Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (303)

Search Parameters:
Keywords = porous carbon nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3442 KiB  
Article
Generating Strongly Basic Sites on C/Fe3O4 Core–Shell Structure: Preparation of Magnetically Responsive Mesoporous Solid Strong Bases Catalysts
by Tiantian Li, Xiaowen Li, Guangxia Shi, Yajun Gao, Qiang Guan, Guodong Kang, Yizhi Zeng and Dingming Xue
Catalysts 2025, 15(8), 743; https://doi.org/10.3390/catal15080743 - 4 Aug 2025
Viewed by 147
Abstract
Novel solid strong base catalysts have attracted considerable attention in fine chemical synthesis owing to their unique advantages. In this work, a magnetic solid strong base catalyst with controlled morphology and porous carbon shell structure was successfully fabricated using low-cost carbon sources combined [...] Read more.
Novel solid strong base catalysts have attracted considerable attention in fine chemical synthesis owing to their unique advantages. In this work, a magnetic solid strong base catalyst with controlled morphology and porous carbon shell structure was successfully fabricated using low-cost carbon sources combined with Fe3O4 nanoparticles. KOH was used to introduce strong basic sites through ultrasonic-assisted impregnation. The carbon shell acted as a protective barrier to suppress detrimental interactions between basic species and the support while maintaining structural integrity after high-temperature activation without morphology degradation. The obtained K/C/Fe3O4 catalyst exhibits excellent catalytic performance and near-ideal superparamagnetic behavior. In the transesterification reaction for dimethyl carbonate (DMC) synthesis, the K/C/Fe3O4 catalyst provides superior performance than conventional solid base catalysts and maintains stable activity over six consecutive cycles. Notably, efficient solid–liquid separation was achieved successfully via magnetic separation, demonstrating practical applicability for the K/C/Fe3O4 catalyst. Full article
(This article belongs to the Special Issue Synthesis and Catalytic Applications of Advanced Porous Materials)
Show Figures

Graphical abstract

18 pages, 3793 KiB  
Review
Research Progress on Vaterite Mineral and Its Synthetic Analogs
by Guoxi Sun, Xiuming Liu, Bin Lian and Shijie Wang
Minerals 2025, 15(8), 796; https://doi.org/10.3390/min15080796 - 29 Jul 2025
Viewed by 271
Abstract
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the [...] Read more.
As the most unstable crystalline form of calcium carbonate, vaterite is rarely found in nature due to being highly prone to phase transitions. However, its high specific surface area, excellent biocompatibility, and high solubility properties have led to a research boom and the following breakthroughs in the last two decades: (1) From primitive calculations and spectroscopic analyses to modern multidimensional research methods combining calculations and experiments, the crystal structure of vaterite has turned from early identifications in orthorhombic and hexagonal crystal systems to a complex polymorphic structure within the monoclinic crystal system. (2) The formation process of vaterite not only conforms to the classical crystal growth theory but also encompasses the nanoparticle aggregation theory, which incorporates the concepts of oriented nanoparticle assembly and mesoscale transformation. (3) Regardless of the conditions, the formation of vaterite depends on an excess of CO32− relative to Ca2+, and its stability duration relates to preservation conditions. (4) Vaterite demonstrates significant value in biomedical applications—including bone repair scaffolds, targeted drug carriers, and antibacterial coating materials—leveraging its porous structure, high specific surface area, and exceptional biocompatibility. While it also shows utility in environmental pollutant adsorption and general coating technologies, the current research remains predominantly concentrated on its medical applications. Currently, the rapid transformation of vaterite presents the primary limitation for its industrial application. Future research should prioritize investigating its formation kinetics and stability. Full article
Show Figures

Figure 1

7 pages, 1785 KiB  
Proceeding Paper
Optimizing a Cu-Ni Nanoalloy-Coated Mesoporous Carbon for Efficient CO2 Electroreduction
by Manal B. Alhamdan, Ahmed Bahgat Radwan and Noora Al-Qahtani
Mater. Proc. 2025, 22(1), 2; https://doi.org/10.3390/materproc2025022002 - 16 Jul 2025
Viewed by 275
Abstract
Reducing atmospheric carbon dioxide is a critical global priority. This study investigates the influence of Cu-Ni nanoalloy loading on the CO2 electroreduction efficiency in the context of mesoporous carbon supports. Current methods struggle when it comes to catalyst efficiency, selectivity, and longevity. [...] Read more.
Reducing atmospheric carbon dioxide is a critical global priority. This study investigates the influence of Cu-Ni nanoalloy loading on the CO2 electroreduction efficiency in the context of mesoporous carbon supports. Current methods struggle when it comes to catalyst efficiency, selectivity, and longevity. By synthesizing copper–nickel nanoparticles through chemical reduction and depositing them on porous carbon, this research aimed to optimize catalyst loading and understand the structure–activity relationships. Catalyst performance was evaluated using chronoamperometry and linear sweep voltammetry (LSV). The results showed that 12 wt% catalyst loading achieved optimal CO2 reduction, outperforming its 36 wt% counterpart by balancing the catalyst quantity. This study reveals that 12 wt% Cu-Ni loading provides a higher CO2 reduction current density and greater long-term stability than 36 wt% loading, owing to better nanoparticle dispersion and reduced aggregation. Unlike previous Cu-Ni/mesoporous carbon studies, this work uniquely compares different loadings to directly correlate the structure, electrochemical performance, and catalyst durability. Full article
Show Figures

Figure 1

22 pages, 3709 KiB  
Review
Carbon-Based Catalysts for Electrochemical Nitrate Reduction to Ammonia: Design Strategies and Mechanistic Insights
by Qunyu Chen, Liuyang Deng, Jinrui Zhang, Ying Zhang, Lei Zhang, Shun Lu and Yanwei Wang
Materials 2025, 18(13), 3019; https://doi.org/10.3390/ma18133019 - 25 Jun 2025
Viewed by 549
Abstract
The electrochemical reduction of nitrate to ammonia offers a promising solution for both alleviating nitrate pollution in wastewater and providing a sustainable ammonia source for agriculture use. This review focuses on the role of carbon-based catalysts in electrochemical nitrate reduction to ammonia, emphasizing [...] Read more.
The electrochemical reduction of nitrate to ammonia offers a promising solution for both alleviating nitrate pollution in wastewater and providing a sustainable ammonia source for agriculture use. This review focuses on the role of carbon-based catalysts in electrochemical nitrate reduction to ammonia, emphasizing their potential in addressing environmental pollution and supporting sustainable ammonia production. Carbon materials, known for their abundance, affordability, and eco-friendly properties, are central to this process. The review highlights key strategies for enhancing catalytic performance, including heteroatom doping, the development of porous structures, and the integration of metal/metal oxide nanoparticles. Additionally, it addresses significant challenges such as weak nitrate adsorption, slow reaction kinetics, and competition with the hydrogen evolution reaction. Through the integration of advanced material design, mechanistic insights, and innovative engineering strategies, this review provides valuable guidance for the future design of carbon-based catalysts, paving the way for significant advancements in both nitrate removal and sustainable ammonia synthesis. Full article
Show Figures

Figure 1

8 pages, 2235 KiB  
Article
In Situ Synthesis of Copper Nanoparticles on Biocarbon Sheets for Surface-Enhanced Raman Scattering
by Jianqiang Wei, Zelong Zhou, Junchao Qian, Yaping Wang, Jun Chen and Yunfei Sun
Nanomaterials 2025, 15(12), 944; https://doi.org/10.3390/nano15120944 - 18 Jun 2025
Viewed by 353
Abstract
A copper nanoparticles@porous biocarbon substrate was designed for Surface-Enhanced Raman Spectroscopy (SERS) via a simple reduction method. In the detection of three trace antibiotics, the substrate exhibits a very high Raman enhancement efficiency. This is partly because the biocarbon is rich in meso-micropores, [...] Read more.
A copper nanoparticles@porous biocarbon substrate was designed for Surface-Enhanced Raman Spectroscopy (SERS) via a simple reduction method. In the detection of three trace antibiotics, the substrate exhibits a very high Raman enhancement efficiency. This is partly because the biocarbon is rich in meso-micropores, which can rapidly trap target molecules. On the other hand, the copper nanoparticles embedded on the surface of the carbon sheets generate a large number of plasmonic hotspots, leading to an increase in Raman signal intensity. These results suggest that this substrate has utility for SERS applications in food safety, medicine, and water pollution detection. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

28 pages, 4683 KiB  
Review
A Comprehensive Overview of Co3O4 Nanoparticles: Solution Combustion Synthesis and Potential Applications
by Togzhan T. Mashan, Muhammad Hashami, Nurgul S. Bergeneva, Nurgul N. Nurmukhanbetova, Aigul S. Beisebayeva, Meruyert Nazhipkyzy, Gulnar U. Mamatova and Aigerim G. Zhaxybayeva
Nanomaterials 2025, 15(12), 932; https://doi.org/10.3390/nano15120932 - 16 Jun 2025
Viewed by 1598
Abstract
Co3O4 nanoparticles synthesized by solution combustion synthesis present a versatile platform for the development of porous nanostructures with tunable morphology and physicochemical properties. Synthesis conditions and parameters such as fuel type; fuel-to-oxidizer ratio and temperature control lead yielding; and Co [...] Read more.
Co3O4 nanoparticles synthesized by solution combustion synthesis present a versatile platform for the development of porous nanostructures with tunable morphology and physicochemical properties. Synthesis conditions and parameters such as fuel type; fuel-to-oxidizer ratio and temperature control lead yielding; and Co3O4 NPs with fine particle size, surface area, and porosity result in enhancing their electrochemical and catalytic capabilities. This review evaluates present studies about SCS Co3O4 NPs to study how synthesis parameter modifications affect both surface morphology and material structure characteristics including porosity features, which make their improved performance ideal for lithium-ion batteries and supercapacitors. Moreover, the integration of dopants with carbon-based hybrid composites enhances material conductivity and stability by addressing both capacity fading and low electronic conductivity concerns. This review mainly aims to explore the significant relation between fundamental material design principles together with practical uses and provides predictions about future research advancements that aim to enhance the performance of Co3O4 NPs in next-generation energy and environmental technology applications. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

11 pages, 2195 KiB  
Article
Highly Dispersed Pt on TiOx Embedded in Porous Carbon as Electrocatalyst for Hydrogen Evolution Reaction
by Zihan Wei, Xin Chen, Pengfei Diao, Jiayi Liao, Zhaonan Chong, Change Yao, Zhong Ma and Guisheng Li
Catalysts 2025, 15(5), 487; https://doi.org/10.3390/catal15050487 - 17 May 2025
Viewed by 565
Abstract
In conventionally used carbon-supported heterogeneous platinum catalysts for hydrogen evolution reaction (HER), low Pt utilization efficiency and poor stability, resulting from weak interactions with the carbon supports, are crucial issues. Here, we report a novel hierarchical structure of TiOx nanoparticles embedded in [...] Read more.
In conventionally used carbon-supported heterogeneous platinum catalysts for hydrogen evolution reaction (HER), low Pt utilization efficiency and poor stability, resulting from weak interactions with the carbon supports, are crucial issues. Here, we report a novel hierarchical structure of TiOx nanoparticles embedded in porous carbon with the in situ growth of highly dispersed Pt on the TiOx surface (Pt-TiOx@C). The as-prepared Pt-TiOx@C electrocatalyst showed excellent catalytic activity during HER with an overpotential of only 10 mV when the current density reached 10 mA cm−2 and the mass activity was 9.24 A mgPt−1 at an overpotential of 30 mV in 0.5 M H2SO4 solution, thus outperforming commercial Pt/C catalysts. Furthermore, it also exhibited highly stable catalytic activity over 10,000 CV cycles of an accelerated degradation test (ADT). This high HER activity and durability could be ascribed to the highly dispersed Pt feature and the strong metal–support interaction (SMSI) between Pt and TiOx. This study also provides a simple and effective method for designing highly active and stable electrocatalysts. Full article
Show Figures

Figure 1

18 pages, 5259 KiB  
Article
Synergistic Cu-Pd Nanocatalysts on MOF-Derived N-Doped Carbon for Selective Hydrogenolysis of Lignin to Aromatic Monomers
by Wenjun Lei, Yan Fu, Shipeng Gu, Shuaishuai Qiu and Jie Chang
Catalysts 2025, 15(5), 455; https://doi.org/10.3390/catal15050455 - 7 May 2025
Viewed by 554
Abstract
Catalytic hydrogenolysis of lignin to produce high-value monophenols has emerged as a pivotal strategy in modern biorefineries. In this study, we synthesized spherical nitrogen-doped porous carbon (SNCB) materials by using Al/Co-BTC as a precursor, introducing melamine as a supplementary carbon and nitrogen source, [...] Read more.
Catalytic hydrogenolysis of lignin to produce high-value monophenols has emerged as a pivotal strategy in modern biorefineries. In this study, we synthesized spherical nitrogen-doped porous carbon (SNCB) materials by using Al/Co-BTC as a precursor, introducing melamine as a supplementary carbon and nitrogen source, and activating the material with NaOH solution. The SNCB framework was decorated with Cu-Pd bimetallic nanoparticles, exhibiting outstanding catalytic activity in the hydrogenolytic depolymerization of organosolv lignin. The Cu-Pd@SNCB catalyst exhibited remarkable activity, attributed to the hierarchical porous structure of SNCB that facilitated metal nanoparticle dispersion and reactant accessibility. The synergistic effect between Cu as the reactive site for reactant adsorption and Pd as the reactive site for H2 adsorption enhanced the catalytic activity of the catalyst. Systematically optimized conditions (2 MPa H2, 270 °C, 3 h) yielded 43.02 wt% phenolic monomers, with 4-(3-hydroxypropyl)-2,6-dimethoxyphenol dominating the product profile at 46.3% selectivity. The catalyst and its reaction products were analyzed using advanced characterization techniques, including XPS, XRD, TEM, SEM, BET, GC-MS, GPC, 2D HSQC NMR, and FT-IR, to elucidate the reaction mechanism. The mechanism proceeds through: (1) nucleophilic substitution of the β-O-4 hydroxyl group by MeOH, followed by (2) simultaneous hydrogenolytic cleavage of Cβ-O and Cα-O bonds mediated by Cu-Pd@SNCB under H2 atmosphere, which selectively produces 4-(3-hydroxypropyl)-2,6-dimethoxyphenol and 4-propyl-2,6-dimethoxyphenol. This study proposes a bimetallic synergistic mechanism, offering a general blueprint for developing selective lignin valorization catalysts. Full article
(This article belongs to the Special Issue Catalytic Conversion and Utilization of Biomass)
Show Figures

Figure 1

22 pages, 9184 KiB  
Article
Ceria–Zirconia-Supported Pt as an Efficient Catalyst for the Sustainable Synthesis of Hydroxylamines and Primary Amines via the Hydrogenation of Oximes Under Ambient Conditions
by Elena Redina, Inna Ivanova, Olga Tkachenko, Gennady Kapustin, Igor Mishin and Leonid Kustov
Molecules 2025, 30(9), 1926; https://doi.org/10.3390/molecules30091926 - 26 Apr 2025
Viewed by 849
Abstract
Amines and hydroxylamines are essential compounds in the synthesis of pharmaceuticals and other functionalized molecules. However, the synthesis of primary amines and particularly hydroxylamines remains a challenging task. The most common way to obtain amines and hydroxylamines involves the reduction of substances containing [...] Read more.
Amines and hydroxylamines are essential compounds in the synthesis of pharmaceuticals and other functionalized molecules. However, the synthesis of primary amines and particularly hydroxylamines remains a challenging task. The most common way to obtain amines and hydroxylamines involves the reduction of substances containing C-N bonds, such as nitro compounds, nitriles, and oximes. Among these, oximes are the most readily accessible substrates easily derived from ketones and aldehydes. However, oximes are much harder to reduce compared to nitro compounds and nitriles. The catalytic heterogeneous hydrogenation of oximes often requires harsh conditions and catalysts with high precious metal loadings, while hydroxylamines are hard to be obtained by this method. In this work, we showed that Pt supported on a porous ceria–zirconia solid solution enables the selective and atom-efficient synthesis of both hydroxylamines and amines through the hydrogenation of oximes, achieving yields of up to 99% under ambient reaction conditions in a “green” THF:H2O solvent system. The high activity of the 1% Pt/CeO2-ZrO2 catalyst (TOF > 500 h−1) is due to low-temperature hydrogen activation on Pt nanoparticles with the formation of a hydride, Pt-H. The strong influence of electron-donating and electron-withdrawing groups on the hydrogenation of aromatic oximes implies the nucleophilic attack of hydridic hydrogen from Pt to the electrophilic carbon of protonated oximes. Full article
(This article belongs to the Special Issue Advanced Heterogeneous Catalysis)
Show Figures

Graphical abstract

48 pages, 9875 KiB  
Review
Rare Earth Ce/CeO2 Electrocatalysts: Role of High Electronic Spin State of Ce and Ce3+/Ce4+ Redox Couple on Oxygen Reduction Reaction
by Shaik Gouse Peera and Seung Won Kim
Nanomaterials 2025, 15(8), 600; https://doi.org/10.3390/nano15080600 - 14 Apr 2025
Cited by 2 | Viewed by 1878
Abstract
With unique 4f electronic shells, rare earth metal-based catalysts have been attracting tremendous attention in electrocatalysis, including oxygen reduction reaction (ORR). In particular, atomically dispersed Ce/CeO2-based catalysts have been explored extensively due to several unique features. This review article provides a [...] Read more.
With unique 4f electronic shells, rare earth metal-based catalysts have been attracting tremendous attention in electrocatalysis, including oxygen reduction reaction (ORR). In particular, atomically dispersed Ce/CeO2-based catalysts have been explored extensively due to several unique features. This review article provides a comprehensive understanding of (i) the significance of the effect of Ce high-spin state on ORR activity enhancement on the Pt and non-pt electrocatalysts, (ii) the spatially confining and stabilizing effect of ceria on the generation of atomically dispersed transition metal-based catalysts, (iii) experimental and theoretical evidence of the effect of Ce3+ ↔ Ce4+ redox pain on radical scavenging, (iv) the effect of the Ce 4f electrons on the d-band center and electron transfer between Ce to the N-doped carbon and transition metal catalysts for enhanced ORR activity, and (v) the effect of Pt/CeO2/carbon heterojunctions on the stability of the Pt/CeO2/carbon electrocatalyst for ORR. Among several strategies of synthesizing Ce/CeO2 electrocatalysts, the metal–organic framework (MOF)-derived catalysts are being perused extensively due to the tendency of Ce to readily coordinate with O- and N-containing ligands, which upon undergoing pyrolysis, results in the formation of high surface area, porous carbon networks with atomically dispersed metallic/clusters/nanoparticles of Ce active sites. This review paper provides an overview of recent advancements regarding Ce/CeO2-based catalysts derived from the MOF precursor for ORR in fuel cells and metal–air battery applications and we conclude with insights into key issues and future development directions. Full article
(This article belongs to the Collection Micro/Nanoscale Open Framework Materials (OFMs))
Show Figures

Graphical abstract

11 pages, 6281 KiB  
Article
Using Green Solvents for Phase Inversion of PVDF/TiO2 Hybrid Coatings for Gas Phase Photocatalysis
by Ewoud Cosaert, Hadis Mortazavi Milani, Geraldine J. Heynderickx and Dirk Poelman
Molecules 2025, 30(8), 1700; https://doi.org/10.3390/molecules30081700 - 10 Apr 2025
Viewed by 452
Abstract
Long-time exposure to volatile organic compounds (VOCs) in the atmosphere can have negative health effects on humans and other living organisms. In order to purify ambient air, these VOCs can be degraded using photocatalysis. In this research, commercially available TiO2 nanoparticles were [...] Read more.
Long-time exposure to volatile organic compounds (VOCs) in the atmosphere can have negative health effects on humans and other living organisms. In order to purify ambient air, these VOCs can be degraded using photocatalysis. In this research, commercially available TiO2 nanoparticles were immobilized in a porous poly(vinylidene fluoride-co-hexa-fluoropropylene) (PVDF) polymer matrix, synthesized using the phase inversion method. The most used solvent for PVDF is N-methyl-2-pyrrolidone (NMP). However, this solvent is known to be harmful to humans and the environment, and there is a need to replace NMP with a more ecological ‘green’ solvent. Here, triethyl phosphate (TEP), methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate (Rhodiasolv® PolarClean) and propylene carbonate (PC) were used to dissolve PVDF for the phase inversion synthesis of porous photocatalytically active PVDF/TiO2 hybrid layers onto aluminium slides. The photocatalytic degradation under UV (365 nm) of gaseous ethanol in an argon/oxygen (Ar/O2) atmosphere shows that these solvents are suitable replacements for NMP, but optimization is required to improve the performance of the layers. Apart from changing the solvent for PVDF, the UV and photocatalysis stability of PVDF has been determined, as well as the repeatability of the photocatalytic reaction, to prove that PVDF is a suitable polymer for this application. Full article
(This article belongs to the Special Issue Photocatalytic Materials and Photocatalytic Reactions, 2nd Edition)
Show Figures

Figure 1

21 pages, 4523 KiB  
Article
ZIF-67-Derived Co−N−C Supported Ni Nanoparticles as Efficient Recyclable Catalyst for Hydrogenation of 4-Nitrophenol
by Juti Rani Deka, Diganta Saikia, Jia-Cheng Lin, Wan-Yu Chen, Hsien-Ming Kao and Yung-Chin Yang
Catalysts 2025, 15(4), 343; https://doi.org/10.3390/catal15040343 - 1 Apr 2025
Viewed by 836
Abstract
In this study, a novel, highly efficient, environment friendly, and low-cost nanocatalyst, denoted as Ni(x)@Co−N−C, was successfully developed by encapsulating Ni nanoparticles into N-doped porous carbon derived from ZIF-67. A variety of techniques including powder X-ray diffraction (XRD), nitrogen adsorption/desorption, scanning electron microscopy [...] Read more.
In this study, a novel, highly efficient, environment friendly, and low-cost nanocatalyst, denoted as Ni(x)@Co−N−C, was successfully developed by encapsulating Ni nanoparticles into N-doped porous carbon derived from ZIF-67. A variety of techniques including powder X-ray diffraction (XRD), nitrogen adsorption/desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectrometer (XPS) were used to characterize the prepared materials. The TEM images reveal that the nanoparticles were distributed homogeneously in the carbon support. The N atoms in the carbon support serve as the sites for the nucleation and uniform growth of Ni nanoparticles. The catalyst was used for the degradation of environmentally harmful 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Among all the catalysts investigated, Ni(10)@Co-N-C exhibited the highest catalytic activity for the hydrogenation of 4-NP, with a specific reaction rate of 6.1 × 10−3 s−1, activity parameter of 31 s−1g−1, and turn over frequency (TOF) of 1.78 × 1019 molecules gmetal−1s−1. On the other hand, the specific reaction rate and TOF value were 1.7 × 10−3 s−1 and 6.96 × 1018 molecules gmetal−1s−1, respectively, for Co−N−C. This suggests that Ni(10)@Co−N−C is about three times more catalytically active than the Co−N−C catalyst. The superb activity of Ni(10)@Co−N−C in comparison to Co−N−C can be ascribed to the homogeneous dispersion of small-sized Ni nanoparticles, the interconnected three-dimensional porous arrangement of the support Co−N−C, the presence of N atoms in the carbon framework that stabilize metal nanoparticles, and the synergistic electronic effect between Ni and Co. The Ni(10)@Co−N−C catalyst maintained consistent catalytic activity over multiple cycles, which suggests that porous N-containing carbon support can effectively prevent aggregation and leaching of metal nanoparticles. The ICP-AES analysis of the recycled Ni(10)@Co−N−C revealed a slight reduction in metal content compared to the fresh sample, suggesting almost negligible leaching of metal nanoparticles. Full article
Show Figures

Graphical abstract

17 pages, 5019 KiB  
Article
Carbon-Encapsulated Ni Nanoparticles Catalysts Derived from Ni-Hexamine Coordination Frameworks for Oxygen Reduction Reaction and Oxygen Evolution Reaction
by Huoxing Huang, Jiaxing Huang, Guoyu Zhong, Shurui Xu, Hongwei Chen, Xiaobo Fu, Shimin Kang, Junling Tu, Yongxiao Tuo, Wenbo Liao and Baizeng Fang
Catalysts 2025, 15(4), 338; https://doi.org/10.3390/catal15040338 - 31 Mar 2025
Viewed by 556
Abstract
Developing efficient bifunctional oxygen reduction (ORR) and oxygen evolution (OER) electrocatalysts is critical for renewable energy technologies. Noble metal catalysts face limitations in cost, scarcity, and bifunctional compatibility. Herein, we report the synthesis of nickel nanoparticles encapsulated in nitrogen-doped carbon nanosheets (Ni@NC-T) via [...] Read more.
Developing efficient bifunctional oxygen reduction (ORR) and oxygen evolution (OER) electrocatalysts is critical for renewable energy technologies. Noble metal catalysts face limitations in cost, scarcity, and bifunctional compatibility. Herein, we report the synthesis of nickel nanoparticles encapsulated in nitrogen-doped carbon nanosheets (Ni@NC-T) via a solvothermal polymerization and pyrolysis process using a Ni-hexamine coordination framework (NiHMT) as a precursor. The Ni@NC-900 catalyst exhibits superior ORR and OER activity under alkaline conditions, with an ORR performance (half-wave potential = 0.86 V) comparable to commercial Pt/C and an OER overpotential of only 430 mV at 10 mA cm−2. Structural analysis indicates that the hierarchical porous structure and high specific surface area (409 m2 g−1) of Ni@NC-900 facilitate the exposure of active sites and enhance mass transport. The surface-doped nitrogen species, predominantly in the form of pyridinic N and graphitic N, promote electron transfer during the ORR. Furthermore, its application as a bifunctional cathode in rechargeable zinc-air batteries results in a high power density of 137 mW cm−2, surpassing the performance levels of many existing carbon-based bifunctional catalysts. This work highlights a facile strategy for the fabrication of transition metal-based catalysts encapsulated in MOF-derived carbon matrices, with promising potential for energy storage and conversion devices. Full article
Show Figures

Graphical abstract

23 pages, 6217 KiB  
Article
Synergistic Effect of Redox-Active NiS-Co@C Ternary Nanocomposite for Supercapattery Hybrid Energy Storage Devices
by Mohan Reddy Pallavolu, Jyothi Nallapureddy, Arghya Narayan Banerjee and Sang-Woo Joo
Batteries 2025, 11(4), 116; https://doi.org/10.3390/batteries11040116 - 21 Mar 2025
Cited by 1 | Viewed by 578
Abstract
A highly redox-active ternary nickel sulfide and cobalt-anchored carbon nanocomposite (NiS-Co@C) electrochemical electrode is synthesized by a two-step pyrolysis-hydrothermal method using biomass-derived carbon. The high-crystalline hierarchical porous nanostructure provides abundant voids and cavities, along with a large specific surface area, to improve the [...] Read more.
A highly redox-active ternary nickel sulfide and cobalt-anchored carbon nanocomposite (NiS-Co@C) electrochemical electrode is synthesized by a two-step pyrolysis-hydrothermal method using biomass-derived carbon. The high-crystalline hierarchical porous nanostructure provides abundant voids and cavities, along with a large specific surface area, to improve the interfacial properties. The as-synthesized electrode achieved a specific capacity of 640 C g−1 at 1 A g−1, with a capacity retention of 93% over 5000 cycles, revealing outstanding electrochemical properties. Nickel sulfide nanoparticles embedded in the cobalt-anchored carbon framework improved redox activity, ion transport, and conductivity, resulting in a dominant diffusion-controlled battery-type behavior. Moreover, a hybrid supercapattery, based on battery-type NiS-Co@C as the positrode and capacitive-type activated carbon as the negatrode, achieved a maximum specific energy/power of 33 Wh kg−1/7.1 kW kg−1 with a 91% capacity retention after 5000 cycles. The synergistic effect of the combinatorial battery–capacitor behavior of the hybrid supercapattery has improved the specific energy–power considerably, leading the development of next-generation energy storage technologies. Full article
(This article belongs to the Section Supercapacitors)
Show Figures

Graphical abstract

25 pages, 8004 KiB  
Article
Facile Synthesis and Characterization of Novel Fe0.65Mg0.35Cr2O4@C Nanocomposite for Efficient Removal of Cd(II) Ions from Aqueous Media
by Ehab A. Abdelrahman, Reem K. Shah, Mortaga M. Abou-Krisha, Fawaz A. Saad and Alaa M. Munshi
Inorganics 2025, 13(3), 82; https://doi.org/10.3390/inorganics13030082 - 12 Mar 2025
Cited by 6 | Viewed by 807
Abstract
Cd(II) ions pose significant environmental and health threats due to their extreme toxicity, persistence, and bioaccumulation in ecosystems. They are associated with severe health disorders such as bone damage, kidney failure, and carcinogenic effects and disrupt aquatic life by impairing enzymatic and reproductive [...] Read more.
Cd(II) ions pose significant environmental and health threats due to their extreme toxicity, persistence, and bioaccumulation in ecosystems. They are associated with severe health disorders such as bone damage, kidney failure, and carcinogenic effects and disrupt aquatic life by impairing enzymatic and reproductive processes. In this research, novel Fe0.65Mg0.35Cr2O4@C nanocomposites, synthesized using the Pechini sol–gel method at 600 °C (F600) and 800 °C (F800), were investigated for their efficacy in removing Cd(II) ions from aqueous media. FE-SEM analysis showed that F600 had agglomerated spherical nanoparticles with an average grain size of 45.71 nm and a relatively porous structure, while F800 displayed denser and more compact spherical nanoparticles with an average grain size of 73.65 nm. HR-TEM images confirmed these findings, showing that F600 nanoparticles were loosely arranged with an average particle diameter of 14.72 nm, whereas F800 exhibited larger, more aggregated particles with an average diameter of 59.22 nm, reflecting enhanced particle coalescence at higher temperatures. EDX analysis confirmed the elemental composition of both samples, with F600 containing higher carbon content (7.0%) compared to F800 (3.4%), attributed to the more complete combustion of organic precursors during F800’s synthesis. This difference in composition, along with the structural variations, influenced their adsorption performance. F600 demonstrated superior adsorption with a maximum capacity of 295.86 mg/g compared to F800’s 185.19 mg/g. Thermodynamic and kinetic analyses confirmed that the adsorption was exothermic, spontaneous, and governed by a physical mechanism following the pseudo-second-order model and Langmuir isotherm. The superior performance of F600 is attributed to its higher surface area, porosity, and smaller particle size, which enhance the availability of active adsorption sites. Full article
Show Figures

Figure 1

Back to TopTop