Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (226)

Search Parameters:
Keywords = porous nitrogen-doped carbon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 2472 KB  
Communication
Phosphazene-Based Porous Polymer as Electrode Material for Electrochemical Applications
by Ekaterina A. Karpova, Alexander A. Sysoev, Ilya D. Tsvetkov, Alexey L. Klyuev, Oleg A. Raitman and Mikhail A. Soldatov
Polymers 2026, 18(3), 366; https://doi.org/10.3390/polym18030366 - 29 Jan 2026
Abstract
Porous highly cross-linked polymer (PIP) was synthesized by a polycondensation reaction between hexachlorocyclotriphosphazene and piperazine. The obtained polymer has a surface area of 76.9 m2/g and a mesoporous structure. After carbonization, the obtained product (PIP-C) has a surface area of 177 [...] Read more.
Porous highly cross-linked polymer (PIP) was synthesized by a polycondensation reaction between hexachlorocyclotriphosphazene and piperazine. The obtained polymer has a surface area of 76.9 m2/g and a mesoporous structure. After carbonization, the obtained product (PIP-C) has a surface area of 177 m2/g. The obtained carbon product contained nitrogen and phosphorus heteroatoms, which leads to a higher specific capacitance (155.6 F/g) and catalytical activity in the electroreduction of oxygen (15.9 A/g). This work shows the possibility of the use of such porous phosphazene polymers as precursors for heteroatom-doped carbon materials, which might be used in electrochemical devices like electrodes for supercapacitors or metal-free electrocatalysts in fuel cells. Full article
(This article belongs to the Section Smart and Functional Polymers)
20 pages, 8238 KB  
Article
Manganese–Iron-Supported Biomass-Derived Carbon Catalyst for Efficient Hydrazine Oxidation
by Karina Vjūnova, Huma Amber, Dijana Šimkūnaitė, Zenius Mockus, Aleksandrs Volperts, Ance Plavniece, Galina Dobele, Aivars Zhurinsh, Loreta Tamašauskaitė-Tamašiūnaitė and Eugenijus Norkus
Molecules 2026, 31(2), 354; https://doi.org/10.3390/molecules31020354 - 19 Jan 2026
Viewed by 175
Abstract
This study presents a straightforward strategy for producing novel, effective and inexpensive functional non-noble metal-supported carbon materials made from abundant natural biomass. These materials offer a cost-effective alternative to noble metals for the oxidation of hydrazine (HzOR) and demonstrate the potential for widespread [...] Read more.
This study presents a straightforward strategy for producing novel, effective and inexpensive functional non-noble metal-supported carbon materials made from abundant natural biomass. These materials offer a cost-effective alternative to noble metals for the oxidation of hydrazine (HzOR) and demonstrate the potential for widespread adoption of green, energy-saving hydrazine-based technologies in energy applications. Highly efficient and cost-effective iron (Fe) and manganese–iron (MnFe)-supported nitrogen-doped carbon (N–C) materials were developed using hydrothermal synthesis. Meanwhile, the N–C material was obtained from biomass—birch-wood chips—using hydrothermal carbonisation (HTC), followed by activation and nitrogen doping of the resulting hydrochar. The morphology, structure, and composition of the MnFe, MnFe/N–C, and Fe/N–C catalysts were determined using scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive X-ray spectroscopy (EDS). The activity of the catalysts for HzOR in an alkaline medium was evaluated using cyclic voltammetry (CV). Depositing MnFe particles onto N–C was shown to significantly enhance electrocatalytic activity for HzOR compared to the Fe/N–C catalyst and especially to the MnFe particles catalyst in terms of highly developed porous structure, which offers the largest surface area, lowest onset potential, and highest current density response, resulting in the strongest catalytic activity. These results suggest that the MnFe/N–C catalyst could be a highly promising anode material for HzOR in direct hydrazine fuel cells (DHFCs). Full article
Show Figures

Figure 1

18 pages, 3990 KB  
Article
Novel Garlic Carbon Dot-Incorporated Starch Whey Protein Emulsion Gel for Apple Spoilage Sensing
by Hebat-Allah S. Tohamy
Gels 2026, 12(1), 47; https://doi.org/10.3390/gels12010047 - 1 Jan 2026
Viewed by 396
Abstract
This study presents the development of a smart packaging material utilizing garlic-derived nitrogen-doped carbon dots (CDs) integrated into a whey protein–starch (WP-S) emulsion. The research aimed to create a real-time, non-invasive biosensor capable of detecting microbial spoilage. The synthesized CDs demonstrated strong pH-sensitive [...] Read more.
This study presents the development of a smart packaging material utilizing garlic-derived nitrogen-doped carbon dots (CDs) integrated into a whey protein–starch (WP-S) emulsion. The research aimed to create a real-time, non-invasive biosensor capable of detecting microbial spoilage. The synthesized CDs demonstrated strong pH-sensitive photoluminescence, exhibiting distinct changes in CIE coordinates and fluorescence intensity in response to varying pH values. The WP-S-CDs emulsion was tested against E. coli, S. aureus, and C. albicans. The results showed that the composite film provided a clear colorimetric shift and fluorescence quenching, both of which are directly correlated with microbial metabolic activity. The physical and electronic properties of the composite were investigated to understand the sensing mechanism. Scanning electron microscopy (SEM) of the dried film revealed that the WP-S-CDs system formed a more porous structure with larger pore sizes (3.63–8.18 µm) compared to the control WP-S film (1.62–6.52 µm), which facilitated the rapid diffusion of microbial metabolites. Additionally, density functional theory (DFT) calculations demonstrated that the incorporation of CDs significantly enhanced the composite’s electronic properties by reducing its band gap and increasing its dipole moment, thereby heightening its reactivity and sensitivity to spoilage byproducts. In a practical application on apples, the WP-S-CDs coating produced a visible red spot, confirming its function as a dynamic sensor. The material also showed a dual-action antimicrobial effect, synergistically inhibiting C. albicans while exhibiting an antagonistic effect against bacteria. These findings validate the potential of the WP-S-CDs emulsion as a powerful, multi-faceted intelligent packaging system for food quality monitoring. Full article
(This article belongs to the Special Issue Hydrogels for Food Safety and Sensing Applications)
Show Figures

Graphical abstract

14 pages, 2311 KB  
Article
Chitin-Based Porous Carbon Containing Cuprous Sulfide for Supercapacitor Electrode Materials
by Jiangyang Han, Wenchao Yu, Fukun Niu, Yang Hu, Hongmei Qin, Zhuqun Shi, Chuanxi Xiong and Quanling Yang
Polymers 2025, 17(23), 3186; https://doi.org/10.3390/polym17233186 - 29 Nov 2025
Viewed by 368
Abstract
Chitin-derived biomass carbon materials are promising supercapacitor electrode materials due to their wide availability, low cost, high specific surface area, and nitrogen doping capability. However, their practical application is limited by insufficient conductivity and cyclic stability, often requiring functional modification or integration with [...] Read more.
Chitin-derived biomass carbon materials are promising supercapacitor electrode materials due to their wide availability, low cost, high specific surface area, and nitrogen doping capability. However, their practical application is limited by insufficient conductivity and cyclic stability, often requiring functional modification or integration with complementary materials. In this study, we present a novel strategy by incorporating copper sulfide (Cu2S) into a chitin-based carbon matrix. Cu2S, known for its high intrinsic conductivity, excellent electroactivity, and theoretical specific capacity (~335 mAh·g−1), was uniformly doped into the three-dimensional carbon aerogel framework derived from chitin nanofibers (ChNF) through sol–gel, freeze-drying, and high-temperature carbonization processes. The resulting chitin-based carbon/Cu2S composite aerogel (CChNF/Cu2S) exhibited a hierarchical porous structure with Cu2S nanoparticles (20–30 nm) uniformly distributed on the carbon fiber surface. Electrochemical tests demonstrated its excellent performance, achieving a specific capacitance of 852 F·g−1 at 1 A·g−1, highlighting the synergistic effects of the conductive Cu2S and nitrogen-doped carbon framework for high-performance supercapacitor applications. Full article
(This article belongs to the Collection Electrochemical-Storage Technology with Polymer Science)
Show Figures

Figure 1

18 pages, 15025 KB  
Article
Preparation and CO2 Adsorption Performance of Nitrogen-Doped Carbon Derived from Phenolic Resin
by Liang Xu, Jie Peng, Zhaoyang Niu, Wenbin Li and Donghui Zhang
C 2025, 11(4), 84; https://doi.org/10.3390/c11040084 - 18 Nov 2025
Cited by 1 | Viewed by 1119
Abstract
Carbon dioxide emissions, particularly from large point sources such as fossil-fuel power plants, represent a primary driver of global warming. Although various carbon-based adsorbents have been developed for carbon capture applications, most existing materials exhibit limited CO2 adsorption capacity at flue gas-relevant [...] Read more.
Carbon dioxide emissions, particularly from large point sources such as fossil-fuel power plants, represent a primary driver of global warming. Although various carbon-based adsorbents have been developed for carbon capture applications, most existing materials exhibit limited CO2 adsorption capacity at flue gas-relevant partial pressures and are susceptible to interference from impurity components. In this study, a series of nitrogen-doped carbons was prepared from commercial phenolic resin and melamine via a two-step carbonization–activation process. The effects of precursor-to-dopant ratio and thermal conditions on CO2 adsorption were systematically investigated. The results indicated that CO2 uptake was influenced by specific surface area, nitrogen content, micropore volume, and total pore volume, with a maximum adsorption capacity of 2.455 mmol·g−1 and selectivity over 28 at 25 °C and 1 bar. The series also exhibited excellent cycling stability (<1% loss after 5 cycles) and fast kinetics (>90% uptake within 3 min), suggesting its potential applicability in flue gas CO2 capture. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Figure 1

15 pages, 2135 KB  
Article
Novel Synthesis of Phosphorus-Doped Porous Carbons from Lotus Petiole Using Sodium Phytate for Selective CO2 Capture
by Yue Zhi, Jiawei Shao, Junting Wang, Xiaohan Liu, Qiang Xiao, Muslum Demir, Utku Bulut Simsek, Linlin Wang and Xin Hu
Molecules 2025, 30(19), 3990; https://doi.org/10.3390/molecules30193990 - 5 Oct 2025
Viewed by 904
Abstract
Developing sustainable and high-performance sorbents for efficient CO2 capture is essential for mitigating climate change and reducing industrial emissions. In this study, phosphorus-doped porous carbons (LPSP-T) were synthesized via a one-step activation–doping strategy using lotus petiole biomass as a precursor and sodium [...] Read more.
Developing sustainable and high-performance sorbents for efficient CO2 capture is essential for mitigating climate change and reducing industrial emissions. In this study, phosphorus-doped porous carbons (LPSP-T) were synthesized via a one-step activation–doping strategy using lotus petiole biomass as a precursor and sodium phytate as a dual-function activating and phosphorus-doping agent. The simultaneous activation and phosphorus incorporation at various temperatures (650–850 °C) under a nitrogen atmosphere produced carbons with tailored textural properties and surface functionalities. Among them, LPSP-700 exhibited the highest specific surface area (525 m2/g) and a hierarchical porous structure, with abundant narrow micropores (<1 nm) and phosphorus-containing surface groups that synergistically enhanced CO2 capture performance. The introduction of P functionalities not only improved the surface polarity and binding affinity toward CO2 but also promoted the formation of a well-connected pore network. As a result, LPSP-700 delivered a CO2 uptake of 2.51 mmol/g at 25 °C and 1 bar (3.34 mmol/g at 0 °C), along with a high CO2/N2 selectivity, fast CO2 adsorption kinetics and moderate isosteric heat of adsorption (Qst). Furthermore, the dynamic CO2 adsorption capacity (0.81 mmol/g) was validated by breakthrough experiments, and cyclic adsorption–desorption tests revealed excellent stability with negligible loss in performance over five cycles. Correlation analysis revealed pores < 2.02 nm as the dominant contributors to CO2 uptake. Overall, this work highlights sodium phytate as an effective dual-role agent for simultaneous activation and phosphorus doping and validates LPSP-700 as a sustainable and high-performance sorbent for CO2 capture under post-combustion conditions. Full article
(This article belongs to the Special Issue Porous Carbons for CO2 Adsorption and Capture)
Show Figures

Graphical abstract

15 pages, 8527 KB  
Article
Breaking Redox Barriers in Lithium-Oxygen Batteries via Multiscale Architecture of Pyridinic Nitrogen-Doped Carbon-Encapsulated Cobalt Catalysts
by Yinkun Gao, Mingyang Liu, Yongqing Wan, Shuyun Guan, Yiman Ma, Xiaojie Xu, Yongming Zhu and Xudong Li
Catalysts 2025, 15(10), 923; https://doi.org/10.3390/catal15100923 - 28 Sep 2025
Viewed by 802
Abstract
Lithium-oxygen batteries (LOBs) are limited by sluggish oxygen redox kinetics and cathode instability. Herein, we report a cobalt particle catalyst encapsulated in nitrogen-doped carbon (Co@NC) with a three-dimensional hierarchical architecture, synthesized via a chitosan-derived hierarchical porous carbon framework. This innovative design integrates uniformly [...] Read more.
Lithium-oxygen batteries (LOBs) are limited by sluggish oxygen redox kinetics and cathode instability. Herein, we report a cobalt particle catalyst encapsulated in nitrogen-doped carbon (Co@NC) with a three-dimensional hierarchical architecture, synthesized via a chitosan-derived hierarchical porous carbon framework. This innovative design integrates uniformly dispersed ultra-thin carbon shells (11.7 nm), pyridinic nitrogen doping, and Co particles (1.41 μm) stabilized through carbon-support electronic coupling. The hierarchical porosity facilitates rapid O2/Li+ mass transport, while pyridinic N sites act as dual-function electrocatalytic centers for Li2O2 nucleation and charge transfer kinetics. Co@NC achieves 11,213 mAh g−1 at 200 mA g−1 (126.5% higher than nitrogen-doped carbon) and maintains 1.54 V overpotential (500 mAh g−1). These metrics outperform benchmark catalysts, addressing kinetic and stability challenges in LOBs. The study advances electrocatalyst design by integrating structural optimization, heteroatom doping, and electronic coupling strategies for high-performance metal–air batteries. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

28 pages, 5785 KB  
Review
From Thermosetting Resins to Energy Devices: A Review on Polybenzoxazine-Derived Materials for Supercapacitors
by Shakila Parveen Asrafali, Thirukumaran Periyasamy and Jaewoong Lee
Batteries 2025, 11(9), 345; https://doi.org/10.3390/batteries11090345 - 19 Sep 2025
Cited by 1 | Viewed by 1100
Abstract
Polybenzoxazines (PBZs) have garnered significant attention as a versatile class of precursors for the development of advanced carbon-based materials, particularly in the field of electrochemical energy storage. This review comprehensively examines recent progress in the synthesis, structural design, and application of polybenzoxazine-derived materials [...] Read more.
Polybenzoxazines (PBZs) have garnered significant attention as a versatile class of precursors for the development of advanced carbon-based materials, particularly in the field of electrochemical energy storage. This review comprehensively examines recent progress in the synthesis, structural design, and application of polybenzoxazine-derived materials for supercapacitor electrodes. Owing to their intrinsic nitrogen content, tunable functionality, and excellent thermal and mechanical stability, polybenzoxazines serve as ideal precursors for producing nitrogen-doped porous carbons with high surface areas and desirable electrochemical properties. This review discusses the influence of molecular design, polymerization conditions, and carbonization parameters on the resulting microstructure and performance of the materials. Furthermore, the electrochemical behavior of these materials in both electric double-layer capacitors (EDLCs) and pseudocapacitors is analyzed in detail. Challenges such as optimizing pore architecture, improving conductivity, and achieving scalable synthesis are also addressed. This article highlights emerging trends and offers perspectives on the future development of polybenzoxazine-derived materials for next-generation high-performance supercapacitors. Full article
Show Figures

Figure 1

14 pages, 4696 KB  
Article
Efficient Photocatalytic Reduction of Cr(VI) on N-Doped Sludge/Cellulose-Derived Porous Carbon Using Synergistic Experimental–Deep Learning Approach
by Na Huang, Shengwen Chen and Wanhe Du
Separations 2025, 12(9), 247; https://doi.org/10.3390/separations12090247 - 9 Sep 2025
Cited by 1 | Viewed by 874
Abstract
The photocatalytic reduction of hexavalent chromium (Cr(VI)) in wastewater represents a critical environmental challenge, given its high toxicity and mobility in wastewater. Conventional optimization methods relying on repetitive batch experiments with excessive reagent consumption. Herein, we proposed a synergistic experimental–deep learning approach to [...] Read more.
The photocatalytic reduction of hexavalent chromium (Cr(VI)) in wastewater represents a critical environmental challenge, given its high toxicity and mobility in wastewater. Conventional optimization methods relying on repetitive batch experiments with excessive reagent consumption. Herein, we proposed a synergistic experimental–deep learning approach to realize efficient photocatalytic reduction of Cr(VI). Sludge and cellulose precursors were used to prepare N-doped porous carbon through a green fabrication method at low temperature. After optimizing the composition and experimental factors, the removal efficiency of Cr(VI) could reach 92.7% after visible light irradiation in an acidic environment. The high efficiency originated from the coupled adsorption and photocatalytic mechanism. Innovatively, after comparing three algorithms, TCN and Transformer were employed to predict the desirable removal efficiency with <5% prediction error under different reaction conditions. This work highlights the novel experimental–deep learning method for heavy metal remediation using N-doped waste-derived porous carbon. Full article
Show Figures

Figure 1

15 pages, 3020 KB  
Article
Enhanced Electrocatalytic Activity for ORR Based on Synergistic Effect of Hierarchical Porosity and Co-Nx Sites in ZIF-Derived Heteroatom-Doped Carbon Materials
by Yan Yang, A-Min Tan, Qiu-Xuan Ren and Gai Zhang
C 2025, 11(3), 70; https://doi.org/10.3390/c11030070 - 8 Sep 2025
Viewed by 1580
Abstract
The hierarchical porosity and active sites of porous carbon materials have significant impacts on the oxygen reduction reaction (ORR) process. The heteroatom-doped porous carbon materials (Z67-900, Z8-900, Z11-900, Z12-900) were synthesized by pyrolysis of ZIFs to reveal the synergistic effect of hierarchical porosity [...] Read more.
The hierarchical porosity and active sites of porous carbon materials have significant impacts on the oxygen reduction reaction (ORR) process. The heteroatom-doped porous carbon materials (Z67-900, Z8-900, Z11-900, Z12-900) were synthesized by pyrolysis of ZIFs to reveal the synergistic effect of hierarchical porosity and Co-Nx sites. The structures of prepared materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectra, and nitrogen adsorption. The results of electrocatalytic performance show that Z67-900 has the best performance among the four materials prepared. The onset potential (E0) of Z67-900 is close to commercial Pt/C (20%), and the half-wave potential (E1/2) of Z67-900 is 80 mV positive than that of Pt/C in an O2-saturated 0.1 M KOH solution (1600 rpm) with sweep rate of 5 mV·s−1. Moreover, Z67-900 has better methanol resistance. The hierarchical pore structure of Z67-900 facilitates mass transfer, while the Co-Nx sites provide active catalytic centers. This study provides a solid foundation for the rational design of highly efficient ZIF-derived heteroatom-doped catalysts. Full article
(This article belongs to the Section Carbon Materials and Carbon Allotropes)
Show Figures

Graphical abstract

13 pages, 1743 KB  
Article
Pd Nanoparticles Confined by Nitrogen-Doped Carbon Architecture Derived from Zeolitic Imidazolate Frameworks for Remarkable Hydrogen Evolution from Formic Acid Dehydrogenation
by Jun Wang, Haotian Qin, Mingquan Liu, Siyuang Tang, Linlin Xu, Xiang Ding and Fuzhan Song
Catalysts 2025, 15(9), 852; https://doi.org/10.3390/catal15090852 - 4 Sep 2025
Cited by 2 | Viewed by 1091
Abstract
The development of heterogeneous nanocatalysts with high performance is essential for improving hydrogen production through formic acid dehydrogenation, but challenging. Herein, highly dispersed Pd nanoparticles (NPs) were successfully immobilized on porous nitrogen-doped carbon cages (PNCCs) derived from zeolitic imidazole frameworks. By virtue of [...] Read more.
The development of heterogeneous nanocatalysts with high performance is essential for improving hydrogen production through formic acid dehydrogenation, but challenging. Herein, highly dispersed Pd nanoparticles (NPs) were successfully immobilized on porous nitrogen-doped carbon cages (PNCCs) derived from zeolitic imidazole frameworks. By virtue of the synergistic effect, the optimized Pd/PNCC nanocatalytic systems exhibit an excellent catalytic kinetics toward catalyzing FA dehydrogenation with a turnover frequency (TOF) value as high as 3174 h−1 at 323 K, which is 59 times relative to that of Pd nanoparticles. The exceptional activity may be ascribed to the PNCC solid support may induce a strong electronic metal–support interaction to optimize the electron configuration of Pd active sites and accelerate the kinetics of O-H bond cleavage, resulting in an enhanced catalytic performance toward FA dehydrogenation. This work will supply a novel strategy for the development of supported nanocatalysts with high performance for tremendous catalytic applications in the future. Full article
Show Figures

Figure 1

42 pages, 1506 KB  
Review
Direct Air Capture Using Pyrolysis and Gasification Chars: Key Findings and Future Research Needs
by Wojciech Jerzak, Bin Li, Dennys Correia da Silva and Glauber Cruz
Energies 2025, 18(15), 4120; https://doi.org/10.3390/en18154120 - 3 Aug 2025
Viewed by 1572
Abstract
Direct Air Capture (DAC) is gaining worldwide attention as a negative emissions strategy critical to meeting climate targets. Among emerging DAC materials, pyrolysis chars (PCs) and gasification chars (GCs) derived from biomass present a promising pathway due to their tunable porosity, surface chemistry, [...] Read more.
Direct Air Capture (DAC) is gaining worldwide attention as a negative emissions strategy critical to meeting climate targets. Among emerging DAC materials, pyrolysis chars (PCs) and gasification chars (GCs) derived from biomass present a promising pathway due to their tunable porosity, surface chemistry, and low-cost feedstocks. This review critically examines the current state of research on the physicochemical properties of PCs and GCs relevant to CO2 adsorption, including surface area, pore structure, surface functionality and aromaticity. Comparative analyses show that chemical activation, especially with KOH, can significantly improve CO2 adsorption capacity, with some PCs achieving more than 308 mg/g (100 kPa CO2, 25 °C). Additionally, nitrogen and sulfur doping further improves the affinity for CO2 through increased surface basicity. GCs, although inherently more porous, often require additional modification to achieve a similar adsorption capacity. Importantly, the long-term stability and regeneration potential of these chars remain underexplored, but are essential for practical DAC applications and economic viability. The paper identifies critical research gaps related to material design and techno-economic feasibility. Future directions emphasize the need for integrated multiscale research that bridges material science, process optimization, and real-world DAC deployment. A synthesis of findings and a research outlook are provided to support the advancement of carbon-negative technologies using thermochemically derived biomass chars. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

14 pages, 2965 KB  
Article
Interface-Engineered RuP2/Mn2P2O7 Heterojunction on N/P Co-Doped Carbon for High-Performance Alkaline Hydrogen Evolution
by Wenjie Wu, Wenxuan Guo, Zeyang Liu, Chenxi Zhang, Aobing Li, Caihua Su and Chunxia Wang
Materials 2025, 18(13), 3065; https://doi.org/10.3390/ma18133065 - 27 Jun 2025
Cited by 2 | Viewed by 793
Abstract
Developing efficient and durable electrocatalysts for the alkaline hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production. Herein, we report a novel RuP2/Mn2P2O7 heterojunction anchored on a three-dimensional nitrogen and phosphorus co-doped porous carbon (RuP [...] Read more.
Developing efficient and durable electrocatalysts for the alkaline hydrogen evolution reaction (HER) is crucial for sustainable hydrogen production. Herein, we report a novel RuP2/Mn2P2O7 heterojunction anchored on a three-dimensional nitrogen and phosphorus co-doped porous carbon (RuP2/Mn2P2O7/NPC) framework as a high-performance HER catalyst, synthesized via a controlled pyrolysis–phosphidation strategy. The heterostructure achieves uniform dispersion of ultrafine RuP2/Mn2P2O7 heterojunctions with well-defined interfaces. Furthermore, phosphorus doping restructures the electronic configuration of Mn and Ru species at the RuP2/Mn2P2O7 heterointerface, enabling enhanced catalytic activity through the accelerated electron transfer and kinetics of the HER. This RuP2/Mn2P2O7/NPC catalyst exhibits exceptional HER activity with 1 M KOH, requiring only 69 mV of overpotential to deliver 10 mA·cm−2 and displaying a small Tafel slope of 69 mV·dec−1, rivaling commercial 20% Pt/C. Stability tests reveal negligible activity loss over 48 h, underscoring the robustness of the heterostructure. The RuP2/Mn2P2O7 heterojunction demonstrates markedly reduced overpotentials for the electrochemical HER process, highlighting its enhanced catalytic efficiency and improved cost-effectiveness compared to the conventional catalytic systems. This work establishes a strategy for designing a transition metal phosphide heterostructure through interfacial electronic modulation, offering broad implications for energy conversion technologies. Full article
Show Figures

Figure 1

14 pages, 2930 KB  
Article
Bi-Interfacial Electron Modulation in Co9S8/FeCoS2 Heterostructures Anchored on Bamboo-Derived Carbon Quasi-Aerogel for High-Performance Hydrogen Evolution
by Wenjing He, Jianliang Cao, Xinliang Zhou, Ning Zhang, Yuzhu Qi, Jin Li, Naiteng Wu and Xianming Liu
Gels 2025, 11(6), 390; https://doi.org/10.3390/gels11060390 - 25 May 2025
Cited by 1 | Viewed by 931
Abstract
Hydrogen energy as a sustainable alternative to fossil fuels necessitates the development of cost-effective and efficient electrocatalysts for the hydrogen evolution reaction (HER). While transition metal sulfides have shown promise, their practical application is hindered by insufficient active sites, poor conductivity, and suboptimal [...] Read more.
Hydrogen energy as a sustainable alternative to fossil fuels necessitates the development of cost-effective and efficient electrocatalysts for the hydrogen evolution reaction (HER). While transition metal sulfides have shown promise, their practical application is hindered by insufficient active sites, poor conductivity, and suboptimal hydrogen adsorption kinetics. Herein, we present a heterointerface engineering strategy to construct Co9S8/FeCoS2 heterojunctions anchored on bamboo fiber-derived nitrogen-doped porous carbon (Co9S8/FeCoS2/BFPC) through hydrothermal synthesis and subsequent carbonization. BFPC carbon quasi-aerogel support not only offers a high surface area and conductive pathways but also enables uniform dispersion of active sites through nitrogen doping, which simultaneously optimizes electron transfer and mass transport. Experimental results demonstrate exceptional HER performance in alkaline media, achieving a low overpotential of 86.6 mV at 10 mA cm−2, a Tafel slope of 68.87 mV dec−1, and remarkable stability over 73 h of continuous operation. This work highlights the dual advantages of heterointerface design and carbon substrate functionalization, providing a scalable template for developing noble metal-free electrocatalysts for energy conversion technologies. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

19 pages, 8747 KB  
Article
Zinc-Decorated and Nitrogen-Functionalized Hierarchical Porous Carbons for Carbon Dioxide Capture
by Yu-Chun Chiang, Wei-Ting Chin and I-Chang Chu
Appl. Sci. 2025, 15(10), 5743; https://doi.org/10.3390/app15105743 - 21 May 2025
Viewed by 1029
Abstract
This study developed a highly facile method to synthesize Zn-decorated and nitrogen-doped hierarchical porous carbons for carbon dioxide (CO2) adsorption. Zeolitic imidazolate framework-8 (ZIF-8) was used as the raw material, which was subjected to a thermal treatment to obtain ZIF-8-derived carbons [...] Read more.
This study developed a highly facile method to synthesize Zn-decorated and nitrogen-doped hierarchical porous carbons for carbon dioxide (CO2) adsorption. Zeolitic imidazolate framework-8 (ZIF-8) was used as the raw material, which was subjected to a thermal treatment to obtain ZIF-8-derived carbons (ZDCs) in order to develop nanocarbons with a stable framework structure, a high CO2 adsorption capacity, and high selectivity under normal pressure. The crystallinity evolution of the samples changed from the typical ZIF-8 structure to having features of graphite carbons upon heating. The average particle sizes of the products were between 34 and 105 nm, and the specific surface areas ranged from 618 to 1862 m2/g. The nitrogen and zinc contents gradually decreased with increasing carbonization temperatures, but the changes in the distributions of the functional groups were different. The interactions between CO2 and the ZDCs were significantly enhanced, resulting in a higher isosteric heat of adsorption. The ZIF-8 carbonized at 1123 K exhibited the highest CO2 uptake, i.e., 3.57 mmol/g at 298 K and 101.3 kPa, while higher CO2 uptakes at 15 kPa occurred on the ZIF-8 carbonized at 923 and 1023 K due to their high isosteric heat of adsorption of CO2. The higher adsorption selectivity of Z8-650 for CO2 over N2 may be due to its higher V<0.7nm/Vmi ratio and nitrogen and zinc contents. Consequently, the micropore area ratio and surface functional groups primarily determined the CO2 adsorption capacity at 15 kPa. In addition, an appropriate metal Zn to Zn2+ ratio may have a positive effect on CO2 adsorption. On the other hand, the ultramicropore volume ratio, micropore volume ratio, micropore area, and SSA played more significant roles at 101.3 kPa of pressure. Full article
Show Figures

Figure 1

Back to TopTop