Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (258)

Search Parameters:
Keywords = pore structure regulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 21628 KiB  
Article
Key Controlling Factors of Deep Coalbed Methane Reservoir Characteristics in Yan’an Block, Ordos Basin: Based on Multi-Scale Pore Structure Characterization and Fluid Mobility Research
by Jianbo Sun, Sijie Han, Shiqi Liu, Jin Lin, Fukang Li, Gang Liu, Peng Shi and Hongbo Teng
Processes 2025, 13(8), 2382; https://doi.org/10.3390/pr13082382 - 27 Jul 2025
Abstract
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control [...] Read more.
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control mechanism of pore structure on gas migration. In this study, based on high-pressure mercury intrusion (pore size > 50 nm), low-temperature N2/CO2 adsorption (0.38–50 nm), low-field nuclear magnetic resonance technology, fractal theory and Pearson correlation coefficient analysis, quantitative characterization of multi-scale pore–fluid system was carried out. The results show that the multi-scale pore network in the study area jointly regulates the occurrence and migration process of deep coalbed methane in Yan’an through the ternary hierarchical gas control mechanism of ‘micropore adsorption dominant, mesopore diffusion connection and macroporous seepage bottleneck’. The fractal dimensions of micropores and seepage are between 2.17–2.29 and 2.46–2.58, respectively. The shape of micropores is relatively regular, the complexity of micropore structure is low, and the confined space is mainly slit-like or ink bottle-like. The pore-throat network structure is relatively homogeneous, the difference in pore throat size is reduced, and the seepage pore shape is simple. The bimodal structure of low-field nuclear magnetic resonance shows that the bound fluid is related to the development of micropores, and the fluid mobility mainly depends on the seepage pores. Pearson’s correlation coefficient showed that the specific surface area of micropores was strongly positively correlated with methane adsorption capacity, and the nanoscale pore-size dominated gas occurrence through van der Waals force physical adsorption. The specific surface area of mesopores is significantly positively correlated with the tortuosity. The roughness and branch structure of the inner surface of the channel lead to the extension of the migration path and the inhibition of methane diffusion efficiency. Seepage porosity is linearly correlated with gas permeability, and the scale of connected seepage pores dominates the seepage capacity of reservoirs. This study reveals the pore structure and ternary grading synergistic gas control mechanism of deep coal reservoirs in the Yan’an Block, which provides a theoretical basis for the development of deep coalbed methane. Full article
Show Figures

Figure 1

26 pages, 9458 KiB  
Article
Wettability Characteristics of Mixed Sedimentary Shale Reservoirs in Saline Lacustrine Basins and Their Impacts on Shale Oil Energy Replenishment: Insights from Alternating Imbibition Experiments
by Lei Bai, Shenglai Yang, Dianshi Xiao, Hongyu Wang, Jian Wang, Jin Liu and Zhuo Li
Energies 2025, 18(14), 3887; https://doi.org/10.3390/en18143887 - 21 Jul 2025
Viewed by 265
Abstract
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing [...] Read more.
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing properties and the identification of sweet spots. This paper analyzed mixed sedimentary shale samples from the Lucaogou Formation of the Jimsar Sag and the Fengcheng Formation of the Mahu Sag. Methods such as petrographic thin sections, X-ray diffraction, organic matter content analysis, and argon ion polishing scanning electron microscopy were used to examine the lithological and mineralogical characteristics, geochemical characteristics, and pore space characteristics of the mixed sedimentary shale reservoir. Alternating imbibition and nuclear magnetic resonance were employed to quantitatively characterize the wettability of the reservoir and to discuss the effects of compositional factors, lamina types, and pore structure on wettability. Research findings indicate that the total porosity, measured by the alternate imbibition method, reached 72% of the core porosity volume, confirming the effectiveness of alternate imbibition in filling open pores. The Lucaogou Formation exhibits moderate to strong oil-wet wettability, with oil-wet pores predominating and well-developed storage spaces; the Fengcheng Formation has a wide range of wettability, with a higher proportion of mixed-wet pores, strong heterogeneity, and weaker oil-wet properties compared to the Lucaogou Formation. TOC content has a two-segment relationship with wettability, where oil-wet properties increase with TOC content at low TOC levels, while at high TOC levels, the influence of minerals such as carbonates dominates; carbonate content shows an “L” type response to wettability, enhancing oil-wet properties at low levels (<20%), but reducing it due to the continuous weakening effect of minerals when excessive. Lamina types in the Fengcheng Formation significantly affect wettability differentiation, with carbonate-shale laminae dominating oil pores, siliceous laminae contributing to water pores, and carbonate–feldspathic laminae forming mixed pores; the Lucaogou Formation lacks significant laminae, and wettability is controlled by the synergistic effects of minerals, organic matter, and pore structure. Increased porosity strengthens oil-wet properties, with micropores promoting oil adsorption through their high specific surface area, while macropores dominate in terms of storage capacity. Wettability is the result of the synergistic effects of multiple factors, including TOC, minerals, lamina types, and pore structure. Based on the characteristic that oil-wet pores account for up to 74% in shale reservoirs (mixed-wet 12%, water-wet 14%), a wettability-targeted regulation strategy is implemented during actual shale development. Surfactants are used to modify oil-wet pores, while the natural state of water-wet and mixed-wet pores is maintained to avoid interference and preserve spontaneous imbibition advantages. The soaking period is thus compressed from 30 days to 3–5 days, thereby enhancing matrix displacement efficiency. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

13 pages, 3175 KiB  
Article
Effect of Temperature and Pyrolysis Atmosphere on Pore Structure of Sintered Coal Gangue Ceramsites
by Baoqiang Zhao, Xiangjie Duan and Yu Li
Materials 2025, 18(14), 3386; https://doi.org/10.3390/ma18143386 - 18 Jul 2025
Viewed by 254
Abstract
The sintering of coal gangue ceramsites (CGCs) using belt roasting technology involves the recirculation of flue gases and variations in oxygen concentrations. This study investigates the effects of temperature and pyrolysis atmosphere on the pore structure of CGCs at three temperature levels: 600 [...] Read more.
The sintering of coal gangue ceramsites (CGCs) using belt roasting technology involves the recirculation of flue gases and variations in oxygen concentrations. This study investigates the effects of temperature and pyrolysis atmosphere on the pore structure of CGCs at three temperature levels: 600 °C, 950 °C, and 1160 °C. The results revealed that apparent porosity is primarily influenced by O2-promoted weight loss and the densification process, while closed porosity is affected by pyrolysis reactions and crystal phase transformations. Below 950 °C, enhancing the oxidative atmosphere facilitates the preparation of porous CGCs, whereas above 950 °C, reducing the oxidative atmosphere favors the preparation of high-strength CGCs. These findings provide valuable insights for the industrial production of CGCs, offering a basis for optimizing sintering parameters to achieve the desired material properties. The latest production equipment, furnished with adjustable atmospheres (such as belt sintering roasters), can better regulate the mechanical properties of the products. Full article
(This article belongs to the Special Issue Advances in Materials Processing (3rd Edition))
Show Figures

Figure 1

16 pages, 3313 KiB  
Article
Phosphoproteome Reveals the Role of Baicalin in Alleviating rPVL-Induced Cell Cycle Arrest in BMECs
by Ling Hou, Jun Li, Juqing Wang, Qin You, Dongtao Zhang and Xuezhang Zhou
Microorganisms 2025, 13(7), 1673; https://doi.org/10.3390/microorganisms13071673 - 16 Jul 2025
Viewed by 241
Abstract
Panton–Valentine leukocidin (PVL) is a pore-forming toxin secreted by Staphylococcus aureus (S. aureus) and a significant virulence factor that plays a crucial role in the pathogenesis of dairy mastitis. Previous studies by our research group demonstrated that baicalin inhibits the apoptosis [...] Read more.
Panton–Valentine leukocidin (PVL) is a pore-forming toxin secreted by Staphylococcus aureus (S. aureus) and a significant virulence factor that plays a crucial role in the pathogenesis of dairy mastitis. Previous studies by our research group demonstrated that baicalin inhibits the apoptosis and hyperphosphorylation of cytoskeletal proteins induced by recombinant Panton–Valentine leukocidin (rPVL) in bovine mammary epithelial cells (BMECs). However, the effects of baicalin on the proliferation of BMECs and the underlying mechanism remain unclear. Consequently, this study aimed to explore this underlying mechanism through an LC-MS/MS analysis performed in 4D data-independent acquisition (DIA) mode. Quantitative analysis identified 757 differentially expressed phosphoproteins, among which phosphorylation levels of proteins involved in BMEC proliferation and cell cycle regulation exhibited significant alterations (p < 0.05). rPVL inhibited BMEC proliferation in a dose-dependent manner and induced G0/G1 phase arrest and dephosphorylation of the cell-cycle-related proteins BCLAF1S285, CDK7T170, NF2S518, and PKM2S37. Preintervention with baicalin significantly upregulated the expression and phosphorylation of these proteins and alleviated the G0/G1 phase arrest induced by rPVL in BMECs in vitro. The establishment of the mitotic state in BMECs due to the effect of baicalin appears to be closely related to the regulation of the phosphorylation of CDK7, PKM2, BCLAF1, and NF2. Moreover, in vivo analysis revealed that S. aureus ATCC49775 and rPVL induced dramatic structural destruction and pathological impairment of mammary gland tissues in mice and that these histopathological changes were ameliorated after baicalin intervention. Quantitative immunohistochemical analysis revealed that baicalin mitigated the rPVL-induced dephosphorylation of the aforementioned cell-cycle-related proteins and increased their phosphorylation. Both in vitro and in vivo experimental evidence demonstrated that baicalin effectively reversed rPVL-induced G0/G1 phase arrest in BMECs (p < 0.01) by significantly increasing the phosphorylation levels of cell cycle regulatory proteins (p < 0.05). Additionally, baicalin alleviates pathological damage to mammary gland tissues in mouse models. These data suggest that baicalin possesses antibacterial and antitoxin effects, indicating that it is an effective preventive agent against bovine mastitis. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

31 pages, 7541 KiB  
Article
Harnessing Bacillus subtilis–Moss Synergy: Carbon–Structure Optimization for Erosion-Resistant Barrier Formation in Cold Mollisols
by Tianxiao Li, Shunli Zheng, Zhaoxing Xiao, Qiang Fu, Fanxiang Meng, Mo Li, Dong Liu and Qingyuan Liu
Agriculture 2025, 15(14), 1465; https://doi.org/10.3390/agriculture15141465 - 8 Jul 2025
Viewed by 247
Abstract
Soil degradation exerts profound impacts on soil ecological functions, global food security, and human development, making the development of effective technologies to mitigate degradation a critical research focus. Microorganisms play a leading role in rehabilitating degraded land, improving soil hydraulic properties, and enhancing [...] Read more.
Soil degradation exerts profound impacts on soil ecological functions, global food security, and human development, making the development of effective technologies to mitigate degradation a critical research focus. Microorganisms play a leading role in rehabilitating degraded land, improving soil hydraulic properties, and enhancing soil structural stability. Mosses contribute to soil particle fixation through their unique rhizoid structures; however, the mechanisms underlying their interactions in mixed inoculation remain unclear. Therefore, this study addresses soil and water loss caused by rainfall erosion in the cold black soil region. We conducted controlled laboratory experiments cultivating Bacillus subtilis and cold-adapted moss species, evaluating the erosion mitigation effects of different biological treatments under gradient slopes (3°, 6°, 9°) and rainfall intensities (70 mm h−1, 120 mm h−1), and elucidating their carbon-based structural reinforcement mechanism. The results indicated that compared to the control group, Treatment C significantly increased the mean weight diameter (MWD) and geometric mean diameter (GMD) of soil aggregates by 121.6% and 76.75%, respectively. In separate simulated rainfall events at 70 mm h−1 and 120 mm h−1, Treatment C reduced soil loss by 95.70% and 96.75% and decreased runoff by 38.31% and 67.21%, respectively. Crucially, the dissolved organic carbon (DOC) loss rate in Treatment C was only 21.98%, significantly lower than that in Treatment A (32.32%), Treatment B (22.22%), and the control group (51.07%)—representing a 59.41% reduction compared to the control. This demonstrates the following: (1) Bacillus subtilis enhances microbial metabolism, driving carbon conversion into stable pools, while mosses reduce carbon leaching via physical barriers, synergistically forming a dual “carbon protection–structural reinforcement” barrier. (2) The combined inoculation optimizes soil structure by increasing the proportion of large soil particles and enhancing aggregate stability, effectively suppressing soil loss even under extreme rainfall erosion. This study elucidates, for the first time, the biological pathway through which microbe–moss interactions achieve synergistic carbon sequestration and erosion resistance by regulating aggregate formation and pore water dynamics. It provides a scalable “carbon–structure”-optimized biotechnology system (co-inoculation of Bacillus subtilis and moss) for the ecological restoration of the cold black soil region. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

22 pages, 4025 KiB  
Article
Effects of Different Land Use Types on Soil Quality and Microbial Diversity in Paddy Soil
by Ximei Zhao, Fengyun Xiang, Xicheng Wang, Mengchen Yang and Jifu Li
Agronomy 2025, 15(7), 1628; https://doi.org/10.3390/agronomy15071628 - 3 Jul 2025
Viewed by 339
Abstract
This study investigated the effects of three land use patterns—rice (Oryza sativa L.)–rapeseed (Brassica napus L.) rotation (Rapeseed), rice–shrimp (Procambarus clarkii G.) rotation (Shrimp), and the conversion of paddy fields to forestland (Forestland)—on aggregate structure, nutrient content, and microbial diversity in [...] Read more.
This study investigated the effects of three land use patterns—rice (Oryza sativa L.)–rapeseed (Brassica napus L.) rotation (Rapeseed), rice–shrimp (Procambarus clarkii G.) rotation (Shrimp), and the conversion of paddy fields to forestland (Forestland)—on aggregate structure, nutrient content, and microbial diversity in rice soils in Chuandian Town, Jingzhou District, Jianghan Plain, central China. The results revealed that the Shrimp treatment significantly increased soil organic matter (SOM), available nitrogen (AN), and available phosphorus (AP) content in the surface soil (0–10 cm) while reducing soil bulk density and improving pore structure. Forestland exhibited higher aggregate stability in deeper soil layers (20–40 cm), particularly in the 0.053–0.25 mm size fraction. Microbial diversity analysis showed that bacterial richness (Chao1 index) and diversity (Shannon index) were significantly higher in the Shrimp and Rapeseed treatments compared to those in the Forestland treatment, with Proteobacteria and Chloroflexi being the dominant bacterial phyla. Fungal communities were dominated by Ascomycota, withfForestland showing greater fungal richness in deeper soil. Soil depth significantly influenced aggregates, nutrients, and microbial diversity, with surface soil exhibiting higher values for these parameters than deeper layers. Redundancy analysis indicated that SOM, AP, and pH were the key drivers of bacterial community variation, while fungal communities were more influenced by nitrogen and porosity. Path analysis further demonstrated that land use patterns indirectly affected microbial diversity via altering aggregate structure and nutrient availability. Overall, the Shrimp treatment outperformed others in improving soil structure and nutrient supply, whereas the Forestland treatment was more conducive to promoting aggregate stability in deeper soil. Land use patterns indirectly regulated microbial communities through modifying soil aggregate structure and nutrient status, thereby influencing soil ecosystem health and stability. This study provides a theoretical basis for the sustainable management of rice soils, suggesting the optimization of rotation patterns in agricultural production to synergistically enhance soil physical, chemical, and biological properties. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

22 pages, 2896 KiB  
Article
Properties and Reaction Mechanism of Brucite-Based Magnesium Phosphate Cement Modified by Ammonium Chloride
by Yueping Chen, Daxing Zhou, Xiaolong Liu, Bin Yang, Hui Lin, Yue Li and Jiale Shen
Materials 2025, 18(13), 3021; https://doi.org/10.3390/ma18133021 - 26 Jun 2025
Viewed by 315
Abstract
Aiming at the problem of synergistic regulation of setting time and strength of brucite-based magnesium phosphate cement (BMPC), this study used ammonium chloride (AC) as a variable, and revealed the regulation mechanism of AC on the hydration behavior of BMPC through the tests [...] Read more.
Aiming at the problem of synergistic regulation of setting time and strength of brucite-based magnesium phosphate cement (BMPC), this study used ammonium chloride (AC) as a variable, and revealed the regulation mechanism of AC on the hydration behavior of BMPC through the tests of setting time, fluidity, and compressive strength, as well as the monitoring of pH-ion concentration, and the microanalysis of XRD-TG-MIP. The results showed that the optimal performance combination of BMPC (setting time of 16 min, fluidity of 120 mm, and compressive strength of 20.5/30.7/54.5 MPa at 3 h/1 d/28 d, respectively) was obtained when AC was doped at a dosage of 4%. The mechanism of retardation stems from the fact that the addition of AC inhibits the dissolution rate of ADP and retards the hydration reaction of Mg2+ and PO43. An appropriate amount of AC can optimize the pore structure of the BMPC matrix and improve the compressive strength of the matrix. The BMPC system based on complete replacement of magnesite by brucite not only significantly reduces carbon emission and cost, but also provides a new path for the development of low-carbon MPC. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

15 pages, 3043 KiB  
Article
Synthesis of Defective MOF-801 via Air–Liquid Segmented Flow for Catalytic Transfer Hydrogenation of Furfural
by Yuxuan Liu, Qiuju Fu, Weijing Niu, Yingxin Zhang, Wenpeng Xie, Huimin Jiang, Liting Yan, Guangda Li and Xuebo Zhao
Molecules 2025, 30(13), 2697; https://doi.org/10.3390/molecules30132697 - 22 Jun 2025
Viewed by 492
Abstract
As one of the most important platform chemicals, furfural (FAL) can be converted into high-value-added products such as furfuryl alcohol (FOL) through multiple pathways. Zirconium-based MOF-801 demonstrates exceptional catalytic potential for FAL conversion via catalytic transfer hydrogenation (CTH), owing to its unique crystal [...] Read more.
As one of the most important platform chemicals, furfural (FAL) can be converted into high-value-added products such as furfuryl alcohol (FOL) through multiple pathways. Zirconium-based MOF-801 demonstrates exceptional catalytic potential for FAL conversion via catalytic transfer hydrogenation (CTH), owing to its unique crystal defects generated during growth. In this study, a series of defective MOF-801 samples were efficiently synthesized using an air–liquid segmented microfluidic technique. The characterization results reveal that the air–liquid segmented flow method not only regulates the defect content of MOF-801 to expose more active sites but also adjusts the crystal size and pore structures by precisely controlling the reaction time. The enhanced defects in MOF-801 significantly improved its catalytic performance. A-MOF-801-64 exhibited the highest activity, achieving over 99% FAL conversion and 98% FOL selectivity under mild conditions (130 °C, 12 h) using isopropanol as the hydrogen donor; this performance surpassed that of other reported Zr-based catalysts. This study will facilitate the practical applications of defect-engineered MOF-801 in upgrading biomass-derived chemicals. Full article
(This article belongs to the Special Issue Modern Materials in Energy Storage and Conversion—Second Edition)
Show Figures

Graphical abstract

17 pages, 8899 KiB  
Article
Study on Microstructure and Stress Distribution of Laser-GTA Narrow Gap Welding Joint of Ti-6Al-4V Titanium Alloy in Medium Plate
by Zhigang Cheng, Qiang Lang, Zhaodong Zhang, Gang Song and Liming Liu
Materials 2025, 18(13), 2937; https://doi.org/10.3390/ma18132937 - 21 Jun 2025
Viewed by 652
Abstract
Traditional narrow gap welding of thick titanium alloy plates easily produces dynamic molten pool flow instability, poor sidewall fusion, and excessive residual stress after welding, which leads to defects such as pores, cracks, and large welding deformations. In view of the above problems, [...] Read more.
Traditional narrow gap welding of thick titanium alloy plates easily produces dynamic molten pool flow instability, poor sidewall fusion, and excessive residual stress after welding, which leads to defects such as pores, cracks, and large welding deformations. In view of the above problems, this study takes 16-mm-thick TC4 titanium alloy as the research object, uses low-power pulsed laser-GTA flexible heat source welding technology, and uses the flexible regulation of space between the laser, arc, and wire to promote good fusion of the molten pool and side wall metal. By implementing instant ultrasonic impact treatment on the weld surface, the residual stress of the welded specimen is controlled within a certain range to reduce deformation after welding. The results show that the new welding process makes the joint stable, the side wall is well fused, and there are no defects such as pores and cracks. The weld zone is composed of a large number of α′ martensites interlaced with each other to form a basketweave structure. The tensile fracture of the joint occurs at the base metal. The joint tensile strength is 870 MPa, and the elongation after fracture can reach 17.1%, which is 92.4% of that of the base metal. The impact toughness at the weld is 35 J/cm2, reaching 81.8% of that of the base metal. After applying ultrasound, the average residual stress decreased by 96% and the peak residual stress decreased by 94.8% within 10 mm from the weld toe. The average residual stress decreased by 95% and the peak residual stress decreased by 95.5% within 10 mm from the weld root. The residual stress on the surface of the whole welded test plate could be controlled within 200 MPa. Finally, a high-performance thick Ti-alloy plate welded joint with good forming and low residual stress was obtained. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

17 pages, 7583 KiB  
Article
The Effect of Drying Methods on the Pore Structure of Balsa Wood Aerogels
by Min Yin, Zongying Fu, Xia Yu, Ximing Wang and Yun Lu
Polymers 2025, 17(12), 1686; https://doi.org/10.3390/polym17121686 - 17 Jun 2025
Viewed by 351
Abstract
Drying constitutes an essential step in aerogel fabrication, where the drying method directly determines the pore structure and consequently influences the material’s functionality. This study employed various drying techniques to prepare balsa-wood-derived aerogels, systematically investigating their effects on microstructure, density, and performance characteristics. [...] Read more.
Drying constitutes an essential step in aerogel fabrication, where the drying method directly determines the pore structure and consequently influences the material’s functionality. This study employed various drying techniques to prepare balsa-wood-derived aerogels, systematically investigating their effects on microstructure, density, and performance characteristics. The results demonstrate that different drying methods regulate aerogels through distinct pore structure modifications. Supercritical CO2 drying optimally preserves the native wood microstructure, yielding aerogels with superior thermal insulation performance. Freeze-drying induces the formation of ice crystals, which reconstructs the microstructure, resulting in aerogels with minimal density, significantly enhanced permeability, and exceptional cyclic water absorption capacity. Vacuum drying, oven drying, and natural drying all lead to significant deformation of the aerogel pore structure. Among them, oven drying increases the pore quantity of aerogels through volumetric contraction, thereby achieving the highest specific surface area. However, aerogels prepared by air drying have the highest density and the poorest thermal insulation performance. This study demonstrates that precise control of liquid surface tension during drying can effectively regulate both the pore architecture and functional performance of wood-derived aerogels. The findings offer fundamental insights into tailoring aerogel properties through optimized drying processes, providing valuable guidance for material design and application development. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

18 pages, 4063 KiB  
Article
Influence of Clinker and Cinder Particle Gradation on the Properties of Blended Cement and Associated Mortars
by Runze Shang, Dexiang Huang, Wenju Cai, Longlong Niu, Bi Chen, Xinyu Zhang, Wei Li and Min Deng
Materials 2025, 18(12), 2864; https://doi.org/10.3390/ma18122864 - 17 Jun 2025
Viewed by 280
Abstract
The high-hydrolysis reactivity cement clinker powder in cement plays a major role in cement’s cementation, while low-hydrolysis reactivity mineral admixture powders, such as slag, m mainly serve as a filler. Through optimizing the particle matching of cement clinker powder and slag powder, the [...] Read more.
The high-hydrolysis reactivity cement clinker powder in cement plays a major role in cement’s cementation, while low-hydrolysis reactivity mineral admixture powders, such as slag, m mainly serve as a filler. Through optimizing the particle matching of cement clinker powder and slag powder, the mechanical properties of cement can be enhanced. In this study, clinker and slag with differing levels of fineness were obtained by separate grinding, and the particle gradation of clinker powder and slag powder in the cement was optimized. Fine clinker particles were mixed with coarse slag particles to systematically explore their effects on the rheology of cement paste, the formation of hydration products, the evolution of the pore structure, and the material’s mechanical properties. Through experimental tests and microscopic analysis, the mechanism whereby particle gradation is regulated by separate grinding was revealed. The findings of the study are as follows: with the same amount of cinder, finer clinker requires a higher water content of standard consistency. The addition of coarse cinder effectively reduces the standard-consistency water requirement of the blended cement. Fine grinding of coal cinder fails to enhance cement strength effectively but markedly raises the standard-consistency water demand. Thus, the specific surface area of coal cinder should be maintained at approximately 210 m2/kg. Full article
Show Figures

Figure 1

16 pages, 3429 KiB  
Article
The Effects of Sand Incorporation on the Pore Structure, Strength, and Fractal Characteristics of Alkali-Activated Slag Cementitious Materials
by Yuchen Ye, Zhenyuan Gu, Yi Wang, Ying Sun, Chenhui Zhu and Jie Yang
Materials 2025, 18(12), 2797; https://doi.org/10.3390/ma18122797 - 13 Jun 2025
Viewed by 339
Abstract
Sand content plays a critical role in regulating the structural compactness and strength development of alkali-activated slag cementitious materials. In this study, three types of specimens—pure slag paste, standard sand mortar, and fine sand mortar—were prepared to investigate the effects of sand incorporation [...] Read more.
Sand content plays a critical role in regulating the structural compactness and strength development of alkali-activated slag cementitious materials. In this study, three types of specimens—pure slag paste, standard sand mortar, and fine sand mortar—were prepared to investigate the effects of sand incorporation on pore structure and fractal characteristics. Mechanical properties, pore structure, and micro-morphology were systematically evaluated at different curing ages. Mercury intrusion porosimetry (MIP) was employed to measure porosity, pore size distribution, and the threshold pore diameter, while fractal dimensions were calculated to quantify pore complexity and compactness. The results showed that the pure slag paste achieved the highest compressive strength at all ages but posed environmental concerns due to high resource consumption. In contrast, sand-incorporated mortars exhibited stable strength development and continuous pore structure refinement. Notably, the use of fine sand in Group C reduced slag content by approximately 5.6% compared to Group A, contributing to lower CO2 emissions and enhanced sustainability. Fractal analysis revealed a strong correlation between fractal dimension, pore compactness, and compressive strength. A higher fractal dimension indicated a more complex and interconnected pore network, promoting matrix densification. At 90 days, Group C achieved the highest fractal dimension and lowest porosity, attributed to the micro-filling effect of fine sand, which facilitated the formation of a denser and more continuous gel network. These findings provide a theoretical foundation for the multiscale characterization of alkali-activated cementitious systems and support the design of more sustainable mix formulations. Full article
Show Figures

Figure 1

13 pages, 2207 KiB  
Article
Electrostatic Dual-Layer Solvent-Free Cathodes for High-Performance Lithium-Ion Batteries
by Haojin Guo, Chengrui Zhang, Yujie Ma, Ning Liu and Zhifeng Wang
Energies 2025, 18(12), 3112; https://doi.org/10.3390/en18123112 - 12 Jun 2025
Viewed by 659
Abstract
Slurry-cast (SLC) electrode manufacturing faces problems such as thickness limitation and material stratification, which are caused by applying toxic organic solvents. Solvent-free electrode technology, as a sustainable alternative, could get rid of issues generated by solvents. In this study, dual-layer NCM811 solvent-free electrodes [...] Read more.
Slurry-cast (SLC) electrode manufacturing faces problems such as thickness limitation and material stratification, which are caused by applying toxic organic solvents. Solvent-free electrode technology, as a sustainable alternative, could get rid of issues generated by solvents. In this study, dual-layer NCM811 solvent-free electrodes (DLEs) are fabricated via an electrostatic powder deposition method with an active material-rich upper layer to provide high energy output, while the more binder–conductor content base layer improves conductivity and contact with current collectors. The dual-layered structure overwhelms the single-layer electrode (SE) with stable cycling performance caused by more regulated pore structures. DLE maintains 74% capacity retention after 100 cycles at 0.3 C, while the SLC shows only 60% capacity retention. Additionally, DLE shows excellent rate performance at various rates, with 207.3 mAh g−1, 193.9 mAh g−1, 173.9 mAh g−1, 157.3 mAh g−1, and 120.4 mAh g−1 at 0.1 C, 0.2 C, 0.5 C, 1.0 C, and 2.0 C, respectively. The well-designed DLE cathodes exhibit superior discharge-specific capacities, rate performance, and improved cycling stability than traditional SLC cathodes. It enlightens the path toward new structure innovations of solvent-free electrodes. Full article
Show Figures

Graphical abstract

27 pages, 7784 KiB  
Article
Performance and Mechanism Analysis of an Anti-Skid Wear Layer of Active Slow-Release Ice–Snow Melting Modified by Gels
by Yuanzhao Chen, Zhenxia Li, Tengteng Guo, Chenze Fang, Peng Guo, Chaohui Wang, Bing Bai, Weiguang Zhang, Haobo Yan and Qi Chen
Gels 2025, 11(6), 449; https://doi.org/10.3390/gels11060449 - 11 Jun 2025
Viewed by 513
Abstract
Winter pavement maintenance faces challenges in balancing large-scale upkeep and driving safety, particularly regarding the application of active slow-release materials. This study proposes a gel-modified salt-storing ceramsite asphalt mixture to enhance ice-melting capabilities through controlled salt release. By replacing a conventional coarse aggregate [...] Read more.
Winter pavement maintenance faces challenges in balancing large-scale upkeep and driving safety, particularly regarding the application of active slow-release materials. This study proposes a gel-modified salt-storing ceramsite asphalt mixture to enhance ice-melting capabilities through controlled salt release. By replacing a conventional coarse aggregate with salt-storing ceramsite in SMA-10 graded mixtures (0–80% content), we systematically evaluate its mechanical performance and de-icing functionality. The experimental results demonstrate that 40% salt-storing ceramsite content optimizes high-temperature stability while maintaining acceptable low-temperature performance and water resistance. Microstructural analysis reveals that silicone–acrylic emulsion forms a hydrophobic film on ceramsite surfaces, enabling uniform salt distribution and sustained release. The optimal 10% gel modification achieves effective salt retention and controlled release through pore-structure regulation. These findings establish a 40–60% salt-storing ceramsite content range as the practical range for winter pavement applications, offering insights into the design of durable snow-melting asphalt surfaces. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

21 pages, 2074 KiB  
Article
Influence of Clay Content on the Compaction and Permeability Characteristics of Sandstone Reservoirs
by Jin Pang, Tongtong Wu, Chunxi Zhou, Haotian Chen, Jiaao Gao and Xinan Yu
Processes 2025, 13(6), 1835; https://doi.org/10.3390/pr13061835 - 10 Jun 2025
Viewed by 436
Abstract
Clay content is a critical geological parameter influencing the pore structure, compaction sensitivity, and flow capacity of sandstone reservoirs. In this study, representative Tertiary sandstones from a major sedimentary basin in western China were selected, covering natural and synthetic core samples with clay [...] Read more.
Clay content is a critical geological parameter influencing the pore structure, compaction sensitivity, and flow capacity of sandstone reservoirs. In this study, representative Tertiary sandstones from a major sedimentary basin in western China were selected, covering natural and synthetic core samples with clay contents ranging from 20% to 70%. Utilizing a self-developed apparatus capable of both static and dynamic compaction experiments, we systematically performed staged static loading and gas–water two-phase displacement tests. This enabled us to obtain comprehensive datasets on porosity, permeability, pressure response, and two-phase flow characteristics under various clay content, confining pressure, and gas drive rate conditions. Results demonstrate that high clay content leads to pronounced pore structure compaction and substantially greater permeability reductions compared to low-clay reservoirs, indicating heightened stress sensitivity. The synergy between gas drive rate and confining pressure regulates intralayer water production efficiency: initially, increased gas drive enhances mobile water production, but efficiency drops sharply at late stages due to pore contraction and increased bound water. As confining pressure increases, the mixed-flow region for two-phase flow shrinks, with water permeability decreasing sharply and gas permeability increasing, revealing the dynamic fluid transport and productivity decline mechanisms controlled by effective stress. The research deepens understanding of compaction–flow mechanisms in clay-rich sandstones, offering bases for evaluating reservoir stress sensitivity and supporting efficient, sustainable gas reservoir development, which increasingly helps offset global energy shortages. Full article
Show Figures

Figure 1

Back to TopTop