Three-Dimensional Physics-Based Channel Modeling for Fluid Antenna System-Assisted Air–Ground Communications by Reconfigurable Intelligent Surfaces
Abstract
1. Introduction
1.1. Background
1.2. Related Works
1.3. Main Contributions
- We established a novel 3D channel model that integrates RIS-enabled base stations with unmanned ground vehicles equipped with an FAS. This combination makes full use of the advantages of the two technologies: the reconfigurable intelligent surface enhances the signal coverage and quality, while the fluid antenna system provides adaptive antenna configurations for dynamic environments.
- We derived the complex channel impulse responses (CIRs) of the propagation links in the communication system consisting of a base station equipped with an RIS and a UGV equipped with a fluid antenna system. In the study, we identified and established two path propagation mechanisms, namely the reflection path by the reconfigurable intelligent surface and the non-line-of-sight (NLoS) path formed by the reflections of scatterers. A direct line-of-sight is not included in these paths. Meanwhile, when deriving the expression of the time-varying channel impulse response, the Rician factor K was introduced to dynamically adjust the weight of the RIS reflection and scatterer cluster reflection components.
- Based on temporal correlation, we calculated the proposed model’s statistical characteristics, including key performance metrics such as the autocorrelation function (ACF). Through a comprehensive analysis of these indicators, we demonstrate that the RIS-assisted FAS exhibits superior flexibility and adaptability compared to standalone RISs or FASs.
2. System Model
3. Complex CIRs of the Proposed Channel Model
3.1. Aerial RIS Array Component
3.2. NLoS Component
4. The Propagation Statistics of the Proposed Channel Model
- (1)
- The high-density unit configuration of the RIS;
- (2)
- The rapid movement pattern of UGVs;
- (3)
- The broadband characteristics of signal propagation.
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, H.; Mukherjee, M.; Zhou, J.; Lloret, J. Channel modeling and characteristics analysis for 6G wireless communications. IEEE Netw. 2021, 35, 296–303. [Google Scholar] [CrossRef]
- Jiang, H.; Shi, W.; Chen, X.; Zhu, Q.; Chen, Z. High-efficient near-field channel characteristics analysis for large-scale MIMO communication systems. IEEE Internet Things J. 2025, 12, 7446–7458. [Google Scholar] [CrossRef]
- Mao, K.; Zhu, Q.; Wang, C.-X.; Ye, X.; Gomez-Ponce, J.; Cai, X.; Miao, Y.; Cui, Z.; Wu, Q.; Fan, W. A survey on channel sounding technologies and measurements for UAV-assisted communications. IEEE Trans. Instrum. Meas. 2024, 73, 8004624. [Google Scholar] [CrossRef]
- Ruan, C.; Zhang, Z.; Jiang, H.; Dang, J.; Wu, L.; Zhang, H. Wideband near-field channel covariance estimation for XL-MIMO systems in the face of beam split. IEEE Trans. Veh. Technol. 2024, 74, 2912–2926. [Google Scholar] [CrossRef]
- Ruan, C.; Zhang, Z.; Jiang, H.; Zhang, H.; Dang, J.; Wu, L. Simplified learned approximate message passing network for beamspace channel estimation in mmWave massive MIMO systems. IEEE Trans. Wirel. Commun. 2024, 23, 5142–5156. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, J.; Zou, Y.; Xie, W.; Liu, Y. Wideband Beamforming for RIS Assisted Near-Field Communications. IEEE Trans. Wirel. Commun. 2024, 23, 16836–16851. [Google Scholar] [CrossRef]
- Mao, K.; Zhu, Q.; Qiu, Y.; Liu, X.; Song, M.; Fan, W.; Kokkeler, A.B.J.; Miao, Y. A UAV-aided real-time channel sounder for highly dynamic nonstationary A2G scenarios. IEEE Trans. Instrum. Meas. 2023, 72, 6504515. [Google Scholar] [CrossRef]
- Lian, Z.; Wang, Y.; Su, Y.; Ji, P.; Ling, L.; Zhang, Z.; Jin, B.; Luo, H. A novel beam channel model and capacity analysis for UAV-enabled millimeter-wave communication systems. IEEE Trans. Wirel. Commun. 2024, 23, 3617–3632. [Google Scholar] [CrossRef]
- Chen, Z.; Guo, Y.; Zhang, P.; Jiang, H.; Xiao, Y.; Huang, L. Physical layer security improvement for hybrid RIS-assisted MIMO communications. IEEE Commun. Lett. 2024, 28, 2493–2497. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming. IEEE Trans. Wirel. Commun. 2019, 18, 5394–5409. [Google Scholar] [CrossRef]
- Xiong, B.; Zhang, Z.; Jiang, H. Reconfigurable intelligent surface for mmWave mobile communications: What if LoS path exists? IEEE Wirel. Commun. Lett. 2023, 12, 247–251. [Google Scholar] [CrossRef]
- Jiang, H.; Xiong, B.; Zhang, H.; Basar, E. Physics-based 3D end-to-end modeling for double-RISs assisted non-stationary UAV-toground communication channels. IEEE Trans. Commun. 2023, 71, 4247–4261. [Google Scholar] [CrossRef]
- Jiang, H.; He, R.; Ruan, C.; Zhou, J.; Chang, D. Three-dimensional geometry-based stochastic channel modeling for intelligent reflecting surface-assisted UAV MIMO communications. IEEE Wirel. Commun. Lett. 2021, 10, 2727–2731. [Google Scholar] [CrossRef]
- Jiang, H.; Shi, W.; Zhang, Z.; Panet, C.; Wu, Q.; Shu, F.; Liu, R.; Chen, Z.; Wang, J. Large-scale RIS enabled air-ground channels: Near-field modeling and analysis. IEEE Trans. Wirel. Commun. 2024, 24, 1074–1088. [Google Scholar] [CrossRef]
- Lian, Z.; Zhang, W.; Wang, Y.; Su, Y.; Zhang, B.; Jin, B.; Wang, B. Physics-based channel modeling for IRS-assisted mmWave Communication systems. IEEE Trans. Commun. 2024, 72, 2687–2700. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, L.; So, H.C.; Jiang, H.; Zhang, X.Y.; Wang, J. Deep reinforcement learning over RIS-assisted integrated sensing and communication: Challenges and opportunities. IEEE Veh. Technol. Mag. 2024; early access. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, R. Weighted sum power maximization for intelligent reflecting surface aided SWIPT. IEEE Wirel. Commun. Lett. 2019, 9, 586–590. [Google Scholar] [CrossRef]
- Zhu, J.; Huang, Y.; Wang, J.; Navaie, K.; Ding, Z. Power efficient IRS-assisted NOMA. IEEE Trans. Commun. 2021, 69, 900–913. [Google Scholar] [CrossRef]
- Yang, Y.; Gong, Y.; Wu, Y. Intelligent-reflecting-surface-aided mobile edge computing with binary offloading: Energy minimization for IoT devices. IEEE Internet Things J. 2022, 9, 12973–12983. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, Q.; Lin, Z.; Chen, J.; Ding, G.; Wu, Q.; Gu, G.; Gao, Q. Sparse bayesian learning-based hierarchical construction for 3D radio environment maps incorporating channel shadowing. IEEE Trans. Wirel. Commun. 2024, 23, 14560–14574. [Google Scholar] [CrossRef]
- Ma, Z.; Zhang, R.; Ai, B.; Lian, Z.; Zeng, L.; Niyato, D.; Peng, Y. Deep reinforcement learning for energy efficiency maximization in RSMA-IRS-assisted ISAC system. IEEE Trans. Veh. Technol. 2025; early access. [Google Scholar] [CrossRef]
- Zeng, L.; Liao, X.; Xie, W.; Ma, Z.; Xiong, B.; Jiang, H. UAV-to-ground channel modeling: (Quasi-)Closed-form channel statistics and manual parameter estimation. China Commun. 2024, 10, 100–115. [Google Scholar]
- Zeng, L.; Liao, X.; Ma, Z.; Liu, W.; Jiang, H.; Chen, Z. Toward more adaptive UAV-to-UAV GBSMs: Introducing the extended vMF distribution. IEEE Wirel. Commun. Lett. 2025, 14, 260–264. [Google Scholar] [CrossRef]
- Zhu, L.; Wong, K.-K. Historical review of fluid antennas and movable antennas. arXiv 2024, arXiv:2401.02362v2. [Google Scholar] [CrossRef]
- Yang, N.; Jiang, H.; Guo, D.; Liu, Y.; Ding, G.; Chen, Z.; Yang, Z. Proof of reputation: A blockchain-based countermeasure to defend against massive SSDF in cognitive radio networks. IEEE Commun. Lett. 2024, 28, 2693–2697. [Google Scholar] [CrossRef]
- Wong, K.-K.; Shojaeifard, A.; Tong, K.-F.; Zhang, Y. Fluid antenna systems. IEEE Trans. Wirel. Commun. 2021, 20, 1950–1962. [Google Scholar] [CrossRef]
- Wong, K.-K.; Tong, K.; Zhang, Y.; Zhongbin, Z. Fluid antenna system for 6G: When Bruce Lee inspires wireless communications. Electron. Lett. 2020, 56, 1288–1290. [Google Scholar] [CrossRef]
- Wong, K.-K.; Tong, K.-F.; Chen, Y.; Zhang, Y. Fast fluid antenna multiple access enabling massive connectivity. IEEE Commun. Lett. 2023, 27, 711–715. [Google Scholar] [CrossRef]
- Hua, B.; Han, L.; Zhu, Q.; Wang, C.-X.; Mao, K.; Bao, J.; Chang, H.; Tang, Z. Ultra-wideband nonstationary channel modeling for UAV-to-ground communications. IEEE Trans. Wirel. Commun. 2025, 24, 4190–4204. [Google Scholar] [CrossRef]
- New, W.-K.; Wong, K.-K.; Xu, H.; Tong, K.-F.; Chae, C.-B. Fluid antenna system: New insights on outage probability and diversity gain. IEEE Trans. Wirel. Commun. 2024, 23, 128–140. [Google Scholar] [CrossRef]
- Wong, K.-K.; Tong, K.-F.; Chen, Y.; Zhang, Y. Closed-form expressions for spatial correlation parameters for performance analysis of fluid antenna systems. IET Elect. Lett. 2022, 58, 454–457. [Google Scholar] [CrossRef]
- Khammassi, M.; Kammoun, A.; Alouini, M.-S. A new analytical approximation of the fluid antenna system channel. IEEE Trans. Wirel. Commun. 2023, 22, 8843–8858. [Google Scholar] [CrossRef]
- Yao, J.; Lai, X.; Zhi, K.; Wu, T.; Jin, M.; Pan, C.; Elkashlan, M.; Yuen, C.; Wong, K.K. A Framework of FAS-RIS Systems: Performance Analysis and Throughput Optimization. arXiv 2024, arXiv:2407.08141. [Google Scholar] [CrossRef]
- Yao, J.; Zheng, J.; Wu, T.; Jin, M.; Yuen, C.; Wong, K.-K. FAS-RIS Communication: Model, Analysis, and Optimization. IEEE Trans. Veh. Technol. 2025, 74, 9938–9943. [Google Scholar] [CrossRef]
- Lai, X.; Yao, J.; Zhi, K.; Wu, T.; Morales-Jimenez, D.; Wong, K.-K. FAS-RIS: A Block-Correlation Model Analysis. IEEE Trans. Veh. Technol. 2025, 74, 3412–3417. [Google Scholar] [CrossRef]
- Zheng, J.; Lai, X.; Yao, J.; Tang, J.; Pan, Y.; Wu, T.; Yuen, C. Paving the Way to 6G: Outage Probability Analysis for FAS-ARIS Systems. arXiv 2024, arXiv:2411.01398. [Google Scholar]
- Najafi, M.; Jamali, V.; Schober, R.; Poor, H.V. Physics-based modeling and scalable optimization of large intelligent reflecting surfaces. IEEE Trans. Commun. 2021, 69, 2673–2691. [Google Scholar] [CrossRef]
- Lai, X.; Wu, T.; Yao, J.; Pan, C.; Elkashlan, M.; Wong, K.-K. On performance of fluid antenna system using maximum ratio combining. IEEE Commun. Lett. 2024, 28, 402–406. [Google Scholar] [CrossRef]
- Tang, B.; Xu, H.; Wong, K.-K.; Tong, K.-F.; Zhang, Y.; Chae, C.-B. Fluid antenna enabling secret communications. IEEE Commun. Lett. 2023, 27, 1491–1495. [Google Scholar] [CrossRef]
- Jiang, H.; Xiong, B.; Zhang, H.; Basar, E. Hybrid far- and near-field modeling for reconfigurable intelligent surface assisted V2V channels: A sub-array partition based approach. IEEE Trans. Wirel. Commun. 2023, 22, 8290–8303. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Chen, X. Three-Dimensional Physics-Based Channel Modeling for Fluid Antenna System-Assisted Air–Ground Communications by Reconfigurable Intelligent Surfaces. Electronics 2025, 14, 2990. https://doi.org/10.3390/electronics14152990
Jiang Y, Chen X. Three-Dimensional Physics-Based Channel Modeling for Fluid Antenna System-Assisted Air–Ground Communications by Reconfigurable Intelligent Surfaces. Electronics. 2025; 14(15):2990. https://doi.org/10.3390/electronics14152990
Chicago/Turabian StyleJiang, Yuran, and Xiao Chen. 2025. "Three-Dimensional Physics-Based Channel Modeling for Fluid Antenna System-Assisted Air–Ground Communications by Reconfigurable Intelligent Surfaces" Electronics 14, no. 15: 2990. https://doi.org/10.3390/electronics14152990
APA StyleJiang, Y., & Chen, X. (2025). Three-Dimensional Physics-Based Channel Modeling for Fluid Antenna System-Assisted Air–Ground Communications by Reconfigurable Intelligent Surfaces. Electronics, 14(15), 2990. https://doi.org/10.3390/electronics14152990