Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,851)

Search Parameters:
Keywords = pore specific area

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1797 KiB  
Article
Predicting Adsorption Performance Based on the Properties of Activated Carbon: A Case Study of Shenqi Fuzheng System
by Zhilong Tang, Bo Chen, Wenhua Huang, Xuehua Liu, Xinyu Wang and Xingchu Gong
Chemosensors 2025, 13(8), 279; https://doi.org/10.3390/chemosensors13080279 (registering DOI) - 1 Aug 2025
Abstract
This work aims to solve the problem of product quality fluctuations caused by batch-to-batch variations in the adsorption capacity of activated carbon during the production of traditional Chinese medicine (TCM) injections. In this work, Shenqi Fuzheng injection was selected as an example. Diluted [...] Read more.
This work aims to solve the problem of product quality fluctuations caused by batch-to-batch variations in the adsorption capacity of activated carbon during the production of traditional Chinese medicine (TCM) injections. In this work, Shenqi Fuzheng injection was selected as an example. Diluted Shenqi Extract (DSE), an intermediate in the production process of Shenqi Fuzheng injection, was adsorbed with different batches of activated carbon. The adsorption capacities of adenine, adenosine, calycosin-7-glucoside, and astragaloside IV in DSE were selected as evaluation indices for activated carbon absorption. Characterization methods such as nitrogen adsorption, X-ray photoelectron spectrum (XPS), and Fourier transform infrared (FTIR) were chosen to explore the quantitative relationships between the properties of activated carbon (i.e., specific surface area, pore volume, surface elements, and spectrum) and the adsorption capacities of these four components. It was found that the characteristic wavelengths from FTIR characterization, i.e., 1560 cm−1, 2325 cm−1, 3050 cm−1, and 3442 cm−1, etc., showed the strongest correlation with the adsorption capacities of these four components. Prediction models based on the transmittance at characteristic wavelengths were successfully established via multiple linear regression. In validation experiments of models, the relative errors of predicted adsorption capacities of activated carbon were mostly within 5%, indicating good predictive ability of the models. The results of this work suggest that the prediction method of adsorption capacity based on the mid-infrared spectrum can provide a new way for the quality control of activated carbon. Full article
(This article belongs to the Section Analytical Methods, Instrumentation and Miniaturization)
15 pages, 4556 KiB  
Article
Coordinated Regulation of Photosynthesis, Stomatal Traits, and Hormonal Dynamics in Camellia oleifera During Drought and Rehydration
by Linqing Cao, Chao Yan, Tieding He, Qiuping Zhong, Yaqi Yuan and Lixian Cao
Biology 2025, 14(8), 965; https://doi.org/10.3390/biology14080965 (registering DOI) - 1 Aug 2025
Abstract
Camellia oleifera, a woody oilseed species endemic to China, often experiences growth constraints due to seasonal drought. This study investigates the coordinated regulation of photosynthetic traits, stomatal behavior, and hormone responses during drought–rehydration cycles in two cultivars with contrasting drought resistance: ‘CL53’ [...] Read more.
Camellia oleifera, a woody oilseed species endemic to China, often experiences growth constraints due to seasonal drought. This study investigates the coordinated regulation of photosynthetic traits, stomatal behavior, and hormone responses during drought–rehydration cycles in two cultivars with contrasting drought resistance: ‘CL53’ (tolerant) and ‘CL40’ (sensitive). Photosynthetic inhibition resulted from both stomatal and non-stomatal limitations, with cultivar-specific differences. After 28 days of drought, the net photosynthetic rate (Pn) declined by 26.6% in CL53 and 32.6% in CL40. A stable intercellular CO2 concentration (Ci) in CL53 indicated superior mesophyll integrity and antioxidant capacity. CL53 showed rapid Pn recovery and photosynthetic compensation post-rehydration, in contrast to CL40. Drought triggered extensive stomatal closure; >98% reopened upon rehydration, though the total stomatal pore area remained reduced. Abscisic acid (ABA) accumulation was greater in CL40, contributing to stomatal closure and Pn suppression. CL53 exhibited faster ABA degradation and gibberellin (GA3) recovery, promoting photosynthetic restoration. ABA negatively correlated with Pn, transpiration rate (Tr), stomatal conductance (Gs), and Ci, but positively with stomatal limitation (Ls). Water use efficiency (WUE) displayed a parabolic response to ABA, differing by cultivar. This integrative analysis highlights a coordinated photosynthesis–stomata–hormone network underlying drought adaptation and informs selection strategies for drought-resilient cultivars and precision irrigation. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

18 pages, 2981 KiB  
Article
Development and Evaluation of Mesoporous SiO2 Nanoparticle-Based Sustained-Release Gel Breaker for Clean Fracturing Fluids
by Guiqiang Fei, Banghua Liu, Liyuan Guo, Yuan Chang and Boliang Xue
Polymers 2025, 17(15), 2078; https://doi.org/10.3390/polym17152078 - 30 Jul 2025
Viewed by 142
Abstract
To address critical technical challenges in coalbed methane fracturing, including the uncontrollable release rate of conventional breaker agents and incomplete gel breaking, this study designs and fabricates an intelligent controlled-release breaker system based on paraffin-coated mesoporous silica nanoparticle carriers. Three types of mesoporous [...] Read more.
To address critical technical challenges in coalbed methane fracturing, including the uncontrollable release rate of conventional breaker agents and incomplete gel breaking, this study designs and fabricates an intelligent controlled-release breaker system based on paraffin-coated mesoporous silica nanoparticle carriers. Three types of mesoporous silica (MSN) carriers with distinct pore sizes are synthesized via the sol-gel method using CTAB, P123, and F127 as structure-directing agents, respectively. Following hydrophobic modification with octyltriethoxysilane, n-butanol breaker agents are loaded into the carriers, and a temperature-responsive controlled-release system is constructed via paraffin coating technology. The pore size distribution was analyzed by the BJH model, confirming that the average pore diameters of CTAB-MSNs, P123-MSNs, and F127-MSNs were 5.18 nm, 6.36 nm, and 6.40 nm, respectively. The BET specific surface areas were 686.08, 853.17, and 946.89 m2/g, exhibiting an increasing trend with the increase in pore size. Drug-loading performance studies reveal that at the optimal loading concentration of 30 mg/mL, the loading efficiencies of n-butanol on the three carriers reach 28.6%, 35.2%, and 38.9%, respectively. The release behavior study under simulated reservoir temperature conditions (85 °C) reveals that the paraffin-coated system exhibits a distinct three-stage release pattern: a lag phase (0–1 h) caused by paraffin encapsulation, a rapid release phase (1–8 h) induced by high-temperature concentration diffusion, and a sustained release phase (8–30 h) attributed to nano-mesoporous characteristics. This intelligent controlled-release breaker demonstrates excellent temporal compatibility with coalbed methane fracturing processes, providing a novel technical solution for the efficient and clean development of coalbed methane. Full article
Show Figures

Figure 1

20 pages, 6495 KiB  
Article
Fractal Characterization of Pore Structures in Marine–Continental Transitional Shale Gas Reservoirs: A Case Study of the Shanxi Formation in the Ordos Basin
by Jiao Zhang, Wei Dang, Qin Zhang, Xiaofeng Wang, Guichao Du, Changan Shan, Yunze Lei, Lindong Shangguan, Yankai Xue and Xin Zhang
Energies 2025, 18(15), 4013; https://doi.org/10.3390/en18154013 - 28 Jul 2025
Viewed by 273
Abstract
Marine–continental transitional shale is a promising unconventional gas reservoir, playing an increasingly important role in China’s energy portfolio. However, compared to marine shale, research on marine–continental transitional shale’s fractal characteristics of pore structure and complete pore size distribution remains limited. In this work, [...] Read more.
Marine–continental transitional shale is a promising unconventional gas reservoir, playing an increasingly important role in China’s energy portfolio. However, compared to marine shale, research on marine–continental transitional shale’s fractal characteristics of pore structure and complete pore size distribution remains limited. In this work, high-pressure mercury intrusion, N2 adsorption, and CO2 adsorption techniques, combined with fractal geometry modeling, were employed to characterize the pore structure of the Shanxi Formation marine–continental transitional shale. The shale exhibits generally high TOC content and abundant clay minerals, indicating strong hydrocarbon-generation potential. The pore size distribution is multi-modal: micropores and mesopores dominate, contributing the majority of the specific surface area and pore volume, whereas macropores display a single-peak distribution. Fractal analysis reveals that micropores have high fractal dimensions and structural regularity, mesopores exhibit dual-fractal characteristics, and macropores show large variations in fractal dimension. Characteristics of pore structure is primarily controlled by TOC content and mineral composition. These findings provide a quantitative basis for evaluating shale reservoir quality, understanding gas storage mechanisms, and optimizing strategies for sustainable of oil and gas development in marine–continental transitional shales. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

20 pages, 11478 KiB  
Article
Pore Evolution and Fractal Characteristics of Marine Shale: A Case Study of the Silurian Longmaxi Formation Shale in the Sichuan Basin
by Hongzhan Zhuang, Yuqiang Jiang, Quanzhong Guan, Xingping Yin and Yifan Gu
Fractal Fract. 2025, 9(8), 492; https://doi.org/10.3390/fractalfract9080492 - 28 Jul 2025
Viewed by 235
Abstract
The Silurian marine shale in the Sichuan Basin is currently the main reservoir for shale gas reserves and production in China. This study investigates the reservoir evolution of the Silurian marine shale based on fractal dimension, quantifying the complexity and heterogeneity of the [...] Read more.
The Silurian marine shale in the Sichuan Basin is currently the main reservoir for shale gas reserves and production in China. This study investigates the reservoir evolution of the Silurian marine shale based on fractal dimension, quantifying the complexity and heterogeneity of the shale’s pore structure. Physical simulation experiments were conducted on field-collected shale samples, revealing the evolution of total organic carbon, mineral composition, porosity, and micro-fractures. The fractal dimension of shale pore was characterized using the Frenkel–Halsey–Hill and capillary bundle models. The relationships among shale components, porosity, and fractal dimensions were investigated through a correlation analysis and a principal component analysis. A comprehensive evolution model for porosity and micro-fractures was established. The evolution of mineral composition indicates a gradual increase in quartz content, accompanied by a decline in clay, feldspar, and carbonate minerals. The thermal evolution of organic matter is characterized by the formation of organic pores and shrinkage fractures on the surface of kerogen. Retained hydrocarbons undergo cracking in the late stages of thermal evolution, resulting in the formation of numerous nanometer-scale organic pores. The evolution of inorganic minerals is represented by compaction, dissolution, and the transformation of clay minerals. Throughout the simulation, porosity evolution exhibited distinct stages of rapid decline, notable increase, and relative stabilization. Both pore volume and specific surface area exhibit a trend of decreasing initially and then increasing during thermal evolution. However, pore volume slowly decreases after reaching its peak in the late overmature stage. Fractal dimensions derived from the Frenkel–Halsey–Hill model indicate that the surface roughness of pores (D1) in organic-rich shale is generally lower than the complexity of their internal structures (D2) across different maturity levels. Additionally, the average fractal dimension calculated based on the capillary bundle model is higher, suggesting that larger pores exhibit more complex structures. The correlation matrix indicates a co-evolution relationship between shale components and pore structure. Principal component analysis results show a close relationship between the porosity of inorganic pores, microfractures, and fractal dimension D2. The porosity of organic pores, the pore volume and specific surface area of the main pore size are closely related to fractal dimension D1. D1 serves as an indicator of pore development extent and characterizes the changes in components that are “consumed” or “generated” during the evolution process. Based on mineral composition, fractal dimensions, and pore structure evolution, a comprehensive model describing the evolution of pores and fractal dimensions in organic-rich shale was established. Full article
Show Figures

Figure 1

21 pages, 4796 KiB  
Article
Hydrogeochemical Characteristics, Formation Mechanisms, and Groundwater Evaluation in the Central Dawen River Basin, Northern China
by Caiping Hu, Kangning Peng, Henghua Zhu, Sen Li, Peng Qin, Yanzhen Hu and Nan Wang
Water 2025, 17(15), 2238; https://doi.org/10.3390/w17152238 - 27 Jul 2025
Viewed by 289
Abstract
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely [...] Read more.
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely centered on the upstream Muwen River catchment and downstream Dongping Lake, with some focusing solely on karst groundwater. Basin-wide evaluations suggest good overall groundwater quality, but moderate to severe contamination is confined to the lower Dongping Lake area. The hydrogeologically complex mid-reach, where the Muwen and Chaiwen rivers merge, warrants specific focus. This region, adjacent to populous areas and industrial/agricultural zones, features diverse aquifer systems, necessitating a thorough analysis of its hydrochemistry and origins. This study presents an integrated hydrochemical, isotopic investigation and EWQI evaluation of groundwater quality and formation mechanisms within the multiple groundwater types of the central DRB. Central DRB groundwater has a pH of 7.5–8.2 (avg. 7.8) and TDSs at 450–2420 mg/L (avg. 1075.4 mg/L) and is mainly brackish, with Ca2+ as the primary cation (68.3% of total cations) and SO42− (33.6%) and NO3 (28.4%) as key anions. The Piper diagram reveals complex hydrochemical types, primarily HCO3·SO4-Ca and SO4·Cl-Ca. Isotopic analysis (δ2H, δ18O) confirms atmospheric precipitation as the principal recharge source, with pore water showing evaporative enrichment due to shallow depths. The Gibbs diagram and ion ratios demonstrate that hydrochemistry is primarily controlled by silicate and carbonate weathering (especially calcite dissolution), active cation exchange, and anthropogenic influences. EWQI assessment (avg. 156.2) indicates generally “good” overall quality but significant spatial variability. Pore water exhibits the highest exceedance rates (50% > Class III), driven by nitrate pollution from intensive vegetable cultivation in eastern areas (Xiyangzhuang–Liangzhuang) and sulfate contamination from gypsum mining (Guojialou–Nanxiyao). Karst water (26.7% > Class III) shows localized pollution belts (Huafeng–Dongzhuang) linked to coal mining and industrial discharges. Compared to basin-wide studies suggesting good quality in mid-upper reaches, this intensive mid-reach sampling identifies critical localized pollution zones within an overall low-EWQI background. The findings highlight the necessity for aquifer-specific and land-use-targeted groundwater protection strategies in this hydrogeologically complex region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

26 pages, 21628 KiB  
Article
Key Controlling Factors of Deep Coalbed Methane Reservoir Characteristics in Yan’an Block, Ordos Basin: Based on Multi-Scale Pore Structure Characterization and Fluid Mobility Research
by Jianbo Sun, Sijie Han, Shiqi Liu, Jin Lin, Fukang Li, Gang Liu, Peng Shi and Hongbo Teng
Processes 2025, 13(8), 2382; https://doi.org/10.3390/pr13082382 - 27 Jul 2025
Viewed by 234
Abstract
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control [...] Read more.
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control mechanism of pore structure on gas migration. In this study, based on high-pressure mercury intrusion (pore size > 50 nm), low-temperature N2/CO2 adsorption (0.38–50 nm), low-field nuclear magnetic resonance technology, fractal theory and Pearson correlation coefficient analysis, quantitative characterization of multi-scale pore–fluid system was carried out. The results show that the multi-scale pore network in the study area jointly regulates the occurrence and migration process of deep coalbed methane in Yan’an through the ternary hierarchical gas control mechanism of ‘micropore adsorption dominant, mesopore diffusion connection and macroporous seepage bottleneck’. The fractal dimensions of micropores and seepage are between 2.17–2.29 and 2.46–2.58, respectively. The shape of micropores is relatively regular, the complexity of micropore structure is low, and the confined space is mainly slit-like or ink bottle-like. The pore-throat network structure is relatively homogeneous, the difference in pore throat size is reduced, and the seepage pore shape is simple. The bimodal structure of low-field nuclear magnetic resonance shows that the bound fluid is related to the development of micropores, and the fluid mobility mainly depends on the seepage pores. Pearson’s correlation coefficient showed that the specific surface area of micropores was strongly positively correlated with methane adsorption capacity, and the nanoscale pore-size dominated gas occurrence through van der Waals force physical adsorption. The specific surface area of mesopores is significantly positively correlated with the tortuosity. The roughness and branch structure of the inner surface of the channel lead to the extension of the migration path and the inhibition of methane diffusion efficiency. Seepage porosity is linearly correlated with gas permeability, and the scale of connected seepage pores dominates the seepage capacity of reservoirs. This study reveals the pore structure and ternary grading synergistic gas control mechanism of deep coal reservoirs in the Yan’an Block, which provides a theoretical basis for the development of deep coalbed methane. Full article
Show Figures

Figure 1

16 pages, 2441 KiB  
Article
The Effect of Biochar Characteristics on the Pesticide Adsorption Performance of Biochar-Amended Soil: A Meta-Analysis
by Yang Sun, Shun Xuan, Jinghui Dong, Sisi Chen and Xiaoxu Fan
Agriculture 2025, 15(15), 1617; https://doi.org/10.3390/agriculture15151617 - 25 Jul 2025
Viewed by 329
Abstract
As a carbon-rich material with sufficient inorganic nutrients, biochar is potentially an inexpensive and suitable additive to improve the quality of soil and achieve sustainable agriculture. However, the addition of biochar generally increases pesticide adsorption in soil because of the well-maintained porous structure, [...] Read more.
As a carbon-rich material with sufficient inorganic nutrients, biochar is potentially an inexpensive and suitable additive to improve the quality of soil and achieve sustainable agriculture. However, the addition of biochar generally increases pesticide adsorption in soil because of the well-maintained porous structure, and the specific effects of the properties of biochar, soil, and pesticides on the adsorption capacity of pesticides remain unknown. In this study, a meta-analysis was conducted to investigate the effects of biochar addition on pesticide adsorption in soils, focusing on characteristics such as the biochar addition dosage, biochar properties (pH, specific surface area (SSA), pore diameter, (O+N)/C, H/C), and soil properties (texture, initial pH, cation exchange capacity). Overall, wood-derived biochar that was treated at ≥700 °C for 2–4 h, with a pH of 9–10 and a 2–4% addition rate led to the greatest enhancement in the pesticide adsorption capacity of soil. Additionally, the pyrolysis temperature of the biochar, the biochar’s pore diameter, and the soil’s pH significantly influenced the adsorption capacity. Based on this meta-analysis, we conclude that the (O+N)/C ratio of biochar is the most influential predictor of soil’s pesticide adsorption capacity. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

24 pages, 5866 KiB  
Article
Multiscale Characterization of Thermo-Hydro-Chemical Interactions Between Proppants and Fluids in Low-Temperature EGS Conditions
by Bruce Mutume, Ali Ettehadi, B. Dulani Dhanapala, Terry Palisch and Mileva Radonjic
Energies 2025, 18(15), 3974; https://doi.org/10.3390/en18153974 - 25 Jul 2025
Viewed by 229
Abstract
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were [...] Read more.
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were evaluated: an ultra-low-density ceramic (ULD), a resin-coated sand (RCS), and two quartz-based silica sands. Experiments were conducted under simulated EGS conditions at 130 °C with daily thermal cycling over a 25-day period, using diluted site-specific Utah FORGE geothermal fluids. Static batch reactions were followed by comprehensive multi-modal characterization, including scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and micro-computed tomography (micro-CT). Proppants were tested in both granular and powdered forms to evaluate surface area effects and potential long-term reactivity. Results indicate that ULD proppants experienced notable resin degradation and secondary mineral precipitation within internal pore networks, evidenced by a 30.4% reduction in intragranular porosity (from CT analysis) and diminished amorphous peaks in the XRD spectra. RCS proppants exhibited a significant loss of surface carbon content from 72.98% to 53.05%, consistent with resin breakdown observed via SEM imaging. While the quartz-based sand proppants remained morphologically intact at the macro-scale, SEM-EDS revealed localized surface alteration and mineral precipitation. The brown sand proppant, in particular, showed the most extensive surface precipitation, with a 15.2% increase in newly detected mineral phases. These findings advance understanding of proppant–fluid interactions under low-temperature EGS conditions and underscore the importance of selecting proppants based on thermo-chemical compatibility. The results also highlight the need for continued development of chemically resilient proppant formulations tailored for long-term geothermal applications. Full article
Show Figures

Figure 1

27 pages, 7191 KiB  
Review
Advances in Nano-Reinforced Polymer-Modified Cement Composites: Synergy, Mechanisms, and Properties
by Yibo Gao, Jianlin Luo, Jie Zhang, Muhammad Asad Ejaz and Liguang Liu
Buildings 2025, 15(15), 2598; https://doi.org/10.3390/buildings15152598 - 23 Jul 2025
Viewed by 206
Abstract
Organic polymer introduction effectively enhances the toughness, bond strength, and durability of ordinary cement-based materials, and is often used for concrete repair and reinforcement. However, the entrained air effect simultaneously induced by polymer and the inhibitory action on cement hydration kinetics often lead [...] Read more.
Organic polymer introduction effectively enhances the toughness, bond strength, and durability of ordinary cement-based materials, and is often used for concrete repair and reinforcement. However, the entrained air effect simultaneously induced by polymer and the inhibitory action on cement hydration kinetics often lead to degradation in mechanical performances of polymer-modified cement-based composite (PMC). Nanomaterials provide unique advantages in enhancing the properties of PMC due to their characteristic ultrahigh specific surface area, quantum effects, and interface modulation capabilities. This review systematically examines recent advances in nano-reinforced PMC (NPMC), elucidating their synergistic optimization mechanisms. The synergistic effects of nanomaterials—nano-nucleation, pore-filling, and templating mechanisms—refine the microstructure, significantly enhancing the mechanical strength, impermeability, and erosion resistance of NPMC. Furthermore, nanomaterials establish interpenetrating network structures (A composite structure composed of polymer networks and other materials interwoven with each other) with polymer cured film (The film formed after the polymer loses water), enhancing load-transfer efficiency through physical and chemical action while optimizing dispersion and compatibility of nanomaterials and polymers. By systematically analyzing the synergy among nanomaterials, polymer, and cement matrix, this work provides valuable insights for advancing high-performance repair materials. Full article
Show Figures

Figure 1

29 pages, 23821 KiB  
Review
Covalent Organic Frameworks for Immunoassays: A Review
by Suling Yang and Hongmin Liu
Biosensors 2025, 15(7), 469; https://doi.org/10.3390/bios15070469 - 21 Jul 2025
Viewed by 493
Abstract
Immunoassays relying on highly specific antigen–antibody recognition are important tools for effectively measuring the levels of various targets. Efforts have been made in the development of various methods to improve the detection sensitivity and stability of immunoassays. Covalent organic frameworks (COFs), as an [...] Read more.
Immunoassays relying on highly specific antigen–antibody recognition are important tools for effectively measuring the levels of various targets. Efforts have been made in the development of various methods to improve the detection sensitivity and stability of immunoassays. Covalent organic frameworks (COFs), as an emerging class of novel crystalline porous materials, have unique advantages such as flexible designability, high surface area, excellent stability, tunable pore sizes, and multiple functionalities. They have great potential as novel sensory materials. Herein, we summarize the advances of COFs in electrochemical and optical immunoassays serving as electrode modifiers, signal indicators, enzyme or probe carriers, etc. Meanwhile, the design and application of typical COFs-based immunoassays in the determination of different targets are discussed in detail. Finally, challenges and future perspectives are presented. Full article
(This article belongs to the Special Issue Biosensors Based on Self-Assembly and Boronate Affinity Interaction)
Show Figures

Figure 1

26 pages, 9458 KiB  
Article
Wettability Characteristics of Mixed Sedimentary Shale Reservoirs in Saline Lacustrine Basins and Their Impacts on Shale Oil Energy Replenishment: Insights from Alternating Imbibition Experiments
by Lei Bai, Shenglai Yang, Dianshi Xiao, Hongyu Wang, Jian Wang, Jin Liu and Zhuo Li
Energies 2025, 18(14), 3887; https://doi.org/10.3390/en18143887 - 21 Jul 2025
Viewed by 301
Abstract
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing [...] Read more.
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing properties and the identification of sweet spots. This paper analyzed mixed sedimentary shale samples from the Lucaogou Formation of the Jimsar Sag and the Fengcheng Formation of the Mahu Sag. Methods such as petrographic thin sections, X-ray diffraction, organic matter content analysis, and argon ion polishing scanning electron microscopy were used to examine the lithological and mineralogical characteristics, geochemical characteristics, and pore space characteristics of the mixed sedimentary shale reservoir. Alternating imbibition and nuclear magnetic resonance were employed to quantitatively characterize the wettability of the reservoir and to discuss the effects of compositional factors, lamina types, and pore structure on wettability. Research findings indicate that the total porosity, measured by the alternate imbibition method, reached 72% of the core porosity volume, confirming the effectiveness of alternate imbibition in filling open pores. The Lucaogou Formation exhibits moderate to strong oil-wet wettability, with oil-wet pores predominating and well-developed storage spaces; the Fengcheng Formation has a wide range of wettability, with a higher proportion of mixed-wet pores, strong heterogeneity, and weaker oil-wet properties compared to the Lucaogou Formation. TOC content has a two-segment relationship with wettability, where oil-wet properties increase with TOC content at low TOC levels, while at high TOC levels, the influence of minerals such as carbonates dominates; carbonate content shows an “L” type response to wettability, enhancing oil-wet properties at low levels (<20%), but reducing it due to the continuous weakening effect of minerals when excessive. Lamina types in the Fengcheng Formation significantly affect wettability differentiation, with carbonate-shale laminae dominating oil pores, siliceous laminae contributing to water pores, and carbonate–feldspathic laminae forming mixed pores; the Lucaogou Formation lacks significant laminae, and wettability is controlled by the synergistic effects of minerals, organic matter, and pore structure. Increased porosity strengthens oil-wet properties, with micropores promoting oil adsorption through their high specific surface area, while macropores dominate in terms of storage capacity. Wettability is the result of the synergistic effects of multiple factors, including TOC, minerals, lamina types, and pore structure. Based on the characteristic that oil-wet pores account for up to 74% in shale reservoirs (mixed-wet 12%, water-wet 14%), a wettability-targeted regulation strategy is implemented during actual shale development. Surfactants are used to modify oil-wet pores, while the natural state of water-wet and mixed-wet pores is maintained to avoid interference and preserve spontaneous imbibition advantages. The soaking period is thus compressed from 30 days to 3–5 days, thereby enhancing matrix displacement efficiency. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

16 pages, 2206 KiB  
Article
Turning Waste into Wealth: Sustainable Amorphous Silica from Moroccan Oil Shale Ash
by Anas Krime, Sanaâ Saoiabi, Mouhaydine Tlemcani, Ahmed Saoiabi, Elisabete P. Carreiro and Manuela Ribeiro Carrott
Recycling 2025, 10(4), 143; https://doi.org/10.3390/recycling10040143 - 20 Jul 2025
Viewed by 266
Abstract
Moroccan oil shale ash (MOSA) represents an underutilized industrial by-product, particularly in the Rif region, where its high mineral content has often led to its neglect in value-added applications. This study highlights the successful conversion of MOSA into amorphous mesoporous silica (AS-Si) using [...] Read more.
Moroccan oil shale ash (MOSA) represents an underutilized industrial by-product, particularly in the Rif region, where its high mineral content has often led to its neglect in value-added applications. This study highlights the successful conversion of MOSA into amorphous mesoporous silica (AS-Si) using a sol–gel process assisted by polyethylene glycol (PEG-6000) as a soft template. The resulting AS-Si material was extensively characterized to confirm its potential for environmental remediation. FTIR analysis revealed characteristic vibrational bands corresponding to Si–OH and Si–O–Si bonds, while XRD confirmed its amorphous nature with a broad diffraction peak at 2θ ≈ 22.5°. SEM imaging revealed a highly porous, sponge-like morphology composed of aggregated nanoscale particles, consistent with the nitrogen adsorption–desorption isotherm. The material exhibited a specific surface area of 68 m2/g, a maximum in the pore size distribution at a pore diameter of 2.4 nm, and a cumulative pore volume of 0.11 cm3/g for pores up to 78 nm. DLS analysis indicated an average hydrodynamic diameter of 779 nm with moderate polydispersity (PDI = 0.48), while a zeta potential of –34.10 mV confirmed good colloidal stability. Furthermore, thermogravimetric analysis (TGA) and DSC suggested the thermal stability of our amorphous silica. The adsorption performance of AS-Si was evaluated using methylene blue (MB) and ciprofloxacin (Cipro) as model pollutants. Kinetic data were best fitted by the pseudo-second-order model, while isotherm studies favored the Langmuir model, suggesting monolayer adsorption. AS-Si could be used four times for the removal of MB and Cipro. These results collectively demonstrate that AS-Si is a promising, low-cost, and sustainable adsorbent derived from Moroccan oil shale ash for the effective removal of organic contaminants from aqueous media. Full article
Show Figures

Figure 1

28 pages, 4509 KiB  
Article
Activated Biocarbons Based on Salvia officinalis L. Processing Residue as Adsorbents of Pollutants from Drinking Water
by Joanna Koczenasz, Piotr Nowicki, Karina Tokarska and Małgorzata Wiśniewska
Molecules 2025, 30(14), 3037; https://doi.org/10.3390/molecules30143037 - 19 Jul 2025
Viewed by 306
Abstract
This study presents research on the production of activated biocarbons derived from herbal waste. Sage stems were chemically activated with two activating agents of different chemical natures—H3PO4 and K2CO3—and subjected to two thermal treatment methods: conventional [...] Read more.
This study presents research on the production of activated biocarbons derived from herbal waste. Sage stems were chemically activated with two activating agents of different chemical natures—H3PO4 and K2CO3—and subjected to two thermal treatment methods: conventional and microwave heating. The effect of the activating agent type and heating method on the basic physicochemical properties of the resulting activated biocarbons was investigated. These properties included surface morphology, elemental composition, ash content, pH of aqueous extracts, the content and nature of surface functional groups, points of zero charge, and isoelectric points, as well as the type of porous structure formed. In addition, the potential of the prepared carbonaceous materials as adsorbents of model organic (represented by Triton X-100 and methylene blue) and inorganic (represented by iodine) pollutants was assessed. The influence of the initial adsorbate concentration (5–150 (dye) and 10–800 mg/dm3 (surfactant)), temperature (20–40 °C), and pH (2–10) of the system on the efficiency of contaminant removal from aqueous solutions was evaluated. The adsorption kinetics were also investigated to better understand the rate and mechanism of contaminant uptake by the prepared activated biocarbons. The results showed that materials activated with orthophosphoric acid exhibited a significantly higher sorption capacity for all tested adsorbates compared to their potassium carbonate-activated counterparts. Microwave heating was found to be more effective in promoting the formation of a well-developed specific surface area (471–1151 m2/g) and porous structure (mean pore size 2.17–3.84 nm), which directly enhanced the sorption capacity of both organic and inorganic contaminants. The maximum adsorption capacities for iodine, methylene blue, and Triton X-100 reached the levels of 927.0, 298.4, and 644.3 mg/g, respectively, on the surface of the H3PO4-activated sample obtained by microwave heating. It was confirmed that the heating method used during the activation step plays a key role in determining the physicochemical properties and sorption efficiency of activated biocarbons. Full article
Show Figures

Figure 1

26 pages, 11154 KiB  
Article
The Pore Structure and Fractal Characteristics of Upper Paleozoic Coal-Bearing Shale Reservoirs in the Yangquan Block, Qinshui Basin
by Jinqing Zhang, Xianqing Li, Xueqing Zhang, Xiaoyan Zou, Yunfeng Yang and Shujuan Kang
Fractal Fract. 2025, 9(7), 467; https://doi.org/10.3390/fractalfract9070467 - 18 Jul 2025
Viewed by 321
Abstract
The investigation of the pore structure and fractal characteristics of coal-bearing shale is critical for unraveling reservoir heterogeneity, storage-seepage capacity, and gas occurrence mechanisms. In this study, 12 representative Upper Paleozoic coal-bearing shale samples from the Yangquan Block of the Qinshui Basin were [...] Read more.
The investigation of the pore structure and fractal characteristics of coal-bearing shale is critical for unraveling reservoir heterogeneity, storage-seepage capacity, and gas occurrence mechanisms. In this study, 12 representative Upper Paleozoic coal-bearing shale samples from the Yangquan Block of the Qinshui Basin were systematically analyzed through field emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion, and gas adsorption experiments to characterize pore structures and calculate multi-scale fractal dimensions (D1D5). Key findings reveal that reservoir pores are predominantly composed of macropores generated by brittle fracturing and interlayer pores within clay minerals, with residual organic pores exhibiting low proportions. Macropores dominate the total pore volume, while mesopores primarily contribute to the specific surface area. Fractal dimension D1 shows a significant positive correlation with clay mineral content, highlighting the role of diagenetic modification in enhancing the complexity of interlayer pores. D2 is strongly correlated with the quartz content, indicating that brittle fracturing serves as a key driver of macropore network complexity. Fractal dimensions D3D5 further unveil the synergistic control of tectonic activity and dissolution on the spatial distribution of pore-fracture systems. Notably, during the overmature stage, the collapse of organic pores suppresses mesopore complexity, whereas inorganic diagenetic processes (e.g., quartz cementation and tectonic fracturing) significantly amplify the heterogeneity of macropores and fractures. These findings provide multi-scale fractal theoretical insights for evaluating coal-bearing shale gas reservoirs and offer actionable recommendations for optimizing the exploration and development of Upper Paleozoic coal-bearing shale gas resources in the Yangquan Block of the Qinshui Basin. Full article
Show Figures

Figure 1

Back to TopTop