Facile Synthesis and Characterization of Novel Fe0.65Mg0.35Cr2O4@C Nanocomposite for Efficient Removal of Cd(II) Ions from Aqueous Media
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Removal of Cd(II) Ions from Aqueous Media
2.2.1. Effect of pH
Adsorption Mechanism of Cd(II) Ions onto F600 and F800 Nanocomposites
2.2.2. Effect of Contact Time
2.2.3. Effect of Temperature
2.2.4. Effect of Concentration
2.2.5. Effect of Regeneration and Reusability
2.2.6. Effect of Interference
3. Experimental
3.1. Materials
3.2. Synthesis of Fe0.65Mg0.35Cr2O4@C Nanocomposites
3.3. Instrumentation
3.4. Removal of Cd(II) Ions from Aqueous Media
3.5. Point of Zero Charge (pHPZC) of Nanocomposites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, J.; Yu, Y.; Huang, S.; Zhu, N.; Mojiri, A.; Ge, D. Tannic Acid as a Green Chemical for the Removal of Various Heavy Metals: A Critical Review of Recent Developments. J. Environ. Manag. 2025, 375, 124390. [Google Scholar] [CrossRef] [PubMed]
- Aziz, K.H.H.; Mustafa, F.S.; Hamarawf, R.F.; Omer, K.M. Adsorptive Removal of Toxic Heavy Metals from Aquatic Environment by Metal Organic Framework (MOF): A Review. J. Water Process Eng. 2025, 70, 106867. [Google Scholar] [CrossRef]
- Yu, K.; Yang, L.; Zhang, S.; Zhang, N. Nanocellulose-Based Aerogels for the Adsorption and Removal of Heavy-Metal Ions from Wastewater: A Review. Mater. Today Commun. 2025, 43, 111744. [Google Scholar] [CrossRef]
- Baldev; Kumar, G.; Sharma, V.; Nemiwal, M. Biomass-Derived Zirconium Composite: An Adsorbent for Preferential Removal of Heavy Metals and Contaminants in Wastewater. J. Water Process Eng. 2025, 69, 106778. [Google Scholar] [CrossRef]
- Richard, E.; Fatyeyeva, K.; Marais, S. Ionic Liquid-Based Polymer Inclusion Membranes for Heavy Metal Ions Removal from Water: Achievements and Challenges. Chem. Eng. J. 2025, 505, 158916. [Google Scholar] [CrossRef]
- Ávila, F.G.; Cabrera-Sumba, J.; Valdez-Pilataxi, S.; Villalta-Chungata, J.; Valdiviezo-Gonzales, L.; Alegria-Arnedo, C. Removal of Heavy Metals in Industrial Wastewater Using Adsorption Technology: Efficiency and Influencing Factors. Clean. Eng. Technol. 2025, 24, 100879. [Google Scholar] [CrossRef]
- Wibowo, Y.G.; Anwar, D.; Safitri, H.; Surya, I.; Sudibyo, S.; Yuliansyah, A.T.; Murti Petrus, H.T.B. Functionalized Magnetite-Biochar with Live and Dead Bacteria for Adsorption-Biosorption of Highly Toxic Metals: Cd, Hg, and Pb. Next Mater. 2025, 6, 100487. [Google Scholar] [CrossRef]
- Arya, K.; Kumar, A.; Kataria, R. Recent Advances in MOF-Based Composites for the Detection and Adsorptive Removal of Pb(II) Ions in Aqueous Phase. Mater. Today Sustain. 2025, 29, 101057. [Google Scholar] [CrossRef]
- Zheng, X.; Alam, O.; Zhou, Y.; Du, D.; Li, G.; Zhu, W. Heavy Metals Detection and Removal from Contaminated Water: A Critical Review of Adsorption Methods. J. Environ. Chem. Eng. 2024, 12, 114366. [Google Scholar] [CrossRef]
- Miretzky, P.; Cirelli, A.F. Hg(II) Removal from Water by Chitosan and Chitosan Derivatives: A Review. J. Hazard. Mater. 2009, 167, 10–23. [Google Scholar] [CrossRef]
- Naksen, P.; Boonruang, S.; Yuenyong, N.; Lee, H.L.; Ramachandran, P.; Anutrasakda, W.; Amatatongchai, M.; Pencharee, S.; Jarujamrus, P. Sensitive Detection of Trace Level Cd (II) Triggered by Chelation Enhanced Fluorescence (CHEF) “Turn on”: Nitrogen-Doped Graphene Quantum Dots (N-GQDs) as Fluorometric Paper-Based Sensor. Talanta 2022, 242, 123305. [Google Scholar] [CrossRef] [PubMed]
- Allah, A.F.; Shaban, M.; Alqhtani, H.A.; Bin-Jumah, M.; Alenazi, N.A.; Allam, A.A.; Abukhadra, M.R. Effective Remediation of Toxic Metal Ions (Cd(II), Pb(II), Hg(II), and Ba(II)) Using Mesoporous Glauconite-Based Iron Silicate Nanorods: Experimental and Theoretical Studies. Microporous Mesoporous Mater. 2025, 382, 113390. [Google Scholar] [CrossRef]
- Shao, Z.; Lu, J.; Ding, J.; Fan, F.; Sun, X.; Li, P.; Fang, Y.; Hu, Q. Novel Green Chitosan-Pectin Gel Beads for the Removal of Cu(II), Cd(II), Hg(II) and Pb(II) from Aqueous Solution. Int. J. Biol. Macromol. 2021, 176, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Rahman, S.U.; Qiu, Z.; Shahzad, S.M.; Nawaz, M.F.; Huang, J.; Naveed, S.; Li, L.; Wang, X.; Cheng, H. Toxic Effects of Cadmium on the Physiological and Biochemical Attributes of Plants, and Phytoremediation Strategies: A Review. Environ. Pollut. 2023, 325, 121433. [Google Scholar] [CrossRef]
- Salih, S.S.; Shihab, M.A.; Mohammed, H.N.; Kadhom, M.; Albayati, N.; Ghosh, T.K. Chitosan-Vermiculite Composite Adsorbent: Preparation, Characterization, and Competitive Adsorption of Cu(II) and Cd(II) Ions. J. Water Process Eng. 2024, 59, 105044. [Google Scholar] [CrossRef]
- Yuan, F.; Yan, D.; Song, S.; Zhang, J.; Yang, Y.; Chen, Z.; Lu, J.; Wang, S.; Sun, Y. Removal of Heavy Metals from Water by Adsorption on Metal Organic Frameworks: Research Progress and Mechanistic Analysis in the Last Decade. Chem. Eng. J. 2025, 506, 160063. [Google Scholar] [CrossRef]
- Chen, Q.; Yao, Y.; Li, X.; Lu, J.; Zhou, J.; Huang, Z. Comparison of Heavy Metal Removals from Aqueous Solutions by Chemical Precipitation and Characteristics of Precipitates. J. Water Process Eng. 2018, 26, 289–300. [Google Scholar] [CrossRef]
- Goyburo-Chávez, C.; Mendez-Ruiz, J.I.; Jiménez-Oyola, S.; Romero-Crespo, P.; Gutierrez, L.; Valverde-Armas, P.E. Pilot-Scale Reverse Osmosis Treatment of Gold Cyanidation Effluent for the Removal of Cyanide, Heavy Metal(Loid)s, and Ionic Species. Case Stud. Chem. Environ. Eng. 2024, 9, 100688. [Google Scholar] [CrossRef]
- Hou, R.; Bao, S.; Dai, J.; Yan, W.; Yao, Y.; Zhou, Y.; Gao, C. Development of Novel Nanofiltration Membrane via Cross-Linking a Natural Polymer and Its Application in Heavy Metals Removal from Groundwater. J. Memb. Sci. 2025, 719, 123768. [Google Scholar] [CrossRef]
- Atallah, C.; Mosadeghsedghi, S.; Dashtban Kenari, S.L.; Hudder, M.; Morin, L.; Volchek, K.; Mortazavi, S.; Ben Salah, I. Removal of Heavy Metals from Mine Water Using a Hybrid Electrocoagulation-Ceramic Membrane Filtration Process. Desalination Water Treat. 2024, 320, 100730. [Google Scholar] [CrossRef]
- Tabish, M.; Tabinda, A.B.; Mazhar, Z.; Yasar, A.; Ansar, J.; Wasif, I. Physical, Chemical and Biological Treatment of Textile Wastewater for Removal of Dyes and Heavy Metals. Desalination Water Treat. 2024, 320, 100842. [Google Scholar] [CrossRef]
- Razzak, S.A.; Faruque, M.O.; Alsheikh, Z.; Alsheikhmohamad, L.; Alkuroud, D.; Alfayez, A.; Hossain, S.M.Z.; Hossain, M.M. A Comprehensive Review on Conventional and Biological-Driven Heavy Metals Removal from Industrial Wastewater. Environ. Adv. 2022, 7, 100168. [Google Scholar] [CrossRef]
- Al-kadhi, N.S.; Abdelrahman, E.A.; Alamro, F.S.; Shah, R.K. Synthesis of Novel Magnesium Ferrite Schiff Base Chitosan Nanocomposite for Efficient Removal of Pb (II) Ions from Aqueous Media. Sci. Rep. 2025, 15, 4153. [Google Scholar] [CrossRef] [PubMed]
- Precious, N.; Patience, T.; Kweinor, E.; Rathilal, S. Review on Advancing Heavy Metals Removal: The Use of Iron Oxide Nanoparticles and Microalgae-Based Adsorbents. Clean. Chem. Eng. 2025, 11, 100137. [Google Scholar] [CrossRef]
- Lellala, K.; Behera, S.K.; Srivastava, P.; Saeed, W.S.; Haidyrah, A.S.; Burile, A.N. Fe3O4 Nanoparticles Decorated on N-Doped Graphene Oxide Nanosheets for Elimination of Heavy Metals from Industrial Wastewater and Desulfurization. Diam. Relat. Mater. 2024, 150, 111746. [Google Scholar] [CrossRef]
- Ge, S.; Zhao, S.; Wang, L.; Zhao, Z.; Wang, S.; Tian, C. Exploring Adsorption Capacity and Mechanisms Involved in Cadmium Removal from Aqueous Solutions by Biochar Derived from Euhalophyte. Sci. Rep. 2024, 14, 450. [Google Scholar] [CrossRef]
- Guo, S.; Duan, N.; Dan, Z.; Chen, G.; Shi, F.; Gao, W. G-C3N4 Modified Magnetic Fe3O4 Adsorbent: Preparation, Characterization, and Performance of Zn(II), Pb(II) and Cd(II) Removal from Aqueous Solution. J. Mol. Liq. 2018, 258, 225–234. [Google Scholar] [CrossRef]
- Joseph, I.V.; Tosheva, L.; Doyle, A.M. Simultaneous Removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) Ions from Aqueous Solutions via Adsorption on FAU-Type Zeolites Prepared from Coal Fly Ash. J. Environ. Chem. Eng. 2020, 8, 103895. [Google Scholar] [CrossRef]
- Al-Wasidi, A.S.; Abdelrahman, E.A.; Shah, R.K.; Abdelhakim, N.A.; Saad, F.A. Facile Synthesis of Novel Nanocomposite Composed of Co3O4, MgO, and Mg3B2O6 for Malachite Green Dye Decontamination from Aqueous Media. Sci. Rep. 2024, 14, 30570. [Google Scholar] [CrossRef]
- Singh, A.K.; Hussain, A.; Priyadarshi, M.; Haider, A. Heavy Metals Removal from Synthetic and Industrial Wastewater Using Synthesized Zinc Oxide Nanoparticles. J. Indian Chem. Soc. 2024, 101, 101145. [Google Scholar] [CrossRef]
- Mwebembezi, T.; Wakatuntu, J.; Jjagwe, J.; Kanyesigye, C.; Kulabako, R.N.; Olupot, P.W. Synthesis, Characterization and Application of Steel Waste-Based Iron Oxide Nanoparticles for Removal of Heavy Metals from Industrial Wastewaters. Heliyon 2024, 10, e28153. [Google Scholar] [CrossRef] [PubMed]
- Kaleem, M.; Anjum Minhas, L.; Zaffar Hashmi, M.; Umer Farooqi, H.M.; Waqar, R.; Kamal, K.; Saad Aljaluod, R.; Alarjani, K.M.; Samad Mumtaz, A. Biogenic Synthesis of Iron Oxide Nanoparticles and Experimental Modeling Studies on the Removal of Heavy Metals from Wastewater. J. Saudi Chem. Soc. 2024, 28, 101777. [Google Scholar] [CrossRef]
- Bagdat, S.; Tokay, F.; Demirci, S.; Yilmaz, S.; Sahiner, N. Removal of Cd(II), Co(II), Cr(III), Ni(II), Pb(II) and Zn(II) Ions from Wastewater Using Polyethyleneimine (PEI) Cryogels. J. Environ. Manag. 2023, 329, 117002. [Google Scholar] [CrossRef]
- Hua, R.; Li, Z. Sulfhydryl Functionalized Hydrogel with Magnetism: Synthesis, Characterization, and Adsorption Behavior Study for Heavy Metal Removal. Chem. Eng. J. 2014, 249, 189–200. [Google Scholar] [CrossRef]
- Khalifa, M.E.; Abdelrahman, E.A.; Hassanien, M.M.; Ibrahim, W.A. Application of Mesoporous Silica Nanoparticles Modified with Dibenzoylmethane as a Novel Composite for Efficient Removal of Cd(II), Hg(II), and Cu(II) Ions from Aqueous Media. J. Inorg. Organomet. Polym. Mater. 2020, 30, 2182–2196. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, M. Preparation and Study of the Adsorption Performances of (Mg, Ca, Ba)Fe2O4 Magnetic Porous Materials for Removal of Cd(II) Heavy Metal Ion from Water Environment. Russ. J. Phys. Chem. A 2022, 96, 1761–1767. [Google Scholar] [CrossRef]
- Zhang, L.; Guo, J.; Huang, X.; Wang, W.; Sun, P.; Li, Y.; Han, J. Functionalized Biochar-Supported Magnetic MnFe2O4 Nanocomposite for the Removal of Pb(Ii) and Cd(II). RSC Adv. 2019, 9, 365–376. [Google Scholar] [CrossRef]
- Nguyen, T.H.N.; Mai, D.D.; Hoang, A.S.; Pham, S.H.; Nguyen, T.L. Preparation of Fe3O4/Graphene Oxide Nanocomposites on Activated Carbon for As(V) Removal from Aqueous Solutions. J. Porous Mater. 2024, 31, 659–671. [Google Scholar] [CrossRef]
- Al-Kadhi, N.S.; Abdelrahman, E.A.; Fowzia, A.A.; Fawaz, S.A.; Doaa, A.S. Facile Synthesis of MnCO3/ZrO2/MgCO3 Nanocomposite for High- Efficiency Malachite Green Dye Removal. J. Inorg. Organomet. Polym. Mater. 2025, in press. [Google Scholar] [CrossRef]
Sample | Atomic Percentages | ||||
---|---|---|---|---|---|
% C | % O | % Mg | % Cr | % Fe | |
F600 | 7.0 | 48.4 | 19.0 | 13.5 | 12.1 |
F800 | 3.4 | 42.7 | 17.6 | 19.0 | 17.3 |
Sample | QExp (mg/g) | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|
K1 (1/min) | R2 | Qe (mg/g) | K2 (g/mg·min) | R2 | Qe (mg/g) | ||
F600 | 292.92 | 0.0425 | 0.9767 | 91.19 | 0.00116 | 0.9999 | 294.99 |
F800 | 178.48 | 0.0231 | 0.9615 | 108.13 | 0.000496 | 0.9999 | 177.30 |
Sample | △So (KJ/molK) | △Ho (KJ/mol) | △Go (KJ/mol) | |||
---|---|---|---|---|---|---|
298 | 308 | 318 | 328 | |||
F600 | 0.0737 | −33.10 | −55.06 | −55.79 | −56.54 | −57.27 |
F800 | 0.0479 | −17.06 | −31.34 | −31.82 | −32.29 | −32.77 |
Sample | Langmuir | Freundlich | |||||
---|---|---|---|---|---|---|---|
Qmax (mg/g) | R2 | K3 (L/mg) | K4 (mg/g)(L/mg)1/n | Qmax (mg/g) | 1/n | R2 | |
F600 | 295.86 | 0.9999 | 1.7979 | 161.36 | 348.84 | 0.1455 | 0.5656 |
F800 | 185.19 | 0.9996 | 0.3497 | 91.99 | 196.52 | 0.1433 | 0.5372 |
Adsorbent | Qmax (mg/g) | Ref. |
---|---|---|
Modified biochar | 108.54 | [26] |
Fe3O4/g-C3N4 composite | 102.00 | [27] |
Polyethyleneimine | 16.93 | [33] |
FAU-type zeolite | 74.07 | [28] |
Sulfhydryl functionalized hydrogel | 27.40 | [34] |
SiO2/dibenzoylmethane composite | 55.37 | [35] |
MgFe2O4 nanoparticles | 221.36 | [36] |
Functionalized biochar-supported MnFe2O4 nanocomposite | 127.83 | [37] |
Fe3O4;/graphene oxide nanocomposite | 190.12 | [38] |
F600 | 295.86 | This study |
F800 | 185.19 | This study |
Interfering Ions | Q of F600 (mg/g) | Q of F800 (mg/g) | Reduction in Q of F600 (mg/g) | Reduction in Q of F800 (mg/g) |
---|---|---|---|---|
None (Control) | 292.92 | 178.48 | ---- | ---- |
Na+ | 287.42 | 174.18 | 5.5 | 4.3 |
K+ | 287.92 | 174.68 | 5.0 | 3.8 |
Mg2+ | 272.92 | 163.48 | 20.0 | 15.0 |
Ca2+ | 274.42 | 164.28 | 18.5 | 14.2 |
Cl− | 288.92 | 175.48 | 4.0 | 3.0 |
NO3− | 289.42 | 175.78 | 3.5 | 2.7 |
Effect | V (L) | Co (mg/L) | W (mg) | T (K) | T (min) | pH |
---|---|---|---|---|---|---|
pH | 0.1 | 150 | 50 | 298 | 360 | 2–7 |
Time | 0.1 | 150 | 50 | 298 | 10–100 | 7 |
Temperature | 0.1 | 150 | 50 | 298–328 | 70 (F800) 50 (F600) | 7 |
Concentration | 0.1 | 50–300 | 50 | 298 | 70 (F800) 50 (F600) | 7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdelrahman, E.A.; Shah, R.K.; Abou-Krisha, M.M.; Saad, F.A.; Munshi, A.M. Facile Synthesis and Characterization of Novel Fe0.65Mg0.35Cr2O4@C Nanocomposite for Efficient Removal of Cd(II) Ions from Aqueous Media. Inorganics 2025, 13, 82. https://doi.org/10.3390/inorganics13030082
Abdelrahman EA, Shah RK, Abou-Krisha MM, Saad FA, Munshi AM. Facile Synthesis and Characterization of Novel Fe0.65Mg0.35Cr2O4@C Nanocomposite for Efficient Removal of Cd(II) Ions from Aqueous Media. Inorganics. 2025; 13(3):82. https://doi.org/10.3390/inorganics13030082
Chicago/Turabian StyleAbdelrahman, Ehab A., Reem K. Shah, Mortaga M. Abou-Krisha, Fawaz A. Saad, and Alaa M. Munshi. 2025. "Facile Synthesis and Characterization of Novel Fe0.65Mg0.35Cr2O4@C Nanocomposite for Efficient Removal of Cd(II) Ions from Aqueous Media" Inorganics 13, no. 3: 82. https://doi.org/10.3390/inorganics13030082
APA StyleAbdelrahman, E. A., Shah, R. K., Abou-Krisha, M. M., Saad, F. A., & Munshi, A. M. (2025). Facile Synthesis and Characterization of Novel Fe0.65Mg0.35Cr2O4@C Nanocomposite for Efficient Removal of Cd(II) Ions from Aqueous Media. Inorganics, 13(3), 82. https://doi.org/10.3390/inorganics13030082