. Mech. Appl. 2023, 617, 128651. [Google Scholar] [CrossRef]
- Mangalam, M.; Kelty-Stephen, D.G. Point estimates, Simpson’s paradox, and nonergodicity in biological sciences. Neurosci. Biobehav. Rev. 2021, 125, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Mangalam, M.; Kelty-Stephen, D.G. Ergodic descriptors of non-ergodic stochastic processes. J. R. Soc. Interface 2022, 19, 20220095. [Google Scholar] [CrossRef] [PubMed]
- Mangalam, M.; Sadri, A.; Hayano, J.; Watanabe, E.; Kiyono, K.; Kelty-Stephen, D.G. Multifractal foundations of biomarker discovery for heart disease and stroke. Sci. Rep. 2023, 13, 18316. [Google Scholar] [CrossRef] [PubMed]
- Mangalam, M.; Kelty-Stephen, D.G.; Sommerfeld, J.H.; Stergiou, N.; Likens, A.D. Temporal organization of stride-to-stride variations contradicts predictive models for sensorimotor control of footfalls during walking. PLoS ONE 2023, 18, e0290324. [Google Scholar] [CrossRef] [PubMed]
- Doyon, J.K.; Hajnal, A.; Surber, T.; Clark, J.D.; Kelty-Stephen, D.G. Multifractality of posture modulates multisensory perception of stand-on-ability. PLoS ONE 2019, 14, e0212220. [Google Scholar] [CrossRef] [PubMed]
- Hajnal, A.; Clark, J.D.; Doyon, J.K.; Kelty-Stephen, D.G. Fractality of body movements predicts perception of affordances: Evidence from stand-on-ability judgments about slopes. J. Exp. Psychol. Hum. Percept. Perform. 2018, 44, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Furmanek, M.P.; Mangalam, M.; Kelty-Stephen, D.G.; Juras, G. Postural constraints recruit shorter-timescale processes into the non-Gaussian cascade processes. Neurosci. Lett. 2021, 741, 135508. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, N.; Berleman-Paul, Q.; Mangalam, M.; Kelty-Stephen, D.G.; Ralston, C. Multifractality in postural sway supports quiet eye training in aiming tasks: A study of golf putting. Hum. Mov. Sci. 2021, 76, 102752. [Google Scholar] [CrossRef] [PubMed]
- Kelty-Stephen, D.G. Multifractal evidence of nonlinear interactions stabilizing posture for phasmids in windy conditions: A reanalysis of insect postural-sway data. PLoS ONE 2018, 13, e0202367. [Google Scholar] [CrossRef] [PubMed]
- Kelty-Stephen, D.G.; Furmanek, M.P.; Mangalam, M. Multifractality distinguishes reactive from proactive cascades in postural control. Chaos Solitons Fractals 2021, 142, 110471. [Google Scholar] [CrossRef]
- Kelty-Stephen, D.; Similton, O.D.; Rabinowitz, E.; Allen, M. Multifractal auditory stimulation promotes the effect of multifractal torso sway on spatial perception: Evidence from distance perception by blindwalking. Ecol. Psychol. 2023, 35, 136–182. [Google Scholar] [CrossRef]
- Kelty-Stephen, D.G.; Lee, J.; Cole, K.R.; Shields, R.K.; Mangalam, M. Multifractal nonlinearity moderates feedforward and feedback responses to suprapostural perturbations. Percept. Mot. Skills 2023, 130, 622–657. [Google Scholar] [CrossRef] [PubMed]
- Kelty-Stephen, D.G.; Mangalam, M.; Kiyono, K.; Stergiou, N. Spatial variability and directional shifts in postural control in Parkinson’s disease. Clin. Park. Relat. Disord. 2024, 10, 100249. [Google Scholar] [CrossRef] [PubMed]
- Mangalam, M.; Chen, R.; McHugh, T.R.; Singh, T.; Kelty-Stephen, D.G. Bodywide fluctuations support manual exploration: Fractal fluctuations in posture predict perception of heaviness and length via effortful touch by the hand. Hum. Mov. Sci. 2020, 69, 102543. [Google Scholar] [CrossRef] [PubMed]
- Mangalam, M.; Carver, N.S.; Kelty-Stephen, D.G. Global broadcasting of local fractal fluctuations in a bodywide distributed system supports perception via effortful touch. Chaos Solitons Fractals 2020, 135, 109740. [Google Scholar] [CrossRef]
- Mangalam, M.; Carver, N.S.; Kelty-Stephen, D.G. Multifractal signatures of perceptual processing on anatomical sleeves of the human body. J. R. Soc. Interface 2020, 17, 20200328. [Google Scholar] [CrossRef] [PubMed]
- Mangalam, M.; Kelty-Stephen, D.G. Multiplicative-cascade dynamics supports whole-body coordination for perception via effortful touch. Hum. Mov. Sci. 2020, 70, 102595. [Google Scholar] [CrossRef] [PubMed]
- Mangalam, M.; Kelty-Stephen, D.G. Hypothetical control of postural sway. J. R. Soc. Interface 2021, 18, 20200951. [Google Scholar] [CrossRef] [PubMed]
- Mangalam, M.; Kelty-Stephen, D.G.; Seleznov, I.; Popov, A.; Likens, A.D.; Kiyono, K.; Stergiou, N. Older adults and individuals with Parkinson’s disease control posture along suborthogonal directions that deviate from the traditional anteroposterior and mediolateral directions. Sci. Rep. 2024, 14, 4117. [Google Scholar] [CrossRef] [PubMed]
- Palatinus, Z.; Kelty-Stephen, D.G.; Kinsella-Shaw, J.; Carello, C.; Turvey, M.T. Haptic perceptual intent in quiet standing affects multifractal scaling of postural fluctuations. J. Exp. Psychol. Hum. Percept. Perform. 2014, 40, 1808–1818. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.A.; Carver, N.S.; Zbaracki, J.A.; Kelty-Stephen, D.G. Non-linear amplification of variability through interaction across scales supports greater accuracy in manual aiming: Evidence from a multifractal analysis with comparisons to linear surrogates in the Fitts task. Front. Physiol. 2019, 10, 998. [Google Scholar] [CrossRef] [PubMed]
- Carver, N.S.; Bojovic, D.; Kelty-Stephen, D.G. Multifractal foundations of visually-guided aiming and adaptation to prismatic perturbation. Hum. Mov. Sci. 2017, 55, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Booth, C.R.; Brown, H.L.; Eason, E.G.; Wallot, S.; Kelty-Stephen, D.G. Expectations on hierarchical scales of discourse: Multifractality predicts both short-and long-range effects of violating gender expectations in text reading. Discourse Process. 2018, 55, 12–30. [Google Scholar] [CrossRef]
- Kelty-Stephen, D.G.; Dixon, J.A. Interwoven fluctuations during intermodal perception: Fractality in head sway supports the use of visual feedback in haptic perceptual judgments by manual wielding. J. Exp. Psychol. Hum. Percept. Perform. 2014, 40, 2289–2309. [Google Scholar] [CrossRef] [PubMed]
- Kelty-Stephen, D.G.; Stirling, L.A.; Lipsitz, L.A. Multifractal temporal correlations in circle-tracing behaviors are associated with the executive function of rule-switching assessed by the Trail Making Test. Psychol. Assess. 2016, 28, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Stephen, D.G.; Anastas, J. Fractal fluctuations in gaze speed visual search. Atten. Percept. Psychophys. 2011, 73, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Stephen, D.G.; Dixon, J.A. Strong anticipation: Multifractal cascade dynamics modulate scaling in synchronization behaviors. Chaos Solitons Fractals 2011, 44, 160–168. [Google Scholar] [CrossRef]
- Stephen, D.G.; Hajnal, A. Transfer of calibration between hand and foot: Functional equivalence and fractal fluctuations. Atten. Percept. Psychophys. 2011, 73, 1302–1328. [Google Scholar] [CrossRef] [PubMed]
- Deligiannis, T.; Barfi, M.; Schlattmann, B.; Kiyono, K.; Kelty-Stephen, D.G.; Mangalam, M. Selective engagement of long-latency reflexes in postural control through wobble board training. Sci. Rep. 2024, 14, 31819. [Google Scholar] [CrossRef] [PubMed]
- Aruin, A.S.; Kanekar, N.; Lee, Y.J. Anticipatory and compensatory postural adjustments in individuals with multiple sclerosis in response to external perturbations. Neurosci. Lett. 2015, 591, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Claudino, R.; Dos Santos, M.J.; Mazo, G.Z. Delayed compensatory postural adjustments after lateral perturbations contribute to the reduced ability of older adults to control body balance. Mot. Control 2017, 21, 425–442. [Google Scholar] [CrossRef] [PubMed]
- Kubicki, A.; Bonnetblanc, F.; Petrement, G.; Ballay, Y.; Mourey, F. Delayed postural control during self-generated perturbations in the frail older adults. Clin. Interv. Aging 2012, 7, 65–75. [Google Scholar] [CrossRef] [PubMed]
- Radebold, A.; Cholewicki, J.; Polzhofer, G.K.; Greene, H.S. Impaired postural control of the lumbar spine is associated with delayed muscle response times in patients with chronic idiopathic low back pain. Spine 2001, 26, 724–730. [Google Scholar] [CrossRef] [PubMed]
- Aljawaee, M.A.; Jones, M.D.; Theobald, P.S.; Williams, J.M. Does wobble board training improve balance in older adults? A systematic review. Phys. Ther. Rev. 2021, 26, 447–456. [Google Scholar] [CrossRef]
- Ogaya, S.; Ikezoe, T.; Soda, N.; Ichihashi, N. Effects of balance training using wobble boards in the elderly. J. Strength Cond. Res. 2011, 25, 2616–2622. [Google Scholar] [CrossRef] [PubMed]
- Madhuranga, P.V.H.; Mathangasinghe, Y.; Anthony, D.J. Improving balance with wobble board exercises in stroke patients: Single-blind, randomized clinical trial. Top. Stroke Rehabil. 2019, 26, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Onigbinde, A.T.; Awotidebe, T.; Awosika, H. Effect of 6 weeks wobble board exercises on static and dynamic balance of stroke survivors. Technol. Health Care 2009, 17, 387–392. [Google Scholar] [CrossRef] [PubMed]
- Clark, V.M.; Burden, A.M. A 4-week wobble board exercise programme improved muscle onset latency and perceived stability in individuals with a functionally unstable ankle. Phys. Ther. Sport 2005, 6, 181–187. [Google Scholar] [CrossRef]
- Linens, S.W.; Ross, S.E.; Arnold, B.L. Wobble board rehabilitation for improving balance in ankles with chronic instability. Clin. J. Sport Med. 2016, 26, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Wester, J.U.; Jespersen, S.M.; Nielsen, K.D.; Neumann, L. Wobble board training after partial sprains of the lateral ligaments of the ankle: A prospective randomized study. J. Orthop. Sports Phys. Ther. 1996, 23, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Bernier, J.N.; Perrin, D.H. Effect of coordination training on proprioception of the functionally unstable ankle. J. Orthop. Sports Phys. Ther. 1998, 27, 264–275. [Google Scholar] [CrossRef] [PubMed]
- Rozzi, S.L.; Lephart, S.M.; Sterner, R.; Kuligowski, L. Balance training for persons with functionally unstable ankles. J. Orthop. Sports Phys. Ther. 1999, 29, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Silva, P.B.; Mrachacz-Kersting, N.; Oliveira, A.S.; Kersting, U.G. Effect of wobble board training on movement strategies to maintain equilibrium on unstable surfaces. Hum. Mov. Sci. 2018, 58, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Chong, R.K.; Ambrose, A.; Carzoli, J.; Hardison, L.; Jacobson, B. Source of improvement in balance control after a training program for ankle proprioception. Percept. Mot. Skills 2001, 92, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Gauffin, H.; Tropp, H.; Odenrick, P. Effect of ankle disk training on postural control in patients with functional instability of the ankle joint. Int. J. Sports Med. 1988, 9, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, M.; Payne, V.G. The effects of proprioceptive ankle disk training on healthy subjects. J. Orthop. Sports Phys. Ther. 1995, 21, 90–93. [Google Scholar] [CrossRef] [PubMed]
- Waddington, G.; Adams, R.; Jones, A. Wobble board (ankle disc) training effects on the discrimination of inversion movements. Aust. J. Physiother. 1999, 45, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Beck, S.; Taube, W.; Gruber, M.; Amtage, F.; Gollhofer, A.; Schubert, M. Task-specific changes in motor evoked potentials of lower limb muscles after different training interventions. Brain Res. 2007, 1179, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Burciu, R.G.; Fritsche, N.; Granert, O.; Schmitz, L.; Spönemann, N.; Konczak, J.; Theysohn, N.; Gerwig, M.; van Eimeren, T.; Timmann, D. Brain changes associated with postural training in patients with cerebellar degeneration: A voxel-based morphometry study. J. Neurosci. 2013, 33, 4594–4604. [Google Scholar] [CrossRef] [PubMed]
- Granacher, U.; Gollhofer, A.; Strass, D. Training induced adaptations in characteristics of postural reflexes in elderly men. Gait Posture 2006, 24, 459–466. [Google Scholar] [CrossRef] [PubMed]
- Grasso, C.; Barresi, M.; Tramonti Fantozzi, M.P.; Lazzerini, F.; Bruschini, L.; Berrettini, S.; Andre, P.; Dolciotti, C.; De Cicco, V.; De Cicco, D.; et al. Effects of a short period of postural training on postural stability and vestibulospinal reflexes. PLoS ONE 2023, 18, e0287123. [Google Scholar] [CrossRef] [PubMed]
- Hu, N.; Piirainen, J.M.; Kidgell, D.J.; Walker, S.; Avela, J. Corticospinal adaptation to short-term horizontal balance perturbation training. Brain Sci. 2023, 13, 1209. [Google Scholar] [CrossRef] [PubMed]
- Manning, C.; Tolhurst, S.; Bawa, P. Proprioceptive reaction times and long-latency reflexes in humans. Exp. Brain Res. 2012, 221, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Mynark, R.G.; Koceja, D.M. Down training of the elderly soleus H reflex with the use of a spinally induced balance perturbation. J. Appl. Physiol. 2002, 93, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Schubert, M.; Beck, S.; Taube, W.; Amtage, F.; Faist, M.; Gruber, M. Balance training and ballistic strength training are associated with task-specific corticospinal adaptations. Eur. J. Neurosci. 2008, 27, 2007–2018. [Google Scholar] [CrossRef] [PubMed]
- Sehm, B.; Taubert, M.; Conde, V.; Weise, D.; Classen, J.; Dukart, J.; Draganski, B.; Villringer, A.; Ragert, P. Structural brain plasticity in Parkinson’s disease induced by balance training. Neurobiol. Aging 2014, 35, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Taube, W.; Gruber, M.; Beck, S.; Faist, M.; Gollhofer, A.; Schubert, M. Cortical and spinal adaptations induced by balance training: Correlation between stance stability and corticospinal activation. Acta Physiol. 2007, 189, 347–358. [Google Scholar] [CrossRef] [PubMed]
t | p 2 | ||
---|---|---|---|
(Intercept) | |||
trialT2 | |||
supportConditionWB | |||
taskConditionTMT | |||
mechanismCPA2 | |||
mechanismCPA3 | |||
CoM → CoP | |||
supportConditionWB:mechanismCPA2 | |||
supportConditionWB:mechanismCPA3 | |||
taskConditionTMT:mechanismCPA2 | |||
taskConditionTMT:mechanismCPA3 | |||
supportConditionWB:CoM → CoP | |||
taskConditionTMT:CoM → CoP | |||
mechanismCPA2:CoM → CoP | |||
mechanismCPA3:CoM → CoP | |||
supportConditionWB:mechanismCPA2:CoM → CoP | |||
supportConditionWB:mechanismCPA3:CoM → CoP | |||
taskConditionTMT:mechanismCPA2:CoM → CoP | |||
taskConditionTMT:mechanismCPA3:CoM → CoP |
t | p 2 | ||
---|---|---|---|
(Intercept) | |||
trialT2 | |||
supportConditionWB | |||
taskConditionTMT | |||
mechanismCPA2 | |||
mechanismCPA3 | |||
CoM → CoP | |||
axisAP | |||
supportConditionWB:mechanismCPA2 | |||
supportConditionWB:mechanismCPA3 | |||
taskConditionTMT:mechanismCPA2 | |||
taskConditionTMT:mechanismCPA3 | |||
supportConditionWB:CoM → CoP | |||
taskConditionTMT:CoM → CoP | |||
mechanismCPA2:CoM → CoP | |||
mechanismCPA3:CoM → CoP | |||
supportConditionWB:axisAP | |||
taskConditionTMT:axisAP | |||
mechanismCPA2:axisAP | |||
mechanismCPA3:axisAP | |||
CoM → CoP:axisAP | |||
supportConditionWB:mechanismCPA2:CoM → CoP | |||
supportConditionWB:mechanismCPA3:CoM → CoP | |||
taskConditionTMT:mechanismCPA2:CoM → CoP | |||
taskConditionTMT:mechanismCPA3:CoM → CoP | |||
supportConditionWB:mechanismCPA2:axisAP | |||
supportConditionWB:mechanismCPA3:axisAP | |||
taskConditionTMT:mechanismCPA2:axisAP | |||
taskConditionTMT:mechanismCPA3:axisAP | |||
supportConditionWB:CoM → CoP:axisAP | |||
taskConditionTMT:CoM → CoP:axisAP | |||
mechanismCPA2:CoM → CoP:axisAP | |||
mechanismCPA3:CoM → CoP:axisAP | |||
supportConditionWB:mechanismCPA2:CoM → CoP:axisAP | |||
supportConditionWB:mechanismCPA3:CoM → CoP:axisAP | |||
taskConditionTMT:mechanismCPA2:CoM → CoP:axisAP | |||
taskConditionTMT:mechanismCPA3:CoM → CoP:axisAP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barfi, M.; Deligiannis, T.; Schlattmann, B.; Newell, K.M.; Mangalam, M. Wobble Board Instability Enhances Compensatory CoP Responses to CoM Movement Across Timescales. Sensors 2025, 25, 4454. https://doi.org/10.3390/s25144454
Barfi M, Deligiannis T, Schlattmann B, Newell KM, Mangalam M. Wobble Board Instability Enhances Compensatory CoP Responses to CoM Movement Across Timescales. Sensors. 2025; 25(14):4454. https://doi.org/10.3390/s25144454
Chicago/Turabian StyleBarfi, Mahsa, Theodoros Deligiannis, Brian Schlattmann, Karl M. Newell, and Madhur Mangalam. 2025. "Wobble Board Instability Enhances Compensatory CoP Responses to CoM Movement Across Timescales" Sensors 25, no. 14: 4454. https://doi.org/10.3390/s25144454
APA StyleBarfi, M., Deligiannis, T., Schlattmann, B., Newell, K. M., & Mangalam, M. (2025). Wobble Board Instability Enhances Compensatory CoP Responses to CoM Movement Across Timescales. Sensors, 25(14), 4454. https://doi.org/10.3390/s25144454