Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (334)

Search Parameters:
Keywords = port scenarios

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2235 KiB  
Article
Ternary Historical Memory-Based Robust Clustered Particle Swarm Optimization for Dynamic Berth Allocation and Crane Assignment Problem
by Ruiqi Wu, Shiming Mao and Yi Sun
Mathematics 2025, 13(15), 2516; https://doi.org/10.3390/math13152516 - 5 Aug 2025
Abstract
The berth allocation and crane assignment problem (BACAP) is a key challenge in port logistics, particularly under dynamic and uncertain vessel arrival conditions. To address the limitations of existing methods in handling large-scale and high-disturbance scenarios, this paper proposes a novel optimization framework: [...] Read more.
The berth allocation and crane assignment problem (BACAP) is a key challenge in port logistics, particularly under dynamic and uncertain vessel arrival conditions. To address the limitations of existing methods in handling large-scale and high-disturbance scenarios, this paper proposes a novel optimization framework: Ternary Historical Memory-based Robust Clustered Particle Swarm Optimization (THM-RCPSO). In this method, the initial particle swarm is divided into multiple clusters, each conducting local searches to identify regional optima. These clusters then exchange information to iteratively refine the global best solution. A ternary historical memory mechanism further enhances the optimization by recording and comparing the best solutions from three different strategies, ensuring guidance from historical performance during exploration. Experimental evaluations on 25 dynamic BACAP benchmark instances show that THM-RCPSO achieves the lowest average vessel dwell time in 22 out of 25 cases, with the lowest overall average rank among five tested algorithms. Specifically, it demonstrates significant advantages on large-scale instances with 150 vessels, where it consistently outperforms competing methods such as HRBA, ACO, and GAMCS in both solution quality and robustness. These results confirm THM-RCPSO’s strong capability in solving dynamic and large-scale DBACAP scenarios with high disturbance levels. Full article
Show Figures

Figure 1

26 pages, 3478 KiB  
Article
Rethinking Routes: The Case for Regional Ports in a Decarbonizing World
by Dong-Ping Song
Logistics 2025, 9(3), 103; https://doi.org/10.3390/logistics9030103 - 4 Aug 2025
Viewed by 167
Abstract
Background: Increasing regulatory pressure for maritime decarbonization (e.g., IMO CII, FuelEU) drives adoption of low-carbon fuels and prompts reassessment of regional ports’ competitiveness. This study aims to evaluate the economic and environmental viability of rerouting deep-sea container services to regional ports in [...] Read more.
Background: Increasing regulatory pressure for maritime decarbonization (e.g., IMO CII, FuelEU) drives adoption of low-carbon fuels and prompts reassessment of regional ports’ competitiveness. This study aims to evaluate the economic and environmental viability of rerouting deep-sea container services to regional ports in a decarbonizing world. Methods: A scenario-based analysis is used to evaluate total costs and CO2 emissions across the entire container shipping supply chain, incorporating deep-sea shipping, port operations, feeder services, and inland rail/road transport. The Port of Liverpool serves as the primary case study for rerouting Asia–Europe services from major ports. Results: Analysis indicates Liverpool’s competitiveness improves with shipping lines’ slow steaming, growth in hinterland shipment volume, reductions in the emission factors of alternative low-carbon fuels, and an increased modal shift to rail matching that of competitor ports (e.g., Southampton). A dual-port strategy, rerouting services to call at both Liverpool and Southampton, shows potential for both economic and environmental benefits. Conclusions: The study concludes that rerouting deep-sea services to regional ports can offer cost and emission advantages under specific operational and market conditions. Findings on factors and conditions influencing competitiveness and the dual-port strategy provide insights for shippers, ports, shipping lines, logistics agents, and policymakers navigating maritime decarbonization. Full article
(This article belongs to the Section Maritime and Transport Logistics)
Show Figures

Figure 1

21 pages, 2077 KiB  
Article
Quantitative Risk Assessment of Liquefied Natural Gas Bunkering Hoses in Maritime Operations: A Case of Shenzhen Port
by Yimiao Gu, Yanmin Zeng and Hui Shan Loh
J. Mar. Sci. Eng. 2025, 13(8), 1494; https://doi.org/10.3390/jmse13081494 - 2 Aug 2025
Viewed by 267
Abstract
The widespread adoption of liquefied natural gas (LNG) as a marine fuel has driven the development of LNG bunkering operations in global ports. Major international hubs, such as Shenzhen Port, have implemented ship-to-ship (STS) bunkering practices. However, this process entails unique safety risks, [...] Read more.
The widespread adoption of liquefied natural gas (LNG) as a marine fuel has driven the development of LNG bunkering operations in global ports. Major international hubs, such as Shenzhen Port, have implemented ship-to-ship (STS) bunkering practices. However, this process entails unique safety risks, particularly hazards associated with vapor cloud dispersion caused by bunkering hose releases. This study employs the Phast software developed by DNV to systematically simulate LNG release scenarios during STS operations, integrating real-world meteorological data and storage conditions. The dynamic effects of transfer flow rates, release heights, and release directions on vapor cloud dispersion are quantitatively analyzed under daytime and nighttime conditions. The results demonstrate that transfer flow rate significantly regulates dispersion range, with recommendations to limit the rate below 1500 m3/h and prioritize daytime operations to mitigate risks. Release heights exceeding 10 m significantly amplify dispersion effects, particularly at night (nighttime dispersion area at a height of 20 m is 3.5 times larger than during the daytime). Optimizing release direction effectively suppresses dispersion, with vertically downward releases exhibiting minimal impact. Horizontal releases require avoidance of downwind alignment, and daytime operations are prioritized to reduce lateral dispersion risks. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

26 pages, 6390 KiB  
Article
The Impact of Land Use Patterns on Nitrogen Dioxide: A Case Study of Klaipėda City and Lithuanian Resort Areas
by Aistė Andriulė, Erika Vasiliauskienė, Remigijus Dailidė and Inga Dailidienė
Sustainability 2025, 17(15), 6939; https://doi.org/10.3390/su17156939 - 30 Jul 2025
Viewed by 313
Abstract
Urban air pollution remains a significant environmental and public health issue, especially in European coastal cities such as Klaipėda. However, there is still a lack of local-scale knowledge on how land use structure influences pollutant distribution, highlighting the need to address this gap. [...] Read more.
Urban air pollution remains a significant environmental and public health issue, especially in European coastal cities such as Klaipėda. However, there is still a lack of local-scale knowledge on how land use structure influences pollutant distribution, highlighting the need to address this gap. This study addresses this by examining the spatial distribution of nitrogen dioxide (NO2) concentrations in Klaipėda’s seaport city and several inland and coastal resort towns in Lithuania. The research specifically asks how different land cover types and demographic factors affect NO2 variability and population exposure risk. Data were collected using passive sampling methods and analyzed within a GIS environment. The results revealed clear air quality differences between industrial/port zones and greener resort areas, confirmed by statistically significant associations between land cover types and pollutant levels. Based on these findings, a Land Use Pollution Pressure index (LUPP) and its population-weighted variant (PLUPP) were developed to capture demographic sensitivity. These indices provide a practical decision-support tool for sustainable urban planning, enabling the assessment of pollution risks and the forecasting of air quality changes under different land use scenarios, while contributing to local climate adaptation and urban environmental governance. Full article
(This article belongs to the Special Issue Sustainable Land Use and Management, 2nd Edition)
Show Figures

Figure 1

20 pages, 2352 KiB  
Article
Three-Dimensional Physics-Based Channel Modeling for Fluid Antenna System-Assisted Air–Ground Communications by Reconfigurable Intelligent Surfaces
by Yuran Jiang and Xiao Chen
Electronics 2025, 14(15), 2990; https://doi.org/10.3390/electronics14152990 - 27 Jul 2025
Viewed by 214
Abstract
Reconfigurable intelligent surfaces (RISs), recognized as one of the most promising key technologies for sixth-generation (6G) mobile communications, are characterized by their minimal energy expenditure, cost-effectiveness, and straightforward implementation. In this study, we develop a novel communication channel model that integrates RIS-enabled base [...] Read more.
Reconfigurable intelligent surfaces (RISs), recognized as one of the most promising key technologies for sixth-generation (6G) mobile communications, are characterized by their minimal energy expenditure, cost-effectiveness, and straightforward implementation. In this study, we develop a novel communication channel model that integrates RIS-enabled base stations with unmanned ground vehicles. To enhance the system’s adaptability, we implement a fluid antenna system (FAS) at the unmanned ground vehicle (UGV) terminal. This innovative model demonstrates exceptional versatility across various wireless communication scenarios through the strategic adjustment of active ports. The inherent dynamic reconfigurability of the FAS provides superior flexibility and adaptability in air-to-ground communication environments. In the paper, we derive and study key performance characteristics like the autocorrelation function (ACF), validating the model’s effectiveness. The results demonstrate that the RIS-FAS collaborative scheme significantly enhances channel reliability while effectively addressing critical challenges in 6G networks, including signal blockage and spatial constraints in mobile terminals. Full article
Show Figures

Figure 1

23 pages, 7173 KiB  
Article
LiDAR Data-Driven Deep Network for Ship Berthing Behavior Prediction in Smart Port Systems
by Jiyou Wang, Ying Li, Hua Guo, Zhaoyi Zhang and Yue Gao
J. Mar. Sci. Eng. 2025, 13(8), 1396; https://doi.org/10.3390/jmse13081396 - 23 Jul 2025
Viewed by 278
Abstract
Accurate ship berthing behavior prediction (BBP) is essential for enabling collision warnings and support decision-making. Existing methods based on Automatic Identification System (AIS) data perform well in the task of ship trajectory prediction over long time-series and large scales, but struggle with addressing [...] Read more.
Accurate ship berthing behavior prediction (BBP) is essential for enabling collision warnings and support decision-making. Existing methods based on Automatic Identification System (AIS) data perform well in the task of ship trajectory prediction over long time-series and large scales, but struggle with addressing the fine-grained and highly dynamic changes in berthing scenarios. Therefore, the accuracy of BBP remains a crucial challenge. In this paper, a novel BBP method based on Light Detection and Ranging (LiDAR) data is proposed. To test its feasibility, a comprehensive dataset is established by conducting on-site collection of berthing data at Dalian Port (China) using a shore-based LiDAR system. This dataset comprises equal-interval data from 77 berthing activities involving three large ships. In order to find a straightforward architecture to provide good performance on our dataset, a cascading network model combining convolutional neural network (CNN), a bi-directional gated recurrent unit (BiGRU) and bi-directional long short-term memory (BiLSTM) are developed to serve as the baseline. Experimental results demonstrate that the baseline outperformed other commonly used prediction models and their combinations in terms of prediction accuracy. In summary, our research findings help overcome the limitations of AIS data in berthing scenarios and provide a foundation for predicting complete berthing status, therefore offering practical insights for safer, more efficient, and automated management in smart port systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 3172 KiB  
Article
Equivalent Two-Port Modeling Method and Application for External Distribution Networks Under Flexible Interconnection Device Integration
by Qingshuai Zhao, Jiaoxin Jia, Xiangwu Yan, Waseem Aslam, Chen Shao and Abubakar Siddique
Processes 2025, 13(8), 2328; https://doi.org/10.3390/pr13082328 - 22 Jul 2025
Viewed by 888
Abstract
With the large-scale integration of renewable energy sources, traditional distribution networks are gradually evolving into a new form of flexible interconnection distribution networks. To enhance the rapidity and accuracy of power flow control through flexible interconnection devices, there is an increasing demand for [...] Read more.
With the large-scale integration of renewable energy sources, traditional distribution networks are gradually evolving into a new form of flexible interconnection distribution networks. To enhance the rapidity and accuracy of power flow control through flexible interconnection devices, there is an increasing demand for precise grid equivalent models. Existing grid equivalent models predominantly adopt single-port configurations for radial networks, while there is limited research on two-port network equivalent models tailored for flexible interconnection distribution networks. Focusing on the scenario of flexible interconnection distribution networks integrated with Rotary Power Flow Controllers (RPFCs), this paper proposes an equivalent modeling method of two-port networks based on the superposition theorem under small disturbance conditions. A flexible interconnection distribution network model incorporating RPFCs and its corresponding two-port equivalent model are developed. The parameters of the two-port equivalent model are derived through superposition theorem calculations, enabling the realization of power decoupling control functionality for RPFCs. The simulation results show that the deviations between the set value of active power and the actual value remains at about 3%, and the deviations between the set value of reactive power and the actual value is between 4% and 7%, thereby verifying the effectiveness of the constructed two-port model in power flow control and further supporting the accuracy of the proposed method. Full article
Show Figures

Figure 1

21 pages, 2089 KiB  
Article
Assessing Port Connectivity from the Perspective of the Supply Chain: A Bayesian Network-Based Integrated Approach
by Yuan Ji, Jing Lu, Wan Su and Danlan Xie
Sustainability 2025, 17(14), 6643; https://doi.org/10.3390/su17146643 - 21 Jul 2025
Viewed by 388
Abstract
Maritime transportation is the backbone of global trade, with ports acting as pivotal nodes for the efficient and resilient movement of goods in international supply chains. However, most existing studies lack a systematic and integrated framework for assessing port connectivity. To address this [...] Read more.
Maritime transportation is the backbone of global trade, with ports acting as pivotal nodes for the efficient and resilient movement of goods in international supply chains. However, most existing studies lack a systematic and integrated framework for assessing port connectivity. To address this gap, this study develops an integrated Bayesian Network (BN) modeling approach that, for the first time, simultaneously incorporates international connectivity, port competitiveness, and hinterland connectivity within a unified probabilistic framework. Drawing on empirical data from 26 major coastal countries in Asia, the model quantifies the multi-layered and interdependent determinants of port connectivity. The results demonstrate that port competitiveness and hinterland connectivity are the dominant drivers, while the impact of international shipping links is comparatively limited in the current Asian context. Sensitivity analysis further highlights the critical roles of rail transport development and trade facilitation in enhancing port connectivity. The proposed BN framework supports comprehensive scenario analysis under uncertainty and offers targeted, practical policy recommendations for port authorities and regional planners. By systematically capturing the interactions among maritime, port, and inland factors, this study advances both the theoretical understanding and practical management of port connectivity. Full article
Show Figures

Figure 1

23 pages, 8224 KiB  
Article
Green Port Collection and Distribution System in Low-Carbon Development: Scenario-Based System Dynamics
by Qingzhou Wang, Mengfan Li, Yuning Zhang and Yanan Kang
Sustainability 2025, 17(14), 6516; https://doi.org/10.3390/su17146516 - 16 Jul 2025
Viewed by 302
Abstract
This study aims to explore the factors and mechanisms influencing the low-carbon development of Green Port Collection and Distribution Systems (GPCDSs) and to identify effective pathways and policy approaches to promote such development. Given the limited prior research integrating low-carbon policies, energy structure, [...] Read more.
This study aims to explore the factors and mechanisms influencing the low-carbon development of Green Port Collection and Distribution Systems (GPCDSs) and to identify effective pathways and policy approaches to promote such development. Given the limited prior research integrating low-carbon policies, energy structure, and transportation systems, this study combines these three dimensions into a unified analytical framework. A scenario-based system dynamics model of GPCDS low-carbon development is established, incorporating factors such as low-carbon policies, energy structure, and transportation structure. The control variable method is employed to examine system behavior under 13 scenarios. The results indicate that freight subsidy policies and the internalization of carbon emission costs make the most substantial contributions to low-carbon development in GPCDS, yielding CO2 emission reductions of 14.3% and 15.7%, respectively. Additionally, improvements in port railway infrastructure contribute to a 6.4% reduction in CO2 emissions. In contrast, carbon taxes and energy structure adjustments have relatively limited effects, likely due to the delayed responsiveness of fossil fuel-dependent transportation sectors to pricing signals and the inherent inertia in transitioning energy systems. Full article
Show Figures

Figure 1

28 pages, 9133 KiB  
Article
Semantic Segmentation of Corrosion in Cargo Containers Using Deep Learning
by David Ornelas, Daniel Canedo and António J. R. Neves
Sustainability 2025, 17(14), 6480; https://doi.org/10.3390/su17146480 - 15 Jul 2025
Viewed by 335
Abstract
As global trade expands, the pressure on container terminals to improve efficiency and capacity grows. Several inspections are performed during the loading and unloading process to minimize delays. In this paper, we explore corrosion as it poses a persistent threat that compromises the [...] Read more.
As global trade expands, the pressure on container terminals to improve efficiency and capacity grows. Several inspections are performed during the loading and unloading process to minimize delays. In this paper, we explore corrosion as it poses a persistent threat that compromises the durability of containers and leads to costly repairs. However, identifying this threat is no simple task. Corrosion can take many forms, progress unpredictably, and be influenced by various environmental conditions and container types. In collaboration with the Port of Sines, Portugal, this work explores a potential solution for a real-time computer-vision system, with the aim to improve container inspections using deep-learning algorithms. We propose a system based on the semantic segmentation model, DeepLabv3+, for precise corrosion detection using images provided from the terminal. After preparing the data and annotations, we explored two approaches. First, we leveraged a pre-trained model originally designed for bridge corrosion detection. Second, we fine-tuned a version specifically for cargo container assessment. With a corrosion detection performance of 49%, this work showcases the potential of deep learning to automate inspection processes. It also highlights the importance of generalization and training in real-world scenarios and explores innovative solutions for smart gates and terminals. Full article
Show Figures

Graphical abstract

29 pages, 3782 KiB  
Article
Land Use Evolution and Multi-Scenario Simulation of Shrinking Border Counties Based on the PLUS Model: A Case Study of Changbai County
by Bingxin Li, Chennan He, Xue Jiang, Qiang Zheng and Jiashuang Li
Sustainability 2025, 17(14), 6441; https://doi.org/10.3390/su17146441 - 14 Jul 2025
Viewed by 408
Abstract
The sharp decline in the population along the northeastern border poses a significant threat to the security of the region, the prosperity of border areas, and the stability of the social economy in our country. Effective management of human and land resources is [...] Read more.
The sharp decline in the population along the northeastern border poses a significant threat to the security of the region, the prosperity of border areas, and the stability of the social economy in our country. Effective management of human and land resources is crucial for the high-quality development of border areas. Taking Changbai County on the northeastern border as an example, based on multi-source data such as land use, the natural environment, climate conditions, transportation location, and social economy from 2000 to 2020, the land use transfer matrix, spatial kernel density, and PLUS model were used to analyze the spatio-temporal evolution characteristics of land use and explore simulation scenarios and optimization strategies under different planning concepts. This study reveals the following: (1) During the study period, the construction land continued to increase, but the growth rate slowed down, mainly transferred from cultivated land and forest land, and the spatial structure evolved from a single center to a double center, with the core always concentrated along the border. (2) The distance to the port (transportation location), night light (social economy), slope (natural environment), and average annual temperature (climate conditions) are the main driving factors for the change in construction land, and the PLUS model can effectively simulate the land use trend under population contraction. (3) In the reduction scenario, the construction land decreased by 1.67 km2, the scale of Changbai Town slightly reduced, and the contraction around Malugou Town and Badagou Town was more significant. The study shows that the reduction scenario is more conducive to the population aggregation and industrial carrying capacity improvement of shrinking county towns, which is in line with the high-quality development needs of border areas in our country. Full article
Show Figures

Figure 1

20 pages, 1392 KiB  
Article
The Environmental Impact of Inland Empty Container Movements Within Two-Depot Systems
by Alaa Abdelshafie, May Salah and Tomaž Kramberger
Appl. Sci. 2025, 15(14), 7848; https://doi.org/10.3390/app15147848 - 14 Jul 2025
Viewed by 310
Abstract
Inefficient inland repositioning of empty containers between depots remains a persistent challenge in container logistics, contributing significantly to unnecessary truck movements, elevated operational costs, and increased CO2 emissions. Acknowledging the importance of this problem, a large amount of relevant literature has appeared. [...] Read more.
Inefficient inland repositioning of empty containers between depots remains a persistent challenge in container logistics, contributing significantly to unnecessary truck movements, elevated operational costs, and increased CO2 emissions. Acknowledging the importance of this problem, a large amount of relevant literature has appeared. The objective of this paper is to track the empty container flow between ports, empty depots, inland terminals, and customer premises. Additionally, it aims to simulate and assess CO2 emissions, capturing the dynamic interactions between different agents. In this study, agent-based modeling (ABM) was proposed to simulate the empty container movements with an emphasis on inland transportation. ABM is an emerging approach that is increasingly used to simulate complex economic systems and artificial market behaviours. NetLogo was used to incorporate real-world geographic data and quantify CO2 emissions based on truckload status and to evaluate the other operational aspects. Behavior Space was also utilized to systematically conduct multiple simulation experiments, varying parameters to analyze different scenarios. The results of the study show that customer demand frequency plays a crucial role in system efficiency, affecting container availability and logistical tension. Full article
(This article belongs to the Special Issue Green Transportation and Pollution Control)
Show Figures

Figure 1

29 pages, 1474 KiB  
Review
Berth Allocation and Quay Crane Scheduling in Port Operations: A Systematic Review
by Ndifelani Makhado, Thulane Paepae, Matthews Sejeso and Charis Harley
J. Mar. Sci. Eng. 2025, 13(7), 1339; https://doi.org/10.3390/jmse13071339 - 13 Jul 2025
Viewed by 493
Abstract
Container terminals are facing significant challenges in meeting the increasing demands for volume and throughput, with limited space often presenting as a critical constraint. Key areas of concern at the quayside include the berth allocation problem, the quay crane assignment, and the scheduling [...] Read more.
Container terminals are facing significant challenges in meeting the increasing demands for volume and throughput, with limited space often presenting as a critical constraint. Key areas of concern at the quayside include the berth allocation problem, the quay crane assignment, and the scheduling problem. Effectively managing these issues is essential for optimizing port operations; failure to do so can lead to substantial operational and economic ramifications, ultimately affecting competitiveness within the global shipping industry. Optimization models, encompassing both mathematical frameworks and metaheuristic approaches, offer promising solutions. Additionally, the application of machine learning and reinforcement learning enables real-time solutions, while robust optimization and stochastic models present effective strategies, particularly in scenarios involving uncertainties. This study expands upon earlier foundational analyses of berth allocation, quay crane assignment, and scheduling issues, which have laid the groundwork for port optimization. Recent developments in uncertainty management, automation, real-time decision-making approaches, and environmentally sustainable objectives have prompted this review of the literature from 2015 to 2024, exploring emerging challenges and opportunities in container terminal operations. Recent research has increasingly shifted toward integrated approaches and the utilization of continuous berthing for better wharf utilization. Additionally, emerging trends, such as sustainability and green infrastructure in port operations, and policy trade-offs are gaining traction. In this review, we critically analyze and discuss various aspects, including spatial and temporal attributes, crane handling, sustainability, model formulation, policy trade-offs, solution approaches, and model performance evaluation, drawing on a review of 94 papers published between 2015 and 2024. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 5917 KiB  
Article
An Experimental 10-Port Microwave System for Brain Stroke Diagnosis—Potentials and Limitations
by Tomas Pokorny, Jan Redr, Hana Laierova, Barbora Smahelova and Jakub Kollar
Sensors 2025, 25(14), 4360; https://doi.org/10.3390/s25144360 - 12 Jul 2025
Viewed by 390
Abstract
Microwave imaging systems show potential as replacements for commonly used stroke diagnostic systems. We developed and tested a 10-port microwave system on a liquid head phantom with ischemic and hemorrhagic strokes of varying sizes and positions. This system allows for visualization of changes [...] Read more.
Microwave imaging systems show potential as replacements for commonly used stroke diagnostic systems. We developed and tested a 10-port microwave system on a liquid head phantom with ischemic and hemorrhagic strokes of varying sizes and positions. This system allows for visualization of changes in dielectric parameters using the TSVD Born approximation, enabling recognition of stroke position and size from the resulting images. The SVM algorithm effectively distinguishes between ischemic and hemorrhagic strokes, achieving 98% accuracy on experimental data, with 99% accuracy in ischemic scenarios and 97% in hemorrhagic scenarios. Using the TSVD Born algorithm, it was possible to precisely image changes in the absolute permittivity of different stroke locations; however, changes in stroke size were more apparent in the variations of absolute permittivity than in the reconstructed stroke size within the antenna plane. Outside this plane, changes in the S-parameters decreased depending on the distance and size of the stroke, making detection and classification more difficult. One ring of antennas around the head proved insufficient, prompting us to focus on developing a system with antennas positioned around the entire head. Full article
(This article belongs to the Special Issue Microwaves for Biomedical Applications and Sensing)
Show Figures

Figure 1

17 pages, 1101 KiB  
Article
Ship Scheduling Algorithm Based on Markov-Modulated Fluid Priority Queues
by Jianzhi Deng, Shuilian Lv, Yun Li, Liping Luo, Yishan Su, Xiaolin Wang and Xinzhi Liu
Algorithms 2025, 18(7), 421; https://doi.org/10.3390/a18070421 - 8 Jul 2025
Viewed by 216
Abstract
As a key node in port logistics systems, ship anchorage is often faced with congestion caused by ship flow fluctuations, multi-priority scheduling imbalances and the poor adaptability of scheduling models to complex environments. To solve the above problems, this paper constructs a ship [...] Read more.
As a key node in port logistics systems, ship anchorage is often faced with congestion caused by ship flow fluctuations, multi-priority scheduling imbalances and the poor adaptability of scheduling models to complex environments. To solve the above problems, this paper constructs a ship scheduling algorithm based on a Markov-modulated fluid priority queue, which describes the stochastic evolution of the anchorage operation state via a continuous-time Markov chain and abstracts the arrival and service processes of ships into a continuous fluid input and output mechanism modulated by the state. The algorithm introduces a multi-priority service strategy to achieve the differentiated scheduling of different types of ships and improves the computational efficiency and scalability based on a matrix analysis method. Simulation results show that the proposed model reduces the average waiting time of ships by more than 90% compared with the M/G/1/1 and RL strategies and improves the utilization of anchorage resources by about 20% through dynamic service rate adjustment, showing significant advantages over traditional scheduling methods in multi-priority scenarios. Full article
Show Figures

Figure 1

Back to TopTop