Effect of On-Duty Resistance Training Fatigue on Neuromuscular Function in Structural Firefighters
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Design
2.2. Participants
2.3. Procedures
2.4. Anthropometric Measurements
2.5. Swedish Occupational Fatigue Inventory
2.6. Hydration
2.7. Postural Sway
2.8. Single-Leg Drop Landing
2.9. Modified Functional Balance Test
2.10. Cognitive Load Simulation Task
2.11. Isometric Midthigh Pull
2.12. Standing Long Jump
2.13. Strength Testing
2.14. Resistance Training Protocols
2.15. Perceptual and Physiological Measures
2.16. Statistical Analysis
3. Results
3.1. Minimal Difference (MD)
3.2. Modified FBT-Validity and Reliability
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
FBT | Functional Balance Test |
mFBT | Modified Functional Balance Test |
NFPA | National Fire Protection Association |
BMI | Body Mass Index |
PAR-Q | Physical Activity Readiness Questionnaire |
RM | Repetition Maximum |
HRT | Heavy Resistance Training |
CT | Circuit Training |
PPE | Personal Protective Equipment |
SLDL | Single-Leg Drop Landing |
IMTP | Isometric Midthigh Pull |
RPE | Rating of Perceived Exertion |
SCBA | Self-contained Breathing Apparatus |
RPE | Rating of Perceived Exertion |
SOFI | Swedish Occupational Fatigue Inventory |
COP | Center of Pressure |
PS | Postural Sway |
LJ | Long Jump |
LBP | Lower Body Power |
CL | Cognitive Load |
TTS | Time to Stabilization |
EO | Eyes Open |
EC | Eyes Closed |
APMV | Anterior–Posterior Mean Velocity |
MLMV | Medial Lateral Mean Velocity |
COPAP | Center of Pressure Anterior–Posterior |
COPML | Center of Pressure Medial Lateral |
PI | Performance Index |
References
- Campbell, R.; Hall, S. United States Firefighter Injuries; National Fire Protection Association: Quincy, MA, USA, 2023. [Google Scholar]
- Butry, D.T.; Webb, D.; Gilbert, S.; Taylor, J. The Economics of Firefighter Injuries in the United States; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019.
- Pawlak, R.; Clasey, J.L.; Palmer, T.; Symons, T.B.; Abel, M.G. The effect of a novel tactical training program on physical fitness and occupational performance in firefighters. J. Strength Cond. Res. 2015, 29, 578–588. [Google Scholar] [CrossRef] [PubMed]
- Mason, M.R.; Heebner, N.R.; Abt, J.P.; Bergstrom, H.C.; Shapiro, R.; Langford, E.L.; Abel, M.G. The Acute Effect of High-Intensity Resistance Training on Subsequent Firefighter Performance. J. Strength Cond. Res. 2023, 37, 1507–1514. [Google Scholar] [CrossRef]
- Dennison, K.J.; Mullineaux, D.R.; Yates, J.W.; Abel, M.G. The effect of fatigue and training status on firefighter performance. J. Strength Cond. Res. 2012, 26, 1101–1109. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.; Suyama, J.; Hostler, D. A Review of Risk Factors of Accidental Slips, Trips, and Falls among Firefighters. Saf. Sci. 2013, 60, 203–209. [Google Scholar] [CrossRef]
- Trivisonno, A.J.; Laffan, M.R.; Giuliani, H.K.; Mota, J.A.; Gerstner, G.R.; Smith-Ryan, A.E.; Ryan, E.D. The influence of age on the recovery from worksite resistance exercise in career firefighters. Exp. Gerontol. 2021, 152, 111467. [Google Scholar] [CrossRef]
- Zemková, E. Physiological Mechanisms of Exercise and Its Effects on Postural Sway: Does Sport Make a Difference? Front. Physiol. 2022, 13, 792875. [Google Scholar] [CrossRef]
- Trojian, T.H.; McKeag, D.B. Single leg balance test to identify risk of ankle sprains. Br. J. Sports Med. 2006, 40, 610–613. [Google Scholar] [CrossRef]
- McGuine, T.A.; Greene, J.J.; Best, T.; Leverson, G. Balance as a predictor of ankle injuries in high school basketball players. Clin. J. Sport Med. 2000, 10, 239–244. [Google Scholar] [CrossRef]
- DuPrey, K.M.; Liu, K.; Cronholm, P.F.; Reisman, A.S.; Collina, S.J.; Webner, D.; Kaminski, T.W. Baseline Time to Stabilization Identifies Anterior Cruciate Ligament Rupture Risk in Collegiate Athletes. Am. J. Sports Med. 2016, 44, 1487–1491. [Google Scholar] [CrossRef]
- Abel, M.; Palmer, T.; Trubee, N. Exercise Program Design for Structural Firefighters. Strength Cond. J. 2015, 37, 8–19. [Google Scholar] [CrossRef]
- Marín-Pagán, C.; Blazevich, A.J.; Chung, L.H.; Romero-Arenas, S.; Freitas, T.T.; Alcaraz, P.E. Acute Physiological Responses to High-Intensity Resistance Circuit Training vs. Traditional Strength Training in Soccer Players. Biology 2020, 9, 383. [Google Scholar] [CrossRef] [PubMed]
- Paillard, T. Effects of general and local fatigue on postural control: A review. Neurosci. Biobehav. Rev. 2012, 36, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Hur, P.; Rosengren, K.; Horn, G.; Smith, D.; Hsiao-Wecksler, E. Effect of Protective Clothing and Fatigue on Functional Balance of Firefighters. J. Ergon. 2013, S2, 1–7. [Google Scholar] [CrossRef]
- Doyle, T.L.A.; Fain, A.C.; Wills, J.A.; Cooper, D.; Toonen, K.; Kamphius, B. Measures of Lower Body Strength Associated with Injuries in Australian Special Forces Selection Candidates. J. Appl. Biomech. 2022, 38, 255–262. [Google Scholar] [CrossRef]
- Taanila, H.; Suni, J.H.; Kannus, P.; Pihlajamäki, H.; Ruohola, J.P.; Viskari, J.; Parkkari, J. Risk factors of acute and overuse musculoskeletal injuries among young conscripts: A population-based cohort study. BMC Musculoskelet. Disord. 2015, 16, 104. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. Health-related physical fitness testing and interpretation. In ACSM’s Guidelines for Exercise Prescription, 10th ed.; Riebe, D., Ehrman, J.K., Liguori, G., Magal, M., Eds.; Wolter Kluwer: Philadelphia, PA, USA, 2018. [Google Scholar]
- Åhsberg, E.; Kecklund, G.; Åkerstedt, T.; Francesco, G. Shiftwork and different dimensions of fatigue. Int. J. Ind. Ergon. 2000, 26, 457–465. [Google Scholar] [CrossRef]
- Minton, D.M.; O’Neal, E.K.; Torres-McGehee, T.M. Agreement of urine specific gravity measurements between manual and digital refractometers. J. Athl. Train. 2015, 50, 59–64. [Google Scholar] [CrossRef]
- Sawka, M.N.; Burke, L.M.; Eichner, E.R.; Maughan, R.J.; Montain, S.J.; Stachenfeld, N.S. American College of Sports Medicine position stand. Exercise and fluid replacement. Med. Sci. Sports Exerc. 2007, 39, 377–390. [Google Scholar] [CrossRef]
- Lo, P.-Y.; Su, B.-L.; You, Y.-L.; Yen, C.-W.; Wang, S.-T.; Guo, L.-Y. Measuring the Reliability of Postural Sway Measurements for a Static Standing Task: The Effect of Age. Front. Physiol. 2022, 13, 850707. [Google Scholar] [CrossRef]
- Meshkati, Z.; Namazizadeh, M.; Salavati, M.; Mazaheri, M. Reliability of force-platform measures of postural sway and expertise-related differences. J. Sport Rehabil. 2011, 20, 442–456. [Google Scholar] [CrossRef]
- Byrne, A.; Lodge, C.; Wallace, J. Test-Retest Reliability of Single-Leg Time to Stabilization Following a Drop-Landing Task in Healthy Individuals. J. Sport Rehabil. 2021, 30, 1242–1245. [Google Scholar] [CrossRef]
- Punakallio, A. Trial-to-trial reproducibility and test-retest stability of two dynamic balance tests among male firefighters. Int. J. Sports Med. 2004, 25, 163–169. [Google Scholar] [CrossRef]
- Grgic, J.; Scapec, B.; Mikulic, P.; Pedisic, Z. Test-retest reliability of isometric mid-thigh pull maximum strength assessment: A systematic review. Biol. Sport 2022, 39, 407–414. [Google Scholar] [CrossRef]
- Beckham, G.K.; Sato, K.; Santana, H.A.P.; Mizuguchi, S.; Haff, G.G.; Stone, M.H. Effect of Body Position on Force Production During the Isometric Midthigh Pull. J. Strength Cond. Res. 2018, 32, 48–56. [Google Scholar] [CrossRef]
- Mann, J.B.; Bird, M.; Signorile, J.F.; Brechue, W.F.; Mayhew, J.L. Prediction of Anaerobic Power From Standing Long Jump in NCAA Division IA Football Players. J. Strength Cond. Res. 2021, 35, 1542–1546. [Google Scholar] [CrossRef] [PubMed]
- Chapman, P.P.; Whitehead, J.R.; Binkert, R.H. The 225–1b Reps-to-Fatigue Test as a Submaximal Estimate of 1-RM Bench Press Performance in College Football Players. J. Strength Cond. Res. 1998, 12, 258–261. [Google Scholar] [CrossRef]
- Mayhew, J.L.; Ball, T.E.; Arnold, M.D.; Bowen, J.C. Relative Muscular Endurance Performance as a Predictor of Bench Press Strength in College Men and Women. J. Strength Cond. Res. 1992, 6, 200–206. [Google Scholar]
- Egan, A.D.; McGuigan, M.R. Session Rating of Perceived Exertion During High Intensity and Low Intensity Bouts of Resistance Exercise. UW-L J. Undergrad. Res. 2003, 6, 1–6. [Google Scholar]
- Hart, S.; Drevets, K.; Alford, M.; Salacinski, A.; Hunt, B.E. A method-comparison study regarding the validity and reliability of the Lactate Plus analyzer. BMJ Open 2013, 3, e001899. [Google Scholar] [CrossRef]
- Weir, J.P. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J. Strength Cond. Res. 2005, 19, 231–240. [Google Scholar] [CrossRef]
- Rhea, M.R.; Alvar, B.A.; Gray, R. Physical fitness and job performance of firefighters. J. Strength Cond. Res. 2004, 18, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Michaelides, M.A.; Parpa, K.M.; Henry, L.J.; Thompson, G.B.; Brown, B.S. Assessment of physical fitness aspects and their relationship to firefighters’ job abilities. J. Strength Cond. Res. 2011, 25, 956–965. [Google Scholar] [CrossRef]
- Fox, Z.G.; Mihalik, J.P.; Blackburn, J.T.; Battaglini, C.L.; Guskiewicz, K.M. Return of postural control to baseline after anaerobic and aerobic exercise protocols. J. Athl. Train. 2008, 43, 456–463. [Google Scholar] [CrossRef] [PubMed]
- Güler, Ö.; Aras, D.; Akça, F.; Bianco, A.; Lavanco, G.; Paoli, A.; Şahin, F.N. Effects of Aerobic and Anaerobic Fatigue Exercises on Postural Control and Recovery Time in Female Soccer Players. Int. J. Environ. Res. Public Health 2020, 17, 6273. [Google Scholar] [CrossRef]
- Ishizuka, T.; Hess, R.A.; Reuter, B.; Federico, M.S.; Yamada, Y. Recovery of time on limits of stability from functional fatigue in Division II collegiate athletes. J. Strength Cond. Res. 2011, 25, 1905–1910. [Google Scholar] [CrossRef]
- Matsuda, S.; Demura, S.; Uchiyama, M. Centre of pressure sway characteristics during static one-legged stance of athletes from different sports. J. Sports Sci. 2008, 26, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Nardone, A.; Tarantola, J.; Giordano, A.; Schieppati, M. Fatigue effects on body balance. Electroencephalogr. Clin. Neurophysiol. 1997, 105, 309–320. [Google Scholar] [CrossRef]
- Romero-Franco, N.; Jiménez-Reyes, P. Unipedal Postural Balance and Countermovement Jumps After a Warm-up and Plyometric Training Session: A Randomized Controlled Trial. J. Strength Cond. Res. 2015, 29, 3216–3222. [Google Scholar] [CrossRef]
- Steinberg, N.; Eliakim, A.; Zaav, A.; Pantanowitz, M.; Halumi, M.; Eisenstein, T.; Meckel, Y.; Nemet, D. Postural Balance Following Aerobic Fatigue Tests: A Longitudinal Study Among Young Athletes. J. Mot. Behav. 2016, 48, 332–340. [Google Scholar] [CrossRef]
- Susco, T.M.; Valovich McLeod, T.C.; Gansneder, B.M.; Shultz, S.J. Balance Recovers within 20 Minutes After Exertion as Measured by the Balance Error Scoring System. J. Athl. Train. 2004, 39, 241–246. [Google Scholar]
- Wright, K.E.; Lyons, T.S.; Navalta, J.W. Effects of exercise-induced fatigue on postural balance: A comparison of treadmill versus cycle fatiguing protocols. Eur. J. Appl. Physiol. 2013, 113, 1303–1309. [Google Scholar] [CrossRef]
- Yaggie, J.; Armstrong, W.J. Effects of Lower Extremity Fatigue on Indices of Balance. J. Sport Rehabil. 2004, 13, 312–322. [Google Scholar] [CrossRef]
- Fukusaki, C.; Masani, K.; Miyasaka, M.; Nakazawa, K. Acute Positive Effects of Exercise on Center-of-Pressure Fluctuations during Quiet Standing in Middle-Aged and Elderly Women. J. Strength Cond. Res. 2016, 30, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Kaji, A.; Sasagawa, S.; Kubo, T.; Kanehisa, H. Transient effect of core stability exercises on postural sway during quiet standing. J. Strength Cond. Res. 2010, 24, 382–388. [Google Scholar] [CrossRef]
- Paillard, T.; Kadri, M.A.; Nouar, M.B.; Noé, F. Warm-up Optimizes Postural Control but Requires Some Minutes of Recovery. J. Strength Cond. Res. 2018, 32, 2725–2729. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, I.G.; Souza, M.A.; Oliveira, M.L.; Miarka, B.; Barbosa, M.A.; Queiroz, A.C.; Barbosa, A.C. Acute Effects of Single- Versus Double-Leg Postactivation Potentiation on Postural Balance of Older Women: An Age-Matched Controlled Study. J. Aging Phys. Act. 2021, 29, 200–206. [Google Scholar] [CrossRef]
- Marigold, D.S.; Patla, A.E. Strategies for dynamic stability during locomotion on a slippery surface: Effects of prior experience and knowledge. J. Neurophysiol. 2002, 88, 339–353. [Google Scholar] [CrossRef]
- Games, K.E.; Winkelmann, Z.K.; McGinnis, K.D.; McAdam, J.S.; Pascoe, D.D.; Sefton, J.M. Functional Performance of Firefighters After Exposure to Environmental Conditions and Exercise. J. Athl. Train. 2020, 55, 71–79. [Google Scholar] [CrossRef]
- Kesler, R.M.; Deetjen, G.S.; Bradley, F.F.; Angelini, M.J.; Petrucci, M.N.; Rosengren, K.S.; Horn, G.P.; Hsiao-Wecksler, E.T. Impact of SCBA size and firefighting work cycle on firefighter functional balance. Appl. Ergon. 2018, 69, 112–119. [Google Scholar] [CrossRef]
- Singh, U.; Mani, A.; James, K.; Rao, M.B.; Bhattacharya, A. Effects of Heat Exposure from Live-Burn Fire Training on Postural Stability of Firefighters. Ergon. Int. J. 2019, 3, 1–6. [Google Scholar] [CrossRef]
- Lanham, S.N.; Langford, E.L.; Rochani, H.; Melton, B.F.; Rossi, S.J.; Abel, M.G. The Impact of Gloves and Occupational Tasks on Handgrip Strength in Structural Firefighters. Int. J. Exerc. Sci. 2023, 16, 1087–1102. [Google Scholar] [CrossRef]
- Son, S.Y.; Bakri, I.; Muraki, S.; Tochihara, Y. Comparison of firefighters and non-firefighters and the test methods used regarding the effects of personal protective equipment on individual mobility. Appl. Ergon. 2014, 45, 1019–1027. [Google Scholar] [CrossRef] [PubMed]
- Kong, P.W.; Suyama, J.; Cham, R.; Hostler, D. The relationship between physical activity and thermal protective clothing on functional balance in firefighters. Res. Q. Exerc. Sport 2012, 83, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Punakallio, A.; Lusa, S.; Luukkonen, R. Functional, postural and perceived balance for predicting the work ability of firefighters. Int. Arch. Occup. Environ. Health 2004, 77, 482–490. [Google Scholar] [CrossRef] [PubMed]
- Punakallio, A.; Hirvonen, M.; Grönqvist, R. Slip and fall risk among firefighters in relation to balance, muscular capacities and age. Saf. Sci. 2005, 43, 455–468. [Google Scholar] [CrossRef]
- Punakallio, A. Balance Abilities of Different-Aged Workers in Physically Demanding Jobs. J. Occup. Rehabil. 2003, 13, 33–43. [Google Scholar] [CrossRef]
- Mota, J.A.; Barnette, T.J.; Gerstner, G.R.; Giuliani, H.K.; Tweedell, A.J.; Kleinberg, C.R.; Thompson, B.J.; Pietrosimone, B.; Ryan, E.D. Relationships Between Neuromuscular Function and Functional Balance Performance in Firefighters. Sci. Rep. 2018, 8, 15328. [Google Scholar] [CrossRef]
- Langford, E.L.; Bergstrom, H.C.; Lanham, S.; Eastman, A.Q.; Best, S.; Ma, X.; Mason, M.R.; Abel, M.G. Evaluation of Work Efficiency in Structural Firefighters. J. Strength Cond. Res. 2023, 37, 2457–2466. [Google Scholar] [CrossRef]
- Norris, M.S.; McAllister, M.; Gonzalez, A.E.; Best, S.A.; Pettitt, R.; Keeler, J.M.; Abel, M.G. Predictors of Work Efficiency in Structural Firefighters. J. Occup. Environ. Med. 2021, 63, 622–628. [Google Scholar] [CrossRef]
- Poplin, G.S.; Roe, D.J.; Peate, W.; Harris, R.B.; Burgess, J.L. The association of aerobic fitness with injuries in the fire service. Am. J. Epidemiol. 2014, 179, 149–155. [Google Scholar] [CrossRef]
- Barry, A.M.; Lyman, K.L.; Dicks, N.D.; McGeorge, C.R.; Carper, M.J.; Walch, T.J. Firefighters Are More Physically Active On-Duty Compared to Off-Duty. Int. J. Environ. Res. Public Health 2020, 17, 9380. [Google Scholar] [CrossRef] [PubMed]
- Fox, A.M.; Mann, D.M.; Ramos, M.A.; Kleinman, L.C.; Horowitz, C.R. Barriers to physical activity in East harlem, new york. J. Obes. 2012, 2012, 719140. [Google Scholar] [CrossRef] [PubMed]
Session 1 | Session 2 | Session 3 |
---|---|---|
Anthropometrics SLDL (PPE) Postural Sway (PPE) Functional Balance (PPE) Warm-up IMTP Long Jump | Pre-exercise SLDL (PPE) Postural Sway (PPE) Functional Balance (PPE) Blood Lactate RPE/Dyspnea/Thermal Skin Temperature Warm-up IMTP Long Jump | Pre-exercise SLDL (PPE) Postural Sway (PPE) Functional Balance (PPE) Blood Lactate RPE/Dyspnea/Thermal Skin Temperature Warm-up IMTP Long Jump |
5 RM Strength Assessment | Exercise: HRT or CT Condition | Exercise: HRT or CT Condition |
Recovery | Recovery | |
IMTP (0 min-post) | IMTP (0 min-post) | |
Long Jump (0 min-post) | Long Jump (0 min-post) | |
Skin Temperature (0 min-post) | Skin Temperature (0 min-post) | |
RPE/Dyspnea/Thermal (0 min-post) | RPE/Dyspnea/Thermal (0 min-post) | |
Blood Lactate (5 min-post) | Blood Lactate (5 min-post) | |
10 min post-exercise | 10 min post-exercise | |
SLDL (PPE) | SLDL (PPE) | |
Postural Sway (PPE) | Postural Sway (PPE) | |
Functional Balance (PPE) | Functional Balance (PPE) |
CT | HRT | |
---|---|---|
Lack of energy | 0.88 ± 0.90 | 0.80 ± 0.87 |
Lack of motivation | 0.72 ± 1.13 | 0.54 ± 1.21 |
Sleepiness | 0.82 ± 0.81 | 0.66 ± 0.49 |
Physical exertion | 0.24 ± 0.42 | 0.22 ± 0.48 |
Physical discomfort | 0.88 ± 0.72 | 0.83 ± 0.78 |
CT | HRT | |
---|---|---|
Blood lactatepre (mmol/L) | 2.0 ± 0.9 ‡ | 2.1 ± 1.2 ‡ |
Blood lactatepost (mmol/L) * | 13.0 ± 2.5 ‡ | 6.6 ± 2.2 ‡ |
HRpeak (%MHR) * | 94.4 ± 3.9 | 88.0 ± 7.3 |
HRaverage (%MHR) * | 81.5 ± 4.3 | 69.1 ± 7.0 |
Thermal Strainpre | 0.4 ± 1.0 | 0.5 ± 0.9 |
Thermal Strainpost | 1.8 ± 0.7 | 1.4 ± 0.8 |
Dyspneapre | 0.8 ± 0.7 ‡ | 1.0 ± 0.9 ‡ |
Dyspneapost * | 3.9 ± 2.0 ‡ | 2.6 ± 1.1 ‡ |
RPEpre | 1.6 ± 0.8 ‡ | 1.6 ± 0.9 ‡ |
RPEpost * | 6.3 ± 2.1 ‡ | 4.7 ± 1.4 ‡ |
Temperaturepre (°C) | 36.2 ± 0.4 | 36.1 ± 0.3 |
Temperaturepost (°C) | 35.8 ± 1.2 | 34.7 ± 2.5 |
Urine specific gravity (USG) † | 1.017 ± 0.009 | 1.032 ± 0.070 |
CT Rel Diff (%) | HRT Rel Diff (%) | p-Value ‡ | Partial Eta Squared ‡ | Power ‡ | |
---|---|---|---|---|---|
Strength and Power Performance | |||||
Peak Force *,† | −6.5 ± 5.1 | −2.7 ± 6.2 | 0.009 | 0.340 | 0.796 |
Long Jump *,† | −7.4 ± 7.7 | −3.1 ± 2.5 | 0.017 | 0.294 | 0.708 |
Lower Body Power *,† | −14.8 ± 15.0 | −6.7 ± 5.6 | 0.017 | 0.294 | 0.708 |
Single Leg Drop Land | |||||
Time to Stabilization | 5.1 ± 43.4 | 7.6 ± 32.7 | 0.806 | 0.004 | 0.056 |
Peak Force (n = 17) | −2.7 ± 10.5 | 3.8 ± 11.5 | 0.148 | 0.126 | 0.298 |
Postural Sway (Eyes Open) | |||||
Mean Velocity * | 13.6 ± 30.6 | 0.2 ± 19.8 | 0.043 | 0.219 | 0.539 |
Mean Velocity-Anterior–Posterior * | 13.0 ± 29.9 | 0.3 ± 20.8 | 0.049 | 0.208 | 0.514 |
Mean Velocity-Medial–Lateral | 16.3 ± 37.3 | 0.7 ± 17.7 | 0.088 | 0.162 | 0.401 |
Excursion * | 13.5 ± 30.5 | 0.2 ± 19.7 | 0.046 | 0.214 | 0.529 |
COP Range-Anterior–Posterior | 18.5 ± 37.9 | 19.9 ± 39.1 | 0.485 | 0.029 | 0.103 |
COP Range-Medial–Lateral | 42.0 ± 91.6 | 14.3 ± 54.1 | 0.19 | 0.099 | 0.251 |
Postural Sway (Eyes Closed) | |||||
Mean Velocity | 11.1 ± 24.4 | −3.2 ± 22.9 | 0.086 | 0.163 | 0.405 |
Mean Velocity-Anterior–Posterior | 11.6 ± 25.3 | −2.5 ± 23.7 | 0.098 | 0.153 | 0.379 |
Mean Velocity-Medial–Lateral * | 10.9 ± 24.1 | −10.4 ± 18.9 | 0.032 | 0.243 | 0.595 |
Excursion | 11.1 ± 24.4 | −3.2 ± 23.0 | 0.087 | 0.162 | 0.402 |
COP Range-Anterior–Posterior | 26.2 ± 41.1 | 7.0 ± 41.0 | 0.423 | 0.038 | 0.121 |
COP Range-Medial–Lateral * | 35.6 ± 59.6 | −6.3 ± 34.5 | 0.011 | 0.322 | 0.763 |
Single-Leg Stand | |||||
Mean Velocity | 3.9 ± 25.3 | −6.3 ± 16.7 | 0.117 | 0.138 | 0.344 |
Mean Velocity-Anterior–Posterior | 6.8 ± 24.7 | −4.7 ± 13.6 | 0.054 | 0.201 | 0.496 |
Mean Velocity-Medial–Lateral | 2.2 ± 26.3 | −7.4 ± 20.2 | 0.182 | 0.102 | 0.260 |
Excursion | 3.9 ± 25.4 | −6.2 ± 16.7 | 0.119 | 0.137 | 0.341 |
COP Range-Anterior–Posterior | 28.3 ± 51.5 | 6.9 ± 27.1 | 0.172 | 0.107 | 0.270 |
COP Range-Medial–Lateral | 6.8 ± 33.6 | −2.1 ± 24.1 | 0.119 | 0.137 | 0.341 |
Modified Functional Balance Test (n = 16) | |||||
mFBT Time | 6.0 ± 13.4 | 2.6 ± 7.9 | 0.344 | 0.060 | 0.150 |
mFBT Performance Index | 5.2 ± 18.2 | 3.0 ± 14.2 | 0.585 | 0.020 | 0.082 |
mFBT Time (w/Cognitive Load) | 3.9 ± 11.6 | 3.1 ± 7.1 | 0.820 | 0.004 | 0.055 |
mFBT Performance Index (w/Cognitive Load) | 7.6 ± 19.6 | 4.7 ± 11.4 | 0.587 | 0.020 | 0.081 |
CT | HRT | |||
---|---|---|---|---|
Decrement | Improvement | Decrement | Improvement | |
Variable (n = 18) | % Outside MD (Frequency) | % Outside MD (Frequency) | ||
Peak Force | 22.0 (4) | --- | 5.6 (1) | 5.6 (1) |
Long Jump | 50.0 (9) | --- | --- | --- |
Lower Body Power | 50.0 (9) | --- | --- | --- |
Single Leg Drop Landing-TTS | --- | --- | --- | 11.1 (2) |
Postural Sway-EO-Mean Velocity | 16.7 (3) | --- | 5.6 (1) | 5.6 (1) |
Postural Sway-EO-APMV | 16.7 (3) | --- | 5.6 (1) | 5.6 (1) |
Postural Sway-EO-MLMV | 22.2 (4) | --- | --- | 5.6 (1) |
Postural Sway-EO-Excursion | 16.7 (3) | --- | 5.6 (1) | 5.6 (1) |
Postural Sway-EO-COPAP | 11.1 (2) | 5.6 (1) | 11.1 (2) | --- |
Postural Sway-EO-COPML | 16.7 (3) | --- | 16.7 (3) | --- |
Postural Sway-EC-Mean Velocity | --- | --- | --- | 11.1 (2) |
Postural Sway-EC-APMV | --- | --- | --- | 11.1 (2) |
Postural Sway-EC-MLMV | --- | --- | --- | 5.6 (1) |
Postural Sway-EC-Excursion | --- | --- | --- | 11.1 (2) |
Postural Sway-EC-COPAP | 16.7 (3) | --- | 11.1 (2) | --- |
Postural Sway-EC-COPML | 5.6 (1) | --- | --- | --- |
Single Leg Stand-MV | 5.6 (1) | 5.6 (1) | --- | 5.6 (1) |
Single Leg Stand-APMV | 5.6 (1) | --- | --- | 5.6 (1) |
Single Leg Stand-MLMV | 5.6 (1) | 5.6 (1) | --- | 11.1 (2) |
Single Leg Stand-Excursion | 5.6 (1) | 5.6 (1) | --- | 5.6 (1) |
Single Leg Stand-COPAP | 11.1 (2) | --- | --- | --- |
Single Leg Stand-COPML | 5.6 (1) | --- | 5.6 (1) | 5.6 (1) |
Variable (n = 16) | ||||
mFBT Time | 18.8 (3) | --- | --- | 6.3 (1) |
mFBT Performance Index | 12.5 (2) | 6.3 (1) | 6.3 (1) | 6.3 (1) |
mFBT Time (Cognitive Load) | 12.5 (2) | 6.3 (1) | --- | 6.3 (1) |
mFBT Performance Index (Cognitive Load) | 12.5 (2) | 12.5 (2) | 6.3 (1) | --- |
W/o CL Trials #1–3 | ICC (95% CI) | W/o CL Trials #4–6 | ICC (95% CI) | With CL Trials #7–9 | ICC (95% CI) | |
---|---|---|---|---|---|---|
mFBT Time (s) | 17.5 ± 4.8 | 0.843 (0.680–0.934) | 15.4 ± 3.1 | 0.875 (0.659–0.954) | 15.5 ± 3.2 | 0.880 (0.759–0.949) |
mFBT Performance Index (s) | 19.7 ± 5.0 | 0.826 (0.634–0.928) | 17.6 ± 3.5 | 0.739 (0.493–0.886) | 17.9 ± 3.7 | 0.838 (0.685–0.930) |
Session 2 | Session 3 | ICC (95% CI) | SEM | MD | CoV (%) | |
---|---|---|---|---|---|---|
mFBT Time (s) | 13.7 ± 2.9 | 13.6 ± 2.9 | 0.915 (0.788–0.967) | 0.88 | 2.44 | 6.43 |
mFBT Performance Index (s) | 15.1 ± 3.2 | 15.1 ± 3.2 | 0.884 (0.716–0.955) | 1.11 | 3.09 | 7.38 |
mFBT Time (Cognitive Load) (s) | 13.8 ± 2.8 | 13.8 ± 2.7 | 0.946 (0.861–0.979) | 0.66 | 1.83 | 4.80 |
mFBT Performance Index (Cognitive Load) (s) | 15.1 ± 3.1 | 15.3 ± 2.8 | 0.863 (0.674–0.947) | 1.12 | 3.10 | 7.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thruston, J.L.; Best, S.A.; Heebner, N.R.; Bollinger, L.M.; Abel, M.G. Effect of On-Duty Resistance Training Fatigue on Neuromuscular Function in Structural Firefighters. Healthcare 2025, 13, 1278. https://doi.org/10.3390/healthcare13111278
Thruston JL, Best SA, Heebner NR, Bollinger LM, Abel MG. Effect of On-Duty Resistance Training Fatigue on Neuromuscular Function in Structural Firefighters. Healthcare. 2025; 13(11):1278. https://doi.org/10.3390/healthcare13111278
Chicago/Turabian StyleThruston, Jamal L., Stuart A. Best, Nicholas R. Heebner, Lance M. Bollinger, and Mark G. Abel. 2025. "Effect of On-Duty Resistance Training Fatigue on Neuromuscular Function in Structural Firefighters" Healthcare 13, no. 11: 1278. https://doi.org/10.3390/healthcare13111278
APA StyleThruston, J. L., Best, S. A., Heebner, N. R., Bollinger, L. M., & Abel, M. G. (2025). Effect of On-Duty Resistance Training Fatigue on Neuromuscular Function in Structural Firefighters. Healthcare, 13(11), 1278. https://doi.org/10.3390/healthcare13111278