Synthesis of Defective MOF-801 via Air–Liquid Segmented Flow for Catalytic Transfer Hydrogenation of Furfural
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the Catalyst
2.2. Evaluation of the Catalytic Performance of A-MOF-801-t
2.3. Influence of Reaction Conditions
3. Experimental Section
3.1. Synthesis Methodology
3.1.1. Synthesis of A-MOF-801-t
3.1.2. Synthesis of ST-MOF-801
3.2. Structural Characterization
3.3. Catalytic Activity Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Racha, A.; Samanta, C.; Sreekantan, S.; Marimuthu, B. Review on Catalytic Hydrogenation of Biomass-Derived Furfural to Furfuryl Alcohol: Recent Advances and Future Trends. Energy Fuels 2023, 37, 11475–11496. [Google Scholar] [CrossRef]
- Nhien, L.C.; Nguyen Van Duc, L.; Kim, S.; Lee, M. Techno-economic assessment of hybrid extraction and distillation processes for furfural production from lignocellulosic biomass. Biotechnol. Biofuels 2017, 10, 81. [Google Scholar] [CrossRef]
- Yang, M.; Yuan, Z.; Peng, R.; Wang, S.; Zou, Y. Recent Progress on Electrocatalytic Valorization of Biomass-Derived Organics. Energy Environ. Mater. 2022, 5, 1117–1138. [Google Scholar] [CrossRef]
- Jaswal, A.; Singh, P.P.; Mondal, T. Furfural—A versatile, biomass-derived platform chemical for the production of renewable chemicals. Green Chem. 2022, 24, 510–551. [Google Scholar] [CrossRef]
- Li, X.; Jia, P.; Wang, T. Furfural: A Promising Platform Compound for Sustainable Production of C4 and C5 Chemicals. ACS Catal. 2016, 6, 7621–7640. [Google Scholar] [CrossRef]
- Lee, H.; Lee, S.; An, K. Design and Application of Mesoporous Catalysts for Liquid-Phase Furfural Hydrogenation. Molecules 2025, 30, 1270. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, A.; Rache, L.Y.; Brijaldo, M.H.; Romanelli, G.P.; Luque, R.; Martinez, J.J. Biocatalytic transformation of furfural into furfuryl alcohol using resting cells of Bacillus cereus. Catal. Today 2021, 372, 220–225. [Google Scholar] [CrossRef]
- Date, N.S.; Hengne, A.M.; Huang, K.W.; Chikate, R.C.; Rode, C.V. Single pot selective hydrogenation of furfural to 2-methylfuran over carbon supported iridium catalysts. Green Chem. 2018, 20, 2027–2037. [Google Scholar] [CrossRef]
- Nandiwale, K.Y.; Vishwakarma, M.; Rathod, S.; Simakova, I.; Bokade, V.V. One-Pot Cascade Conversion of Renewable Furfural to Levulinic Acid over a Bifunctional H3PW12O40SiO2 Catalyst in the Absence of External H2. Energy Fuels 2021, 35, 539–545. [Google Scholar] [CrossRef]
- Cao, P.; Lin, L.; Qi, H.; Chen, R.; Wu, Z.; Li, N.; Zhang, T.; Luo, W. Zeolite-Encapsulated Cu Nanoparticles for the Selective Hydrogenation of Furfural to Furfuryl Alcohol. ACS Catal. 2021, 11, 10246–10256. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, Y.; Rao, Z.; Liu, H.; Zhang, R.; Jia, W.; Zhang, J.; Sun, Y.; Peng, L. High-performance CuNi-alloy catalysts for efficient solvent-free hydrogenation furfural to furfuryl alcohol. Appl. Catal. B-Environ. Energy 2025, 371, 125228. [Google Scholar] [CrossRef]
- Guo, X.; Yu, B.; Wang, Z.; Li, S.; Chen, X.; Yang, Y. Selective hydrogenation of furfural to furfuryl alcohol over Cu/CeCoOx in aqueous phase. Mol. Catal. 2022, 529, 112553. [Google Scholar] [CrossRef]
- Taylor, M.J.; Durndell, L.J.; Isaacs, M.A.; Parlett, C.M.A.; Wilson, K.; Lee, A.F.; Kyriakou, G. Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions. Appl. Catal. B-Environ. 2016, 180, 580–585. [Google Scholar] [CrossRef]
- Tang, Y.; Qiu, M.; Yang, J.; Shen, F.; Wang, X.; Qi, X. One-pot self-assembly synthesis of Ni-doped ordered mesoporous carbon for quantitative hydrogenation of furfural to furfuryl alcohol. Green Chem. 2021, 23, 1861–1870. [Google Scholar] [CrossRef]
- Wang, J.; Yang, J.; Bing, Z.; Gao, Y.; Yang, T.; Liu, Q.; Zhang, M.; Liu, Z. Refining Surface Copper Species on Cu/SiO2 Catalysts to Boost Furfural Hydrogenation to Furfuryl Alcohol. Molecules 2025, 30, 225. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Yi, W.; Yang, J.; Jiang, K.; Yang, T.; Li, Z.; Zhang, M.; Liu, Z.; Wu, B. Effect of Calcination Atmosphere on the Performance of Cu/Al2O3 Catalyst for the Selective Hydrogenation of Furfural to Furfuryl Alcohol. Molecules 2024, 29, 2753. [Google Scholar] [CrossRef]
- Gilkey, M.J.; Xu, B. Heterogeneous Catalytic Transfer Hydrogenation as an Effective Pathway in Biomass Upgrading. ACS Catal. 2016, 6, 1420–1436. [Google Scholar] [CrossRef]
- Lin, Y.; Bu, Q.; Xu, J.; Liu, X.; Zhang, X.; Lu, G.-P.; Zhou, B. Hf-MOF catalyzed Meerwein-Ponndorf-Verley (MPV) reduction reaction: Insight into reaction mechanism. Mol. Catal. 2021, 502, 111405. [Google Scholar] [CrossRef]
- Minambres, J.F.; Cejka, J. Meerwein-Ponndorf-Verley reduction in current heterogeneous catalysis research: A review. Catal. Rev.-Sci. Eng. 2023, 66, 2111–2152. [Google Scholar] [CrossRef]
- Plessers, E.; Fu, G.; Tan, C.Y.X.; De Vos, D.E.; Roeffaers, M.B.J. Zr-Based MOF-808 as Meerwein-Ponndorf-Verley Reduction Catalyst for Challenging Carbonyl Compounds. Catalysts 2016, 6, 104. [Google Scholar] [CrossRef]
- Kalong, M.; Hongmanorom, P.; Ratchahat, S.; Koo-amornpattana, W.; Faungnawakij, K.; Assabumrungrat, S.; Srifa, A.; Kawi, S. Hydrogen-free hydrogenation of furfural to furfuryl alcohol and 2-methyl-furan over Ni and Co-promoted Cu/γ-Al2O3 catalysts. Fuel Process. Technol. 2021, 214, 106721. [Google Scholar] [CrossRef]
- Ren, Z.; Fang, L.; Cui, M.; Lv, T.; Wu, H.; Feng, Z.; Feng, Z.; Meng, C.; Ren, L. Acid Treatment for Regulating Hf Sites of the Hierarchical Hf-B-BEA Zeolite, Thereby Boosting Its MPV Reaction Performance. Ind. Eng. Chem. Res. 2023, 62, 10057–10068. [Google Scholar] [CrossRef]
- Garcia-Sancho, C.; Jimenez-Gomez, C.P.; Viar-Antunano, N.; Cecilia, J.A.; Moreno-Tost, R.; Merida-Robles, J.M.; Requies, J.; Maireles-Torres, P. Evaluation of the ZrO2/Al2O3 system as catalysts in the catalytic transfer hydrogenation of furfural to obtain furfuryl alcohol. Appl. Catal. A-Gen. 2021, 609, 117905. [Google Scholar] [CrossRef]
- Ye, L.; Han, Y.; Zhang, M.; Yu, Z.; Lu, X. Enhanced sorption of carbonyl groups by zirconium hydroxide modified with polydopamine for highly selective production of alcohols via MPV reduction under mild conditions. Fuel 2023, 331, 125786. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, D.; Liang, R.; Triantafyllidis, K.S.; Yang, W.; Len, C. Transfer hydrogenation of furfural to furfuryl alcohol over modified Zr-based catalysts using primary alcohols as H-donors. Mol. Catal. 2021, 499, 111199. [Google Scholar] [CrossRef]
- Fu, Q.; Liu, D.; Niu, W.; Zhang, S.; Chen, R.; Wang, Y.; Zhao, P.; Jiang, H.; Zhao, Y.; Yang, L.; et al. Defect-engineered MOF-808 with highly exposed Zr sites as highly efficient catalysts for catalytic transfer hydrogenation of furfural. Fuel 2022, 327, 125085. [Google Scholar] [CrossRef]
- Plessers, E.; De Vos, D.E.; Roeffaers, M.B.J. Chemoselective reduction of α,β-unsaturated carbonyl compounds with UiO-66 materials. J. Catal. 2016, 340, 136–143. [Google Scholar] [CrossRef]
- Yaghi, O.M.; O’Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705–714. [Google Scholar] [CrossRef]
- Zhou, H.-C.; Long, J.R.; Yaghi, O.M. Introduction to Metal-Organic Frameworks. Chem. Rev. 2012, 112, 673–674. [Google Scholar] [CrossRef]
- Yoon, M.; Srirambalaji, R.; Kim, K. Homochiral Metal-Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chem. Rev. 2012, 112, 1196–1231. [Google Scholar] [CrossRef]
- Dong, P.; Gao, K.; Zhang, L.; Huan, H.; Xie, M.-H.; Yang, X.-L.; Zhang, J. Hydrogen bond-assisted construction of MOF/semiconductor heterojunction photocatalysts for highly efficient electron transfer. Appl. Catal. B-Environ. Energy 2024, 357, 124297. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, Q.; Jiang, M.; Yao, J. Tailoring the Properties of UiO-66 through Defect Engineering: A Review. Ind. Eng. Chem. Res. 2019, 58, 17646–17659. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, C.; Jiang, T.; Li, X. Research progress of defect-engineered UiO-66(Zr) MOFs for photocatalytic hydrogen production. Front. Energy 2021, 15, 656–666. [Google Scholar] [CrossRef]
- Chen, X.; Lyu, Y.; Wang, Z.; Qiao, X.; Gates, B.C.; Yang, D. Tuning Zr12O22 Node Defects as Catalytic Sites in the Metal-Organic Framework hcp UiO-66. ACS Catal. 2020, 10, 2906–2914. [Google Scholar] [CrossRef]
- Gu, Y.; Xu, W.; Sun, Y. Enhancement of catalytic performance over MOF-808(Zr) by acid treatment for oxidative desulfurization of dibenzothiophene. Catal. Today 2021, 377, 213–220. [Google Scholar] [CrossRef]
- Wissmann, G.; Schaate, A.; Lilienthal, S.; Bremer, I.; Schneider, A.M.; Behrens, P. Modulated synthesis of Zr-fumarate MOF. Microporous Mesoporous Mater. 2012, 152, 64–70. [Google Scholar] [CrossRef]
- Zahn, G.; Schulze, H.A.; Lippke, J.; Koenig, S.; Sazama, U.; Froeba, M.; Behrens, P. A water-born Zr-based porous coordination polymer: Modulated synthesis of Zr-fumarate MOF. Microporous Mesoporous Mater. 2015, 203, 186–194. [Google Scholar] [CrossRef]
- Furukawa, H.; Gandara, F.; Zhang, Y.-B.; Jiang, J.; Queen, W.L.; Hudson, M.R.; Yaghi, O.M. Water Adsorption in Porous Metal-Organic Frameworks and Related Materials. J. Am. Chem. Soc. 2014, 136, 4369–4381. [Google Scholar] [CrossRef]
- Zhao, G.; Xu, W.; Wen, C.; Wang, Y.; Zhu, Z.; Cui, P.; Zhong, L. Optimizing doped graphene oxide in MOF-801 to enhance CO2 adsorption capacity and CO2/N2 separation performance. Sep. Purif. Technol. 2025, 361, 131408. [Google Scholar] [CrossRef]
- Yang, C.; Wu, H.; Yun, J.; Jin, J.; Meng, H.; Caro, J.; Mi, J. Engineering of Defective MOF-801 Nanostructures within Macroporous Spheres for Highly Efficient and Stable Water Harvesting. Adv. Mater. 2023, 35, e2210235. [Google Scholar] [CrossRef]
- Dong, W.; Yan, J.; Ji, T.; Wu, M.; Sun, Y.; He, Y.; Li, X.; Yu, K.; Sun, B.; Liu, Y. Room temperature aqueous synthesis of defect-engineered MOF-801 membrane towards efficient nanofiltration. J. Membr. Sci. 2024, 705, 122946. [Google Scholar] [CrossRef]
- Fu, Q.; Niu, W.; Yan, L.; Xie, W.; Jiang, H.; Zhang, S.; Yang, L.; Wang, Y.; Xing, Y.; Zhao, X. A versatile microfluidic strategy using air-liquid segmented flow for continuous and efficient synthesis of metal-organic frameworks. Mater. Lett. 2023, 343, 134344. [Google Scholar] [CrossRef]
- Faustini, M.; Kim, J.; Jeong, G.-Y.; Kim, J.Y.; Moon, H.R.; Ahn, W.-S.; Kim, D.-P. Microfluidic Approach toward Continuous and Ultrafast Synthesis of Metal-Organic Framework Crystals and Hetero Structures in Confined Microdroplets. J. Am. Chem. Soc. 2013, 135, 14619–14626. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, L.; Liang, H.; Xing, Y.; Yan, L.; Dai, P.; Gu, X.; Zhao, G.; Zhao, X. Superstructure of a Metal-Organic Framework Derived from Microdroplet Flow Reaction: An Intermediate State of Crystallization by Particle Attachment. ACS Nano 2019, 13, 2901–2912. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Chua, Y.S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W. Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal-Organic Framework UiO-66 and Their Important Effects on Gas Adsorption. J. Am. Chem. Soc. 2013, 135, 10525–10532. [Google Scholar] [CrossRef]
- Yin, C.; Liu, Q.; Chen, R.; Liu, J.; Yu, J.; Song, D.; Wang, J. Defect-Induced Method for Preparing Hierarchical Porous Zr MOF Materials for Ultrafast and Large-Scale Extraction of Uranium from Modified Artificial Seawater. Ind. Eng. Chem. Res. 2019, 58, 1159–1166. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, F.; Liang, X.; Dai, G.; Qu, F. Abundant defects of zirconium-organic xerogels: High anhydrous proton conductivities over a wide temperature range and formic acid impedance sensing. J. Colloid Interface Sci. 2022, 607, 181–191. [Google Scholar] [CrossRef]
- Valekar, A.H.; Lee, M.; Yoon, J.W.; Kwak, J.; Hong, D.-Y.; Oh, K.-R.; Cha, G.-Y.; Kwon, Y.-U.; Jung, J.; Chang, J.-S.; et al. Catalytic Transfer Hydrogenation of Furfural to Furfuryl Alcohol under Mild Conditions over Zr-MOFs: Exploring the Role of Metal Node Coordination and Modification. ACS Catal. 2020, 10, 3720–3732. [Google Scholar] [CrossRef]
- Hou, P.; Ma, M.; Zhang, P.; Cao, J.; Liu, H.; Xu, X.; Yue, H.; Tian, G.; Feng, S. Catalytic transfer hydrogenation of furfural to furfuryl alcohol using easy-to-separate core-shell magnetic zirconium hydroxide. New J. Chem. 2021, 45, 2715–2722. [Google Scholar] [CrossRef]
- Shen, Q.; Li, X.; Li, R.; Wu, Y. Application of Metal-Organic Framework Materials and Derived Porous Carbon Materials in Catalytic Hydrogenation. ACS Sustain. Chem. Eng. 2020, 8, 17608–17621. [Google Scholar] [CrossRef]
- Lin, W.S.; Cheng, Y.; Liu, H.; Zhang, J.H.; Peng, L.C. Catalytic transfer hydrogenation of biomass-derived furfural into furfuryl alcohol over zirconium doped nanofiber. Fuel 2023, 331, 125792. [Google Scholar] [CrossRef]
- Kumaravel, S.; Alagarasan, J.K.; Yadav, A.K.; Ali, W.; Lee, M.Y.; Khan, M.E.; Ali, S.K.; Bashiri, A.H.; Zakri, W.; Balu, K. Highly selective catalytic transfer hydrogenation of biomass derived furfural to furfural alcohol over Zr/SBA-15 catalysts. J. Phys. Chem. Solids 2024, 186, 111831. [Google Scholar] [CrossRef]
- Lin, W.S.; Wang, Y.; Zhang, J.H.; Liu, H.; Peng, L.C. Lignin-assembled zirconium-based PNA nanofiber for the catalytic transfer hydrogenation of furfural into furfuryl alcohol. Sustain. Energy Fuels 2023, 7, 3716–3726. [Google Scholar] [CrossRef]
- Cheng, Y.; Liu, Y.; Zhang, J.; Huang, R.; Wang, Y.; Cao, S.; He, L.; Peng, L. Acetic acid-regulated mesoporous zirconium-furandicarboxylate hybrid with high lewis acidity and lewis basicity for efficient conversion of furfural to furfuryl alcohol. Renew. Energy 2022, 184, 115–123. [Google Scholar] [CrossRef]
- Saotta, A.; Allegri, A.; Liuzzi, F.; Fornasari, G.; Dimitratos, N.; Albonetti, S. Ti/Zr/O Mixed Oxides for the Catalytic Transfer Hydrogenation of Furfural to GVL in a Liquid-Phase Continuous-Flow Reactor. Chemengineering 2023, 7, 23. [Google Scholar] [CrossRef]
- Wu, J.; Liang, D.; Song, X.; Liu, T.; Xu, T.; Wang, S.; Zou, Y. Sulfonic groups functionalized Zr-metal organic framework for highly catalytic transfer hydrogenation of furfural to furfuryl alcohol. J. Energy Chem. 2022, 71, 411–417. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Fu, Q.; Niu, W.; Zhang, Y.; Xie, W.; Jiang, H.; Yan, L.; Li, G.; Zhao, X. Synthesis of Defective MOF-801 via Air–Liquid Segmented Flow for Catalytic Transfer Hydrogenation of Furfural. Molecules 2025, 30, 2697. https://doi.org/10.3390/molecules30132697
Liu Y, Fu Q, Niu W, Zhang Y, Xie W, Jiang H, Yan L, Li G, Zhao X. Synthesis of Defective MOF-801 via Air–Liquid Segmented Flow for Catalytic Transfer Hydrogenation of Furfural. Molecules. 2025; 30(13):2697. https://doi.org/10.3390/molecules30132697
Chicago/Turabian StyleLiu, Yuxuan, Qiuju Fu, Weijing Niu, Yingxin Zhang, Wenpeng Xie, Huimin Jiang, Liting Yan, Guangda Li, and Xuebo Zhao. 2025. "Synthesis of Defective MOF-801 via Air–Liquid Segmented Flow for Catalytic Transfer Hydrogenation of Furfural" Molecules 30, no. 13: 2697. https://doi.org/10.3390/molecules30132697
APA StyleLiu, Y., Fu, Q., Niu, W., Zhang, Y., Xie, W., Jiang, H., Yan, L., Li, G., & Zhao, X. (2025). Synthesis of Defective MOF-801 via Air–Liquid Segmented Flow for Catalytic Transfer Hydrogenation of Furfural. Molecules, 30(13), 2697. https://doi.org/10.3390/molecules30132697