Breaking Redox Barriers in Lithium-Oxygen Batteries via Multiscale Architecture of Pyridinic Nitrogen-Doped Carbon-Encapsulated Cobalt Catalysts
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Electrocatalysts’ Synthesis
3.2.1. The Synthesis of Co@NC
3.2.2. The Synthesis of NC
3.2.3. The Synthesis of Co@NC-2h and Co@NC-6h
3.3. Characterization Techniques
3.3.1. Structural and Chemical Analysis
3.3.2. Li-O2 Cell Assembly and Testing
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Xiao, X.; Yan, A.; Sun, K.; Yu, J.; Tan, P. Breaking the Capacity Bottleneck of Lithium-Oxygen Batteries through Reconceptualizing Transport and Nucleation Kinetics. Nat. Commun. 2024, 15, 9952. [Google Scholar] [CrossRef]
- Yang, R.; Zhang, G.; Yu, H.; Zhang, D.; Lian, G.; Guo, Z.; Hou, C.; Yang, X.; Wang, N.; Dang, F. Electrocatalysis Synergism Motivated by Low Energy D-Orbitals at High Spin State for Long-Lifespan Li-O2 Batteries. Appl. Catal. B Environ. Energy 2025, 381, 125831. [Google Scholar] [CrossRef]
- Wang, P.; Zhao, D.; Zhang, P.; Hui, X.; Zhang, Z.; Wang, R.; Wang, C.; Ge, X.; Liu, X.; Li, Y.C.; et al. P-Block Element Modulated 1 T Phase MoS2 with Ru Lattice Grafting for High-Performance Li||O2 Batteries. Nat. Commun. 2025, 16, 1453. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.; Li, X.; Zhao, Y.; Han, G.; Lou, S.; Zhu, Y. Single-Atom Tailored Transition Metal Oxide Enhances d-p Hybridization in Catalytic Conversion for Lithium-Oxygen Batteries. Chem. Eng. J. 2024, 488, 151064. [Google Scholar] [CrossRef]
- Cao, D.; Hao, Y.; Wang, Y.; Bai, Y.; Li, Y.; Wang, X.; Chen, J.; Wu, C. Platinum Nanocrystals Embedded in Three-Dimensional Graphene for High-Performance Li–O2 Batteries. ACS Appl. Mater. Interfaces 2022, 14, 40921–40929. [Google Scholar] [CrossRef]
- Soltani, M.; Amin, H.M.A.; Cebe, A.; Ayata, S.; Baltruschat, H. Metal-Supported Perovskite as an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution: Substrate Effect. J. Electrochem. Soc. 2021, 168, 034504. [Google Scholar] [CrossRef]
- Wittmaier, D.; Wagner, N.; Friedrich, K.A.; Amin, H.M.A.; Baltruschat, H. Modified Carbon-Free Silver Electrodes for the Use as Cathodes in Lithium–Air Batteries with an Aqueous Alkaline Electrolyte. J. Power Sources 2014, 265, 299–308. [Google Scholar] [CrossRef]
- Guddehalli Chandrappa, S.; Karkera, G.; Gangadharappa, V.A.; Chen, D.; Caruso, R.A.; Annigere, S.P. KNi0.8Co0.2F3 as an Efficient Electrocatalyst for Nonaqueous Li–O2 Batteries. ACS Appl. Energy Mater. 2022, 5, 14680–14686. [Google Scholar] [CrossRef]
- Amin, H.M.A.; Baltruschat, H.; Wittmaier, D.; Friedrich, K.A. A Highly Efficient Bifunctional Catalyst for Alkaline Air-Electrodes Based on a Ag and Co3O4 Hybrid: RRDE and Online DEMS Insights. Electrochim. Acta 2015, 151, 332–339. [Google Scholar] [CrossRef]
- Xia, J.; Yin, S.; Yang, T.; Niu, Y.; Xiong, G.; Guan, X.; Li, N.; Yan, Y.; Han, F.; Hu, R.; et al. Synthesis of Co4N Nanoparticles via a Urea-Glass Route toward Bifunctional Cathode for High-Performance Li−O2 Batteries. J. Energy Storage 2023, 74, 109364. [Google Scholar] [CrossRef]
- Wang, P.; Ren, Y.; Wang, R.; Zhang, P.; Ding, M.; Li, C.; Zhao, D.; Qian, Z.; Zhang, Z.; Zhang, L.; et al. Atomically Dispersed Cobalt Catalyst Anchored on Nitrogen-Doped Carbon Nanosheets for Lithium-Oxygen Batteries. Nat. Commun. 2020, 11, 1576. [Google Scholar] [CrossRef] [PubMed]
- Meng, N.; Feng, Y.; Zhao, Z.; Lian, F. Boosting the ORR/OER Activity of Cobalt-Based Nano-Catalysts by Co 3d Orbital Regulation. Small 2024, 20, 2400855. [Google Scholar] [CrossRef]
- Wu, M.; Chen, Y.; Qian, Y.; Ye, X.; Wang, N.; Alodhayb, A.; Shi, Z. High-Performance 3d Ordered Hierarchically Interconnected Co@N-Doped Porous Carbon as an Efficient Electrocatalyst in Lithium-Oxygen Batteries. J. Power Sources 2025, 652, 237653. [Google Scholar] [CrossRef]
- Guo, K.; Bao, L.; Yu, Z.; Lu, X. Carbon Encapsulated Nanoparticles: Materials Science and Energy Applications. Chem. Soc. Rev. 2024, 53, 11100–11164. [Google Scholar] [CrossRef]
- Clarysse, J.; Silva, J.D.J.; Xing, Y.; Zhang, S.B.X.Y.; Docherty, S.R.; Yazdani, N.; Yarema, M.; Copéret, C.; Wood, V. Earth-Abundant Ni-Zn Nanocrystals for Efficient Alkyne Semihydrogenation Catalysis. Nat. Commun. 2025, 16, 4378. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Zhang, S.; Liu, J.; Jiang, Y.; Zhang, Y.; Wang, G.; Zhang, H. High-Performance Electrocatalytic Nitrate Reduction into Ammonia Using a Chitosan Regulated Co Nanocatalyst. Inorg. Chem. Front. 2024, 11, 8371–8376. [Google Scholar] [CrossRef]
- Huo, M.; Liang, Y.; Liu, W.; Zhang, X.; Qin, K.; Ma, Y.; Xing, Z.; Chang, J.; Zhu, G. Synergistically Promoting Oxygen Electrocatalysis through the Precise Integration of Atomically-Dispersed Fe Sites and Co Nanoparticles. Adv. Energy Mater. 2024, 2405155. [Google Scholar] [CrossRef]
- Luo, X.; Wei, X.; Wang, H.; Gu, W.; Kaneko, T.; Yoshida, Y.; Zhao, X.; Zhu, C. Secondary-Atom-Doping Enables Robust Fe–N–C Single-Atom Catalysts with Enhanced Oxygen Reduction Reaction. Nano-Micro Lett. 2020, 12, 163. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, X.; Yu, Y.; Zhou, K.; Ye, X.; Zhang, A.; Hou, X.; Chen, B.; Fan, F.; Li, Y.; et al. Dynamic Evolution of Co Species and Morphological Reconstruction on Co-N-C during the Nitrate Reduction Reaction in Neutral Solution. Nano Res. 2025, 18, 94907038. [Google Scholar] [CrossRef]
- Dong, C.; Zhou, C.; Wu, M.; Yu, Y.; Yu, K.; Yan, K.; Shen, C.; Gu, J.; Yan, M.; Sun, C.; et al. Boosting Bi-Directional Redox of Sulfur with Dual Metal Single Atom Pairs in Carbon Spheres Toward High-Rate and Long-Cycling Lithium–Sulfur Battery. Adv. Energy Mater. 2023, 13, 2301505. [Google Scholar] [CrossRef]
- Xu, H.; Liu, H.; Yang, W.; Li, M.; Zhao, F.; Li, C.; Qi, J.; Wang, H.; Peng, W.; Fan, X.; et al. Enhanced Electrocatalytic Conversion of Tellurium with MnO Hollow Nanospheres Modified Hierarchical N-Doped Carbon Nanosheets in High-Performance Aqueous Zn-Te Battery. Chem. Eng. J. 2024, 485, 149825. [Google Scholar] [CrossRef]
- Liu, H.; Li, P.; Fan, K.; Lu, F.; Sun, Q.; Zhang, Q.; Li, B.; Shu, Y.; Zong, L.; Wang, L. Microporous Hard Carbon Support Provokes Exceptional Performance of Single Atom Electrocatalysts for Advanced Air Cathodes. Angew. Chem. 2025, 137, e202501307. [Google Scholar] [CrossRef]
- Huang, M.; Wang, N.; Xie, M.; Fu, Y.; Li, Z.; Lu, Y.; Liu, Q. Phase-Transfer Catalyst for Lithium-Oxygen Batteries Based on Bidirectional Coordination Catalysis: 2-Aminopyridine. Adv. Funct. Mater. 2025, 35, 2420678. [Google Scholar] [CrossRef]
- Xue, Y.; Zuo, Z.; Li, Y.; Liu, H.; Li, Y. Graphdiyne-Supported NiCo2S4 Nanowires: A Highly Active and Stable 3D Bifunctional Electrode Material. Small 2017, 13, 1700936. [Google Scholar] [CrossRef]
- Zhang, J.; Song, L.; Zhao, C.; Yin, X.; Zhao, Y. Co, N Co-Doped Porous Carbons as High-Performance Oxygen Reduction Electrocatalysts. New Carbon Mater. 2021, 36, 209–218. [Google Scholar] [CrossRef]
- Fan, X.; Teng, Z.; Han, L.; Shen, Y.; Wang, X.; Qu, W.; Song, J.; Wang, Z.; Duan, H.; Wu, Y.A.; et al. Boosted Charge and Proton Transfer over Ternary Co/Co3O4/CoB for Electrochemical Nitric Oxide Reduction to Ammonia. Nat. Commun. 2025, 16, 4874. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, C.; Zhou, P.; Han, B.; Zhang, Z.; Liu, B. Carbon-Supported Co/Co3O4 Hybrid Catalyst: An Efficient Non-Noble Metal Catalyst for the Hydrodeoxygenation of Vanillin. Catal. Sci. Technol. 2023, 13, 6233–6237. [Google Scholar] [CrossRef]
- Xu, Y.; Li, G.; Li, K.; Hai, J.; Weng, H.; Yuan, H.; Su, Y.; Hu, N.; Zhang, Y. Hierarchical Coaxial Heterostructure Enabled by Thermal Annealing Cobalt Nanowires for Stable Lithium Anodes. Chem. Eng. J. 2025, 508, 160761. [Google Scholar] [CrossRef]
- Namita; Kunal; Khan, A.; Arti; Alam, N.; Ansari, J.R. Synergistic Effect of Cobalt-Reduced Graphene Oxide Hybrid for Enhanced Hydrogen Evolution Reaction. Chemosphere 2025, 379, 144447. [Google Scholar] [CrossRef] [PubMed]
- Shu, X.; Chen, Q.; Yang, M.; Liu, M.; Ma, J.; Zhang, J. Tuning Co-Catalytic Sites in Hierarchical Porous N-Doped Carbon for High-Performance Rechargeable and Flexible Zn-Air Battery. Adv. Energy Mater. 2023, 13, 2202871. [Google Scholar] [CrossRef]
- Lee, K.B.; Jo, S.; Zhang, L.; Kim, M.; Sohn, J.I. Hierarchically Interconnected 3D Catalyst Structure of Porous Multi-Metal Oxide Nanofibers for High-Performance Li–O2 Batteries. Small Methods 2024, 8, e2301728. [Google Scholar] [CrossRef]
- Liao, K.; Zhang, T.; Wang, Y.; Li, F.; Jian, Z.; Yu, H.; Zhou, H. Nanoporous Ru as a Carbon- and Binder-Free Cathode for Li–O2 Batteries. ChemSusChem 2015, 8, 1429–1434. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Zheng, W.; Kang, C.; Xie, B.; Qian, Z.; Wang, Y.; Ye, S.; Lou, S.; Kong, F.; Mei, B.; et al. Tailoring the p -Band Center of N–S Pair for Accelerating High-Performance Lithium–Oxygen Battery. Small 2023, 19, 2207461. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.-L.; Xu, S.-M.; Xu, C.-Y.; Zhang, Q.; Wang, H.-H.; Zhang, Z.; Chen, X.; Dong, S.-Y.; Liu, Y.-S.; Xu, Z.-X.; et al. Free-Standing N,Co-Codoped TiO 2 Nanoparticles for LiO2 -Based Li–O2 Batteries. J. Mater. Chem. A 2019, 7, 23046–23054. [Google Scholar] [CrossRef]
- Cai, S.; Zheng, M.; Lin, X.; Lei, M.; Yuan, R.; Dong, Q. A Synergistic Catalytic Mechanism for Oxygen Evolution Reaction in Aprotic Li–O2 Battery. ACS Catal. 2018, 8, 7983–7990. [Google Scholar] [CrossRef]
- Tong, S.; Zheng, M.; Lu, Y.; Lin, Z.; Li, J.; Zhang, X.; Shi, Y.; He, P.; Zhou, H. Mesoporous NiO with a Single-Crystalline Structure Utilized as a Noble Metal-Free Catalyst for Non-Aqueous Li–O2 Batteries. J. Mater. Chem. A 2015, 3, 16177–16182. [Google Scholar] [CrossRef]
- Li, W.; Meng, R.; Wang, K.; Cheng, Y.; Cai, D.; Zhan, G. Engineering Pyridinic-N-Co Sites for Enhanced CO2 Hydrogenation to Methanol. Appl. Catal. B Environ. Energy 2025, 365, 124906. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, G.; Liu, R.; Yang, R.; Li, X.; Zhang, X.; Yu, H.; Zhang, P.; Li, B.; Hou, H.; et al. Mutually Activated 2D Ti0.87O2/MXene Monolayers Through Electronic Compensation Effect as Highly Efficient Cathode Catalysts of Li–O2 Batteries. Adv. Funct. Mater. 2025, 35, 2414679. [Google Scholar] [CrossRef]
- Shen, Z.; Lang, S.; Zhou, C.; Wen, R.; Wan, L. In Situ Realization of Water-Mediated Interfacial Processes at Nanoscale in Aprotic Li–O2 Batteries. Adv. Energy Mater. 2020, 10, 2002339. [Google Scholar] [CrossRef]
- Zhao, C.; Yan, Z.; Zhou, B.; Pan, Y.; Hu, A.; He, M.; Liu, J.; Long, J. Identifying the Role of Lewis-base Sites for the Chemistry in Lithium-Oxygen Batteries. Angew. Chem. Int. Ed. 2023, 62, e202302746. [Google Scholar] [CrossRef]
- Xia, Y.; Fan, S.; Jin, X.; Wang, L.; Lin, S.; Yan, J.; Han, J.; Yu, Z.; Peng, D.-L.; Yue, G. Amorphous Interface-Controlled Discharge Product Formation: A Pathway to High-Performance Lithium-Oxygen Batteries. Nano Energy 2025, 141, 111086. [Google Scholar] [CrossRef]
- Liu, Y.; Han, M.; Liu, J.; Huang, Y.; Liu, Y.; Li, W.; Liu, Y.; Li, J. Self-Reconstruction of Ultralow-Pt-Loading Co3O4 Nanoneedle Array Cathode for High-Performance Li-O2 Battery. Chem. Eng. J. 2025, 512, 162420. [Google Scholar] [CrossRef]
- Amin, H.M.A.; Molls, C.; Bawol, P.P.; Baltruschat, H. The Impact of Solvent Properties on the Performance of Oxygen Reduction and Evolution in Mixed Tetraglyme-Dimethyl Sulfoxide Electrolytes for Li-O2 Batteries: Mechanism and Stability. Electrochim. Acta 2017, 245, 967–980. [Google Scholar] [CrossRef]
Candidates | Co@NC | NC |
---|---|---|
Current density/mA g−1 | Specific capacity/mAh g−1 | |
200 | 11,213 | 4951 |
400 | 6536 | 1895 |
800 | 1642 | 641 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Liu, M.; Wan, Y.; Guan, S.; Ma, Y.; Xu, X.; Zhu, Y.; Li, X. Breaking Redox Barriers in Lithium-Oxygen Batteries via Multiscale Architecture of Pyridinic Nitrogen-Doped Carbon-Encapsulated Cobalt Catalysts. Catalysts 2025, 15, 923. https://doi.org/10.3390/catal15100923
Gao Y, Liu M, Wan Y, Guan S, Ma Y, Xu X, Zhu Y, Li X. Breaking Redox Barriers in Lithium-Oxygen Batteries via Multiscale Architecture of Pyridinic Nitrogen-Doped Carbon-Encapsulated Cobalt Catalysts. Catalysts. 2025; 15(10):923. https://doi.org/10.3390/catal15100923
Chicago/Turabian StyleGao, Yinkun, Mingyang Liu, Yongqing Wan, Shuyun Guan, Yiman Ma, Xiaojie Xu, Yongming Zhu, and Xudong Li. 2025. "Breaking Redox Barriers in Lithium-Oxygen Batteries via Multiscale Architecture of Pyridinic Nitrogen-Doped Carbon-Encapsulated Cobalt Catalysts" Catalysts 15, no. 10: 923. https://doi.org/10.3390/catal15100923
APA StyleGao, Y., Liu, M., Wan, Y., Guan, S., Ma, Y., Xu, X., Zhu, Y., & Li, X. (2025). Breaking Redox Barriers in Lithium-Oxygen Batteries via Multiscale Architecture of Pyridinic Nitrogen-Doped Carbon-Encapsulated Cobalt Catalysts. Catalysts, 15(10), 923. https://doi.org/10.3390/catal15100923