Enhanced Electrocatalytic Activity for ORR Based on Synergistic Effect of Hierarchical Porosity and Co-Nx Sites in ZIF-Derived Heteroatom-Doped Carbon Materials
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. The Preparation of ZIFs
2.3. Synthesis of ZIF-Derived Heteroatom-Doped Porous Carbon Materials
2.4. Characterization
2.5. Evaluation of the Electrocatalytic Activity
3. Results and Discussion
3.1. Analysis of XRD Curves and Raman Spectra
3.2. Analysis of Infrared Spectroscopy
3.3. The Morphology
3.4. X-Ray Photoelectron Spectroscopy
3.5. The Specific Surface and Pore Size Analysis
3.6. Effects of Co/N-Doped Porous Carbon for ORR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ismail, A.; Kee, Y.W. Investigation on voltage loss mechanism for direct methanol fuel cell. Energy Rep. 2023, 10, 535–543. [Google Scholar] [CrossRef]
- Alias, M.S.; Kamarudin, S.K.; Zainoodin, A.M. Active direct methanol fuel cell: An overview. Int. J. Hydrogen Energy 2020, 45, 19620–19641. [Google Scholar] [CrossRef]
- Falcão, D.S.; Oliveira, V.B.; Rangel, C.; Pinto, A. Review on micro-direct methanol fuel cells. Renew. Sustain. Energy Rev. 2014, 34, 58–70. [Google Scholar] [CrossRef]
- Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J.K. Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction. Chem. Rev. 2018, 118, 2302–2312. [Google Scholar] [CrossRef]
- Liu, M.; Zhao, Z.; Duan, X.; Huang, Y. Nanoscale Structure Design for High-Performance Pt-Based ORR Catalysts. Adv. Mater. 2019, 31, 1802234. [Google Scholar] [CrossRef]
- Antolini, E. The oxygen reduction on Pt-Ni and Pt-Ni-M catalysts for low-temperature acidic fuel cells: A review. Int. J. Energy Res. 2018, 42, 3747–3769. [Google Scholar] [CrossRef]
- Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction. Science 2009, 323, 760–764. [Google Scholar] [CrossRef]
- Yang, L.; Shui, J.; Du, L.; Shao, Y.; Liu, J.; Dai, L.; Hu, Z. Carbon-Based Metal-Free ORR Electrocatalysts for Fuel Cells: Past, Present, and Future. Adv. Mater. 2019, 31, 1804799. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, H.L.; Guo, S. Towards high-efficiency nano electrocatalysts for oxygen reduction through engineering advanced carbon nanomaterials. Chem. Soc. Rev. 2016, 45, 1273–1307. [Google Scholar] [CrossRef]
- Nagappan, S.; Duraivel, M.; Hira, S.A.; Prabakar, K.; Ha, C.-S.; Joo, S.H.; Nam, K.M.; Park, K.H. Heteroatom-doped nanomaterials/core–shell nanostructure based electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2022, 10, 987–1021. [Google Scholar] [CrossRef]
- Arif, M.; Mahsud, A.; Muhmood, T.; Deepak, F.L. Design, synthesis, and electronic structure modulation of ORR electrocatalysts. J. Environ. Chem. Eng. 2024, 12, 113417. [Google Scholar] [CrossRef]
- Xue, B.; Xu, J.; Xiao, R. Synthesis of Hierarchically Porous Carbon with Tailored Porosity and Electrical Conductivity Derived from Hard−Soft Carbon Precursors for Enhanced Capacitive Performance. ACS Sustain. Chem. Eng. 2021, 9, 15925–15934. [Google Scholar] [CrossRef]
- Wu, M.; Qiao, J.; Liu, Y.; Zhang, J.; Zhou, X.; Li, K. A large-scale synthesis of heteroatom (N and S) co-doped hierarchically porous carbon (HPC) derived from polyquaternium for superior oxygen reduction reactivity. Green Chem. 2016, 18, 2699–2709. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; He, Y.; Liu, Y.; Xu, C. Highly performed nitrogen-doped porous carbon electrocatalyst for oxygen reduction reaction prepared by a simple and slight regulation in hydrolyzing process of ZIF-8. J. Solid State Chem. 2021, 302, 122415. [Google Scholar] [CrossRef]
- Chu, Y.; Jiang, Q.L.; Chang, L.Y.; Jin, Y.H.; Wang, R.Z. Cobalt nanoparticles embedded in nitrogen-doped porous carbon derived the electrodeposited ZnCo-ZIF for high-performance ORR electrocatalysts. J. Electroanal. Chem. 2023, 928, 117041. [Google Scholar] [CrossRef]
- Li, Z.; Yu, H.; Zhang, Y.; Wu, D.; Bai, Y.; Liu, S.; Zhao, H. An attempt to confirm the contribution to ORR activity of different N-species in M-N-C (M = Fe, Co, Ni) catalysts with XPS analysis. Chem. Commun. 2023, 59, 4535–4538. [Google Scholar] [CrossRef]
- Yong, C.; Xu, Y.; Yu, H.; Wu, P.; Wang, J.; Shen, L.L.; Zhang, G.R.; Mei, D. Toward quantification of active site density and size-dependent ORR activity of ZIF-derived carbons in alkaline electrolyte. J. Catal. 2023, 428, 115148. [Google Scholar] [CrossRef]
- Radwan, A.; Jin, H.; Liu, B.; Chen, Z.; Wu, Q.; Zhao, X.; He, D.; Mu, S. 3D-ZIF scaffold derived carbon encapsulated iron nitride as a synergistic catalyst for ORR and zinc-air battery cathodes. Carbon 2021, 171, 368–375. [Google Scholar] [CrossRef]
- Lin, M.L.; Huang, C.C.; Lo, M.Y.; Mou, C.Y. Well-Ordered Mesoporous Carbon Thin Film with Perpendicular Channels: Application to Direct Methanol Fuel Cell. J. Phys. Chem. C 2008, 112, 867–873. [Google Scholar] [CrossRef]
- Huang, Z.Y.; Guo, X.S.; Tang, Y.; Ye, J.S.; Liu, H.Y.; Xiao, X.Y. Metalloporphyrin doped macroporous ZIF-8 metal-organic framework derived M-Nx carbon material for oxygen reduction reactions. J. Alloys Compd. 2023, 947, 169441. [Google Scholar] [CrossRef]
- Bugday, N.; Altin, S.; Bulut, F.; Altin, E.; Yasar, S. Boron-doped porous carbon material derived from ZIF-11: Investigation of cotton fabric supercapacitor and Li-ion battery performances. Int. J. Energy Res. 2022, 46, 7732–7748. [Google Scholar] [CrossRef]
- He, H.; Lei, Y.; Liu, S.; Thummavichai, K.; Zhu, Y.; Wang, N. Tunable active-sites of Co-nanoparticles encapsulated in carbon nanofiber as high performance bifunctional OER/ORR electrocatalyst. J. Colloid Interface Sci. 2023, 630, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Liu, M.Y.; Li, Y.; Yuan, L.; Zhang, P.; Cai, Z.; Chen, H.; Zou, J.L. ZIF-8@ZIF-67 derived ZnCo2O4@nitrogenedoped carbon/carbon nanotubes wrapped by a carbon layer: A stable oxygen reduction catalyst with a competitive strength in acid media. Mater. Today Energy 2021, 19, 100574. [Google Scholar] [CrossRef]
- Wang, T.; He, Y.; Liu, Y.; Guo, F.; Li, X.; Chen, H.; Li, H.; Lin, Z. A ZIF-triggered rapid polymerization of dopamine renders Co/N-codoped cage-in-cage porous carbon for highly efficient oxygen reduction and evolution. Nano Energy 2021, 79, 105487. [Google Scholar] [CrossRef]
- Amiinu, I.S.; Liu, X.; Pu, Z.; Li, W.; Li, Q.; Zhang, J.; Tang, H.; Zhang, H.; Mu, S. From 3D ZIF Nanocrystals to Co-Nx/C Nanorod Array Electrocatalysts for ORR, OER, and Zn-Air Batteries. Adv. Funct. Mater. 2018, 28, 1704638. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhao, X.; Miao, X.; Yang, W.; Wang, C.; Pan, Q. ZIF-L-Co@carbon fiber paper composite derived Co/Co3O4@C electrocatalyst for ORR in alkali/acidic media and overall seawater splitting. Int. J. Hydrogen Energy 2020, 45, 33028–33036. [Google Scholar] [CrossRef]
- Mokhtarnejad, M.; Ribeiro, E.L.; Almasi, S.; Khomami, B. Role of laser ablation synthesis parameters in ORR electrocatalytic performance of MOF-derived hybrid nanocomposites. RSC Adv. 2025, 15, 25707–25716. [Google Scholar] [CrossRef]
- Cui, J.; Cao, X.; Wang, X.; Liu, J.; Yuan, N.; Ding, J. Self-template synthesized ZIF-derived polyhedron-connected porous Co–N–C as an oxygen reduction catalyst for Zn–air batteries. N. J. Chem. 2025, 49, 12243–12251. [Google Scholar] [CrossRef]
- Li, Y.; Hu, Z.; Sheng, M.; Gan, C.; Hu, H.; Sun, B.; Wang, X.; Jiang, H. ZIF-67 template-assisted porous carbon based RuCo synergistic effect for efficient NH3BH3 hydrolysis & 4-nitrophenol reduction: Effect of morphology and pore structure adjustment. Int. J. Hydrogen Energy 2023, 48, 36795–36809. [Google Scholar]
- Mohamud, M.A.; Yurtcan, A.B. Platinum decorated on ZIF-8 based nitrogen-doped hierarchical porous carbon composites for PEM fuel cells. J. Phys. Chem. Solids 2022, 171, 111030. [Google Scholar] [CrossRef]
- Zeng, H.J.; Wang, W.; Li, J.; Luo, J.; Chen, S.L. In situ generated dual template method for Fe/N/S Co-doped hierarchically porous honeycomb carbon for high-performance oxygen reduction. ACS Appl. Mater. Interfaces 2018, 10, 8721–8729. [Google Scholar] [CrossRef]
- Shu, J.H.; Niu, Q.J.; Wang, N.N.; Nie, J.; Ma, G.P. Alginate derived Co/N doped hierarchical porous carbon microspheres for efficient oxygen reduction reaction. Appl. Surf. Sci. 2019, 485, 520–528. [Google Scholar] [CrossRef]
- Qiao, M.; Wang, Y.; Wang, Q.; Hu, G.; Mamat, X.; Zhang, S.; Wang, S. Hierarchically Ordered Porous Carbon with Atomically Dispersed FeN4 for Ultraefficient Oxygen Reduction Reaction in Proton-Exchange Membrane Fuel Cells. Angew. Chem. Int. Ed. 2020, 59, 2688. [Google Scholar] [CrossRef]
- Zhao, Y.; Lai, Q.; Zhu, J.; Zhong, J.; Tang, Z.; Luo, Y.; Liang, Y. Controllable construction of core-shell polymer@zeolitic imidazolate frameworks fiber derived heteroatom-doped carbon nanofiber network for efficient oxygen electrocatalysis. Small 2018, 14, 1704207. [Google Scholar] [CrossRef]
- Razzaq, A.A.; Yuan, X.; Chen, Y.; Hu, J.; Mu, Q.; Ma, Y.; Zhao, X.; Miao, L.; Ahn, J.-H.; Peng, Y. Anchoring MOF-derived CoS2 on sulfurized polyacrylonitrile nanofibers for high areal capacity lithium-sulfur batteries. J. Mater. Chem. A 2020, 8, 1298–1306. [Google Scholar] [CrossRef]
- Guo, Z.; Ma, Y.; Zhao, Y.; Song, Y.; Tang, S.; Wang, Q.; Li, W. Trimetallic ZIFs-derived porous carbon as bifunctional electrocatalyst for rechargeable Zn-air battery. J. Power Sources 2022, 542, 231723. [Google Scholar] [CrossRef]
- Liu, Z.; Ye, D.; Zhu, X.; Wang, S.; Zou, Y.; Lan, L.; Chen, R.; Yang, Y.; Liao, Q. ZIF-67-derived Co nanoparticles embedded in N-doped porous carbon composite interconnected by MWCNTs as highly efficient ORR electrocatalysts for a flexible direct formate fuel cell. Chem. Eng. J. 2022, 432, 134192. [Google Scholar] [CrossRef]
- Ma, S.; Han, W.; Han, W.; Dong, F.; Tang, Z. Recent advances and future perspectives in MOF-derived single atom catalysts and their application: A review. J. Mater. Chem. A 2023, 11, 3315–3363. [Google Scholar] [CrossRef]
- Wu, F.; Pan, C.; He, C.T.; Han, Y.; Ma, W.; Wei, H.; Ji, W.; Chen, W.; Mao, J.; Yu, P.; et al. Single-Atom Co-N4 Electrocatalyst Enabling Four-Electron Oxygen Reduction with Enhanced Hydrogen Peroxide Tolerance for Selective Sensing. J. Am. Chem. Soc. 2020, 142, 16861–16867. [Google Scholar] [CrossRef]
- Liu, D.; Li, J.C.; Ding, S.; Lyu, Z.; Feng, S.; Tian, H.; Huyan, C.; Xu, M.; Li, T.; Du, D. 2D Single-atom catalyst with optimized iron sites produced by thermal melting of metal-organic frameworks for oxygen reduction reaction. Small Methods 2020, 4, 1900827. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, M.; Wang, P.; Li, K.; Li, S.; Zhang, Z.; He, X.; Duan, Y. Co/N-codoped carbon nanotube hollow polyhedron hybrid derived from salt-encapsulated core-s hell ZIF-8@ZIF-67 for efficient oxygen reduction reaction. J. Alloys Compd. 2022, 904, 164083. [Google Scholar] [CrossRef]
- Ju, Y.; Huang, W.; Gao, Z.; Liu, M.; Huang, N. Research on ORR and OER performance of Co based catalyst from ZIF-67. Appl. Mater. Today 2025, 42, 102576. [Google Scholar] [CrossRef]
- Xili, D.; Zhou, Q.; Zhang, L. Well-defined Co-N-C catalyst based on ZIF-67 in mixed solvents with low amount of ligands for efficient oxygen reduction reaction. J. Alloys Compd. 2022, 911, 165072. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, C.; Cai, M.; Cai, Y.; Ju, H.; Hu, S.; Zhang, M. Porous Co-N-C ORR catalysts of high performance synthesized with ZIF-67 templates. Mater. Res. Bull. 2019, 114, 161–169. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, S.; Zhang, N.; Lin, G.; Wang, R.; Yang, M.; Li, K. A carbon catalyst doped with Co and N derived from the metal-organic framework hybrid (ZIF-8@ZIF-67) for efficient oxygen reduction reaction. New Carbon Mater. 2023, 38, 200–209. [Google Scholar] [CrossRef]
- Liu, J.; Yu, J.; Wang, X.; Cheng, M.; Sun, S.; Hu, S.; Li, C.; Wang, Z. Core-Shell ZIF-8@ZIF-67-Derived Cobalt Nanoparticle-Embedded Nanocage Electrocatalyst with Excellent Oxygen Reduction Performance for Zn–Air Batteries. ACS Appl. Mater. Interfaces 2023, 15, 59482–59493. [Google Scholar] [CrossRef]
- Cai, R.; Jiang, J.; Diao, P.; Wei, Z.; Yao, C.; Zhou, B.; Zhang, H.; Liu, W.; Ma, Z. Highly dispersed ZIF-67-derived co-NC confined in carbon pores enables efficient oxygen reduction in alkaline media. J. Electroanal. Chem. 2025, 989, 119212. [Google Scholar] [CrossRef]
- Li, J.; Lai, G.; Li, L.; Zhang, W. Enhanced bifunctional electrocatalysis of Co@NC@NCNT derived from ZIF-67 for advanced rechargeable Zn-air batteries. Colloids Surf. Physicochem. Eng. Asp. 2025, 726, 137772. [Google Scholar] [CrossRef]
- Zhang, Y.; Du, Z.; Mei, H.; Song, B.; Gou, Q.; Hu, X.; Qi, D.; Gao, R.; Sun, X. Abundant active-site engineering enables porous Co-N-C electrocatalysts towards superior oxygen reduction reaction activity. Nanoscale 2025, 17, 15720. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, J.; Xu, Q.; Zhang, F.; Sun, Q.; Xie, H. Noble-metal-free Co-N-C catalyst derived from cellulose-based poly(ionic liquid)s for highly efficient oxygen reduction reaction. Int. J. Biol. Macromol. 2023, 242, 125110. [Google Scholar] [CrossRef]
- Li, L.; Han, G.; Wen, Y.; Liu, Y.; Xiao, R.; Zhang, W.; Kong, F.; Du, L.; Ma, Y.; Zuo, P. Solvent effect to modulate nitrogen dopant in Co-N-C catalysts for oxygen reduction reaction acceleration. Fuel 2023, 345, 128199. [Google Scholar] [CrossRef]
Material | C (at%) | N (at%) | O (at%) | Co (at%) |
---|---|---|---|---|
ZIF-67 | 58 | 21.51 | 12.65 | 0.06 |
Z67-900 | 83.55 | 4.42 | 10.57 | 1.46 |
Precursor | E0/V (vs. RHE) a | E1/2/V (vs. RHE) b | Reference | |
---|---|---|---|---|
NC@GC-920 | ZIF-8@ZIF-67 | 0.95 | 0.85 | [41] |
CoNHPC-920 | ZIF-8@ZIF-67-NaCl | 0.97 | 0.87 | [41] |
ZIF-67–6 | ZIF-67 adsorbed with 2- methylimidazole | 0.90 | 0.83 | [42] |
Co-N-C-MT/EA | ZIF-67 | - | 0.81 | [43] |
Co-N-C-MT/EA | ZIF-67 | - | 0.81 | [43] |
Zn-Co-ZIF/GO-920 | ZIF-67/ZIF-8/graphene oxide | 0.914 | 0.807 | [44] |
Co-N@CNT-C800) | ZIF-8@ZIF-67 | - | 0.84 | [45] |
Co-N@CNT-C800) | ZIF-8@ZIF-67 | - | 0.84 | [45] |
CoPCN | ZIF-8@ZIF-67 | - | 0.885 | [46] |
CoNC-700@C | ZIF-67 on Ketjen black | 0.967 | 0.892 | [47] |
Co@NC@NCNT-750–10 | ZIF-67 | - | 0.821 | [48] |
Co–N–C-7% | ZIF-67 | - | 0.878 | [28] |
Cov-N-C850 | ZIF-67&ZIF-8-vb2 | 0.929 | 0.833 | [49] |
Co-N-C-850 | ZIF-67 on cellulosic poly(ionic liquid) | 0.827 | 0.74 | [50] |
Co-N-C-400 | ZnCo-ZIF | 0.915 | 0.785 | [51] |
Z67-900 | ZIF-67 | 0.90 | 0.80 | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Tan, A.-M.; Ren, Q.-X.; Zhang, G. Enhanced Electrocatalytic Activity for ORR Based on Synergistic Effect of Hierarchical Porosity and Co-Nx Sites in ZIF-Derived Heteroatom-Doped Carbon Materials. C 2025, 11, 70. https://doi.org/10.3390/c11030070
Yang Y, Tan A-M, Ren Q-X, Zhang G. Enhanced Electrocatalytic Activity for ORR Based on Synergistic Effect of Hierarchical Porosity and Co-Nx Sites in ZIF-Derived Heteroatom-Doped Carbon Materials. C. 2025; 11(3):70. https://doi.org/10.3390/c11030070
Chicago/Turabian StyleYang, Yan, A-Min Tan, Qiu-Xuan Ren, and Gai Zhang. 2025. "Enhanced Electrocatalytic Activity for ORR Based on Synergistic Effect of Hierarchical Porosity and Co-Nx Sites in ZIF-Derived Heteroatom-Doped Carbon Materials" C 11, no. 3: 70. https://doi.org/10.3390/c11030070
APA StyleYang, Y., Tan, A.-M., Ren, Q.-X., & Zhang, G. (2025). Enhanced Electrocatalytic Activity for ORR Based on Synergistic Effect of Hierarchical Porosity and Co-Nx Sites in ZIF-Derived Heteroatom-Doped Carbon Materials. C, 11(3), 70. https://doi.org/10.3390/c11030070