Covalent Organic Frameworks for Immunoassays: A Review
Abstract
1. Introduction
2. COFs-Based Electrochemical Immunoassays
2.1. Electrode Modifiers
Electrode Material | Analyte | Linear Range | Detection Limit | Ref. |
---|---|---|---|---|
TpBD/Nafion | AFM1 | 0.5–80 ng/mL | 0.15 ng/mL | [45] |
Ce-MOF/TPN-COF/CNT | CA125 | 1 × 10−4–100 U/mL | 0.088 mU/mL | [47] |
COF/MOF-LDH | NfL | 5 × 10−4–100 ng/mL | 17 fg/mL | [48] |
MIL156 MOF@COF | CA15-3 | 30–100 nU/mL | 2.6 nU/mL | [49] |
m-COF | E. coli | 10–108 CFU/mL | 3 CFU/mL | [50] |
COF-LZU1 | CA125 | 0.001–40 U/mL | 0.23 mU/mL | [51] |
Pt-COFs | CRP | 1–400 ng/mL | 0.2 ng/mL | [52] |
CuS@COFs | AβO | 10−3–103 nM | 0.4 pM | [53] |
COFs-AuNPs | KIM-1 | 0.01–50 pg/mL | 2 fg/mL | [54] |
Ag2O/g-C3N4-COOH@MA-DBB-COF | AFM1 | 0.03–1000 fg/mL | 0.01 fg/mL | [55] |
Au/COF-LZU1 | CRP | 0.2–20 ng/mL | 0.1 ng/mL | [56] |
Fe3O4 NPs@COF/AuNPs | AFP | 0.01–1 pg/mL | 3.3 fg/mL | [57] |
PAF-130 | α-Syn | 10−5–103 ng/mL | 3.6 fg/mL | [66] |
p-COF@p-SiNW | cTnI | 5 × 10−3–10 ng/mL | 1.36 pg/mL | [67] |
T-COF | TSLP | 10−3–4 ng/mL | 2.72 pg/mL | [71] |
TFPT-TAPB-COF | ZEN | 10−5–102 ng/mL | 7.9 fg/mL | [72] |
Pd/COF-LZU1 | CRP | 5–180 ng/mL | 1.66 ng/mL | [73] |
Ru-MCOF | cTnI | 10−6–10 ng/mL | 0.42 fg/mL | [74] |
COF-ABEI | cyt c | 10−6–0.1 ng/mL | 0.73 fg/mL | [75] |
2.2. Signal Labels
Signal Label | Analyte | Linear Range | Detection Limit | Ref. |
---|---|---|---|---|
MB@aCOFs-ssDNA | AβO | 0.01–1000 nM | 5.1 pM | [76] |
Thi-Au-COFs | Latexin | 0.01–100 ng/mL | 50 pg/mL | [77] |
Thi/Au/COF | CD44 | 1–106 pg/mL | 0.71 pg/mL | [78] |
TB-Au-COFs | cTnI | 5 × 10−4–10 ng/mL | 0.17 pg/mL | [79] |
MB/Au@Fe3O4@COF | PSA | 10−4–10 ng/mL | 30 fg/mL | [80] |
TB-Au-COF | CYFRA21-1 | 0.5–104 pg/mL | 0.1 pg/mL | [81] |
TB/AuNPs/COF | Apo-A4 | 0.01–300 ng/mL | 2.16 pg/mL | [82] |
Tb/Au/COF/MnO2 | HCG | 5 × 10−4–102 mIU/mL | 1.67 × 10−4 mIU/mL | [83] |
PB/COFTAGH-Dva | CA 19–9 | 0.01–150 U/mL | 0.003 U/mL | [84] |
MB/AuPt@MnO2@COF | PSA | 5 × 10−5–10 ng/mL | 16.7 fg/mL | [85] |
AuNPs@2DCOFBTT-DGMH | CA125 | 0. 27–105 mU/mL | 0.089 mU/mL | [86] |
Ti-MOF@COF | GL-3 | 0.0001–20 ng/mL | 0.025 pg/mL | [87] |
AuNPs/EB-COF:PMo12 | NSE | 5 × 10−5–102 ng/mL | 166 fg/mL | [88] |
COF@AuNP | Salmonella | 2 × 102–2 × 105 CFU mL | 60 CFU/mL | [89] |
HRP-Au-COF | cTnI | 0.005–10 ng/mL | 1.7 pg/mL | [90] |
COFs-AuNPs-HRP | sPD-L1 | 0.001–100 ng/mL | 0.143 pg/mL | [91] |
AuNPs/COFTFPB-Thi | CEA | 0.11–80 ng/mL | 0.034 ng/mL | [92] |
COFp-Fepor NH2-BPA/AuNPs | NSE | 5 × 10−4–102 ng/mL | 166.7 fg/mL | [93] |
AuNPs/COFDAAQ-TFP | CA125 | 0.01–100 U/mL | 6.7 mU/mL | [94] |
CsPbBr3@COF–V | H-FABP | 0.0005–150 ng/mL | 0.19 pg/mL | [99] |
COFTAPB-DMTP | CA242 | 0.001–1000 U/mL | 0.183 mU/mL | [100] |
3. COFs-Based Optical Immunoassays
Method | Material | Analyte | Linear Range | Detection Limit | Ref. |
---|---|---|---|---|---|
Color | GOx@COFs@Os | BPS | 0−1.6 ng/mL | 0.038 ng/mL | [104] |
Color | HRP@COFs-PB | Isocarbophos | 0.05–1000 ng/mL | 0.03 ng/mL | [105] |
CL | CAACo | EVs | 3.3 × 105–3.3 × 108 particles/mL | 2.6 × 105 particles/mL | [106] |
CM-FQ | COF/Au@PDA | NPSEM | 0.1–1.5 ng/mL, 0.1–1.2 ng mL | 0.1 ng/mL, 0.6 ng/mL | [108] |
FRET | CD@COF | E. coli O157:H7 | 0–106 CFU/mL | 7 CFU/mL | [109] |
SERS | TBDP@Au | E. coli, S. enteritidis | 102–104 CFU/mL | 10 CFU/mL | [111] |
DLS | COF@AuNP | NT-proBNP | 0.32–1000 pg/mL | 14 fg/mL | [113] |
Photothermal | COF@PBNCs | Furosemide | 0.05–100 ng/mL | 10.6 pg/mL | [114] |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeong, S.; Park, M.-J.; Song, W.; Kim, H.-S. Current immunoassay methods and their applications to clinically used biomarkers of breast cancer. Clin. Biochem. 2020, 78, 43–57. [Google Scholar] [CrossRef]
- Xia, N.; Gao, F.; Zhang, J.; Wang, J.; Huang, Y. Overview on the development of electrochemical immunosensors by the signal amplification of enzyme- or banozyme-based catalysis plus redox cycling. Molecules 2024, 29, 2796. [Google Scholar] [CrossRef]
- Niu, X.; Cheng, N.; Ruan, X.; Du, D.; Lin, Y. Review—Nanozyme-based immunosensors and immunoassays: Recent developments and future trends. J. Electrochem. Soc. 2020, 167, 037508. [Google Scholar] [CrossRef]
- Farka, Z.; Juřík, T.; Kovář, D.; Trnková, O.; Skládal, P. Nanoparticle-based immunochemical biosensors and assays: Recent advances and challenges. Chem. Rev. 2017, 117, 9973–10042. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Park, M. Recent progress in electrochemical immunosensors. Biosensors 2021, 11, 360. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wang, Y.; Sun, Y.; Tang, Y.; Xiao, Y.; Wu, G.; Peng, S.; Zhou, X. Nanoporous crystalline materials for the recognition and applications of nucleic acids. Adv. Mater. 2023, 37, 2305171. [Google Scholar] [CrossRef]
- Liang, X.-H.; Yu, A.-X.; Bo, X.-J.; Du, D.-Y.; Su, Z.-M. Metal/covalent-organic frameworks-based electrochemical sensors for the detection of ascorbic acid, dopamine and uric acid. Coord. Chem. Rev. 2023, 497, 215427. [Google Scholar] [CrossRef]
- Arghavani, P.; Daneshgar, H.; Sojdeh, S.; Edrisi, M.; Moosavi-Movahedi, A.A.; Rabiee, N. Porous materials for early diagnosis of neurodegenerative diseases. Adv. Healthc. Mater. 2025, 14, 2404685. [Google Scholar] [CrossRef]
- Feng, L.; Qian, C.; Zhao, Y. Recent advances in covalent organic framework-based nanosystems for bioimaging and therapeutic applications. ACS Mater. Lett. 2020, 2, 1074–1092. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, Y.; Li, G. Covalent organic frameworks-based electrochemical sensors for food safety analysis. Biosensors 2023, 13, 291. [Google Scholar] [CrossRef]
- Hou, C.; Chen, W.; Fu, L.; Zhang, S.; Liang, C. Covalent organic frameworks (COFs) materials in enzyme immobilization and mimic enzymes. Prog. Chem. 2020, 32, 895–905. [Google Scholar]
- Zhang, L.; Yi, L.; Sun, Z.J.; Deng, H. Covalent organic frameworks for optical applications. Aggregate 2021, 2, e24. [Google Scholar] [CrossRef]
- Xu, K.; Huang, N. Recent advances of covalent organic frameworks in chemical sensing. Chem. Res. Chin. Univ. 2022, 38, 339–349. [Google Scholar] [CrossRef]
- Chen, Y.; Huang, S.; Xia, L.; Hu, Y.; Li, G. Synergetic multichiral covalent organic framework for enantioselective recognition and separation. Anal. Chem. 2024, 96, 1380–1389. [Google Scholar] [CrossRef]
- Zhong, Y.; Li, H.; Lin, Z.; Li, G. Advances in covalent organic frameworks for sample preparation. J. Chromatogr. A 2024, 1736, 465398. [Google Scholar] [CrossRef]
- Fu, N.; Liu, Y.; Kang, K.; Tang, X.; Zhang, S.; Yang, Z.; Wang, Y.; Jin, P.; Niu, Y.; Yang, B. Fully sp2 carbon-conjugated covalent organic frameworks with multiple active sites for advanced lithium-ion battery cathodes. Angew. Chem. Int. Ed. 2024, 63, e202412334. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Z.; Zhu, Y.; Yang, C.; Wu, J.; Hu, W. 2D covalent organic frameworks: From synthetic strategies to advanced optical-electrical-magnetic functionalities. Adv. Mater. 2022, 34, 2102290. [Google Scholar] [CrossRef]
- Yusran, Y.; Fang, Q.; Valtchev, V. Electroactive covalent organic frameworks: Design, synthesis, and applications. Adv. Mater. 2020, 32, 2002038. [Google Scholar] [CrossRef]
- Zhang, X.; Li, G.; Wu, D.; Zhang, B.; Hu, N.; Wang, H.; Liu, J.; Wu, Y. Recent advances in the construction of functionalized covalent organic frameworks and their applications to sensing. Biosens. Bioelectron. 2019, 145, 111699. [Google Scholar] [CrossRef]
- Liu, X.; Huang, D.; Lai, C.; Zeng, G.; Qin, L.; Wang, H.; Yi, H.; Li, B.; Liu, S.; Zhang, M.; et al. Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem. Soc. Rev. 2019, 48, 5266–5302. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, D.; Wang, G. Covalent organic frameworks for chemical and biological sensing. Molecules 2022, 27, 2586. [Google Scholar] [CrossRef]
- Meng, Z.; Mirica, K.A. Covalent organic frameworks as multifunctional materials for chemical detection. Chem. Soc. Rev. 2021, 50, 13498–13558. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, L.; Xue, R.; Ma, B.; Yang, W. Eyes of covalent organic frameworks: Cooperation between analytical chemistry and COFs. Rev. Anal. Chem. 2019, 38, 20170023. [Google Scholar] [CrossRef]
- Wang, L.; Xie, H.; Lin, Y.; Wang, M.; Sha, L.; Yu, X.; Yang, J.; Zhao, J.; Li, G. Covalent organic frameworks (COFs)-based biosensors for the assay of disease biomarkers with clinical applications. Biosens. Bioelectron. 2022, 217, 114668. [Google Scholar] [CrossRef] [PubMed]
- Yao, D.; Xia, L.; Li, G. Research progress on the application of covalent organic framework nanozymes in analytical chemistry. Biosensors 2024, 14, 163. [Google Scholar] [CrossRef] [PubMed]
- Bhambri, H.; Khullar, S.; Sakshi; Mandal, S.K. Nitrogen-rich covalent organic frameworks: A promising class of sensory materials. Mater. Adv. 2022, 3, 19–124. [Google Scholar] [CrossRef]
- Cao, Y.; Wu, R.; Gao, Y.-Y.; Zhou, Y.; Zhu, J.-J. Advances of electrochemical and electrochemiluminescent sensors based on covalent organic frameworks. Nano-Micro Lett. 2023, 16, 37. [Google Scholar] [CrossRef]
- Martínez-Periñán, E.; Martínez-Fernández, M.; Segura, J.L.; Lorenzo, E. Electrochemical (Bio)sensors based on covalent organic frameworks (COFs). Sensors 2022, 22, 4758. [Google Scholar] [CrossRef]
- Xue, R.; Liu, Y.-S.; Huang, S.-L.; Yang, G.-Y. Recent progress of covalent organic frameworks applied in electrochemical sensors. ACS Sens. 2023, 8, 2124–2148. [Google Scholar] [CrossRef]
- Ma, J.; Shu, T.; Sun, Y.; Zhou, X.; Ren, C.; Su, L.; Zhang, X. Luminescent covalent organic frameworks for biosensing and bioimaging applications. Small 2021, 18, 2103516. [Google Scholar] [CrossRef]
- Haotian, R.; Zhu, Z.; Wang, Z.; Cai, Y.; Liang, A.; Wang, W.; Luo, A. Application of covalent organic framework-based electrochemical biosensors in biological sample detection. Acta Chim. Sin. 2022, 80, 1524–1535. [Google Scholar] [CrossRef]
- Liu, Y.-S.; Xue, R.; Yan, B. Development and prospects of covalent organic framework-based ratiometric fluorescent sensors. Coord. Chem. Rev. 2025, 523, 216280. [Google Scholar] [CrossRef]
- Mekkeparambath, V.; Sreejaya, M.M.; M, S.; K, H.K.; Anil Kumar, L.; M, K.P.; Venkatesh, Y.; Gangopadhyay, M. Covalent organic framework as selective fluorescence sensors for cancer inducing volatile organic compounds. ChemBioChem 2024, 26, e202400784. [Google Scholar] [CrossRef] [PubMed]
- Hernández-García, F.; Álvarez-Romero, G.A.; Colorado-Peralta, R.; Cruz-Navarro, J.A.; Morales-Morales, D. Review—Advances on covalent organic-frameworks as innovative materials for designing electrochemical sensors. J. Electrochem. Soc. 2024, 171, 077521. [Google Scholar] [CrossRef]
- Zhu, J.; Wen, W.; Tian, Z.; Zhang, X.; Wang, S. Covalent organic framework: A state-of-the-art review of electrochemical sensing applications. Talanta 2023, 260, 124613. [Google Scholar] [CrossRef]
- Skorjanc, T.; Shetty, D.; Valant, M. Covalent organic polymers and frameworks for fluorescence-based sensors. ACS Sens. 2021, 6, 1461–1481. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Cao, D.; Song, Y.; Chen, S.; Song, Y.; Wang, F.; Wang, G.; Yuan, Y. Design and preparation of fluorescent covalent organic frameworks for biological sensing. Chem. Commun. 2024, 60, 2605–2612. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, G.; Chen, L. 2D conjugated covalent organic frameworks: Defined synthesis and tailor-made functions. Acc. Chem. Res. 2022, 55, 795–808. [Google Scholar] [CrossRef]
- Bukhari, S.N.A.; Ahmed, N.; Amjad, M.W.; Hussain, M.A.; Elsherif, M.A.; Ejaz, H.; Alotaibi, N.H. Covalent organic frameworks (COFs) as multi-target multifunctional frameworks. Polymers 2023, 15, 267. [Google Scholar] [CrossRef]
- Esrafili, A.; Wagner, A.; Inamdar, S.; Acharya, A.P. Covalent organic frameworks for biomedical applications. Adv. Healthc. Mater. 2021, 10, 2002090. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, X.; He, H.; Yang, X.; Li, Q.; Yuan, Y. Green and large-scale synthesis of covalent organic frameworks for practical applications. Adv. Funct. Mater. 2025, 35, 2510196. [Google Scholar] [CrossRef]
- Guo, L.; Yang, L.; Li, M.; Kuang, L.; Song, Y.; Wang, L. Covalent organic frameworks for fluorescent sensing: Recent developments and future challenges. Coord. Chem. Rev. 2021, 440, 213957. [Google Scholar] [CrossRef]
- Wen, W.; Yan, X.; Zhu, C.; Du, D.; Lin, Y. Recent advances in electrochemical immunosensors. Anal. Chem. 2017, 89, 138–156. [Google Scholar] [CrossRef] [PubMed]
- Mollarasouli, F.; Kurbanoglu, S.; Ozkan, S.A. The role of electrochemical immunosensors in clinical analysis. Biosensors 2019, 86, 9. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.-H.; Guo, L.-L.; Shen, X.-F.; Yang, N.-C.; Yang, C. Rolling circle amplified DNAzyme followed with covalent organic frameworks: Cascade signal amplification of electrochemical ELISA for alfatoxin M1 sensing. Electrochim. Acta 2020, 341, 136055. [Google Scholar] [CrossRef]
- Qiu, R.; Dai, J.; Meng, L.; Gao, H.; Wu, M.; Qi, F.; Feng, J.; Pan, H. A novel electrochemical immunosensor based on COF-LZU1 as precursor to form heteroatom-doped carbon nanosphere for CA19-9 detection. Appl. Biochem. Biotech. 2022, 194, 3044–3065. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Dong, S.; Chen, H.; Guan, L.; Huang, T. Ce-MOF/COF/carbon nanotube hybrid composite: Construction of efficient electrochemical immune platform for amplifying detection performance of CA125. Bioelectrochemistry 2022, 147, 108201. [Google Scholar] [CrossRef]
- Li, L.-Y.; Guan, L.; Zhu, A.-M.; An, Y.-Q.; Dong, S.-Y.; Zhu, J.-J. Regulation of triazine-COF and CoAl-LDH substrates in composites for high-performance neurofilament-light chains electrochemical immunosensors. Sens. Actuat. B Chem. 2024, 411, 135715. [Google Scholar] [CrossRef]
- Dezhakam, E.; Vayghan, R.F.; Dehghani, S.; Kafili-Hajlari, T.; Naseri, A.; Dadashpour, M.; Khalilzadeh, B.; Kanberoglu, G.S. Highly efficient electrochemical biosensing platform in breast cancer detection based on MOF-COF@Au core-shell like nanostructure. Sci. Rep. 2024, 14, 29850. [Google Scholar] [CrossRef]
- Xiao, S.; Yang, X.; Wu, J.; Liu, Q.; Li, D.; Huang, S.; Xie, H.; Yu, Z.; Gan, N. Reusable electrochemical biosensing platform based on egg yolk antibody-labeled magnetic covalent organic framework for on-site detection of Escherichia coli in foods. Sens. Actuat. B Chem. 2022, 369, 132320. [Google Scholar] [CrossRef]
- Qiu, R.; Mu, W.; Wu, C.; Wu, M.; Feng, J.; Rong, S.; Ma, H.; Chang, D.; Pan, H. Sandwich-type immunosensor based on COF-LZU1 as the substrate platform and graphene framework supported nanosilver as probe for CA125 detection. J. Immunol. Methods 2022, 504, 113261. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.-Z.; Hu, R.; Zhang, X.; Zhang, K.-L.; Liu, Y.; Zhang, X.-B.; Bai, R.-Y.; Li, D.; Yang, Y.-H. Metal–organic framework nanomaterials as novel signal probes for electron transfer mediated ultrasensitive electrochemical immunoassay. Anal. Chem. 2016, 88, 12516–12523. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, S.; Ren, J.; Zhao, H.; Cui, M.; Li, N.; Li, M.; Zhang, C. Electrocatalysis of copper sulfide nanoparticle-engineered covalent organic frameworks for ratiometric electrochemical detection of amyloid-β oligomer. Anal. Chem. 2022, 94, 11201–11208. [Google Scholar] [CrossRef] [PubMed]
- Boyacıoğlu, H.; Yola, B.B.; Karaman, C.; Karaman, O.; Atar, N.; Yola, M.L. A novel electrochemical kidney injury molecule-1 (KIM-1) immunosensor based covalent organic frameworks-gold nanoparticles composite and porous NiCo2S4@CeO2 microspheres: The monitoring of acute kidney injury. Appl. Surf. Sci. 2022, 578, 152093. [Google Scholar] [CrossRef]
- Naz, I.; Hayat, A.; Jubeen, F.; Asim, S.; Kausar, A. A field-portable electrochemical immunosensor based on a multifunctional Ag2O/g-C3N4@MA-DBB covalent organic framework receptor interface for single-step detection of aflatoxin M1 in raw milk samples. Nanoscale Adv. 2024, 6, 4693–4703. [Google Scholar] [CrossRef]
- Liu, T.-Z.; Hu, R.; Liu, Y.; Zhang, K.-L.; Bai, R.-Y.; Yang, Y.-H. Amperometric immunosensor based on covalent organic frameworks and Pt/Ru/C nanoparticles for the quantification of C-reactive protein. Microchim. Acta 2020, 187, 6. [Google Scholar] [CrossRef]
- Bölükbaşi, Ö.S.; Yola, B.B.; Karaman, C.; Atar, N.; Yola, M.L. Electrochemical α-fetoprotein immunosensor based on Fe3O4NPs@covalent organic framework decorated gold nanoparticles and magnetic nanoparticles including SiO2@TiO2. Microchim. Acta 2022, 189, 242. [Google Scholar] [CrossRef]
- Sun, Y.; He, J.; Waterhouse, G.I.N.; Xu, L.; Zhang, H.; Qiao, X.; Xu, Z. A selective molecularly imprinted electrochemical sensor with GO@COF signal amplification for the simultaneous determination of sulfadiazine and acetaminophen. Sens. Actuat. B Chem. 2019, 300, 126993. [Google Scholar] [CrossRef]
- Mohan, B.; Kumari, R.; Virender; Singh, G.; Singh, K.; Pombeiro, A.J.L.; Yang, X.; Ren, P. Covalent organic frameworks (COFs) and metal–organic frameworks (MOFs) as electrochemical sensors for the efficient detection of pharmaceutical residues. Environ. Int. 2023, 175, 107928. [Google Scholar] [CrossRef]
- Chen, J.; Wang, Y.; Yu, Y.; Wang, J.; Liu, J.; Ihara, H.; Qiu, H. Composite materials based on covalent organic frameworks for multiple advanced applications. Exploration 2023, 3, 20220144. [Google Scholar] [CrossRef]
- Ma, M.; Lu, X.; Guo, Y.; Wang, L.; Liang, X. Combination of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs): Recent advances in synthesis and analytical applications of MOF/COF composites. TrAC-Trend. Anal. Chem. 2022, 157, 116741. [Google Scholar] [CrossRef]
- Cheng, X.; Liu, S.; Hu, Y. Recent advances in nanozyme sensors based on metal–organic frameworks and covalent–organic frameworks. Biosensors 2024, 14, 520. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Li, H.-K.; He, H. Recent advances in metal/covalent organic framework-based electrochemical aptasensors for biosensing applications. Dalton Trans. 2021, 50, 14091–14104. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.-Q.; Ding, S.-N. Perspective on signal amplification strategies and sensing protocols in photoelectrochemical immunoassay. Coord. Chem. Rev. 2019, 391, 1–14. [Google Scholar] [CrossRef]
- Zhou, Y.; Yin, H.; Ai, S. Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord. Chem. Rev. 2021, 447, 214156. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, J.; Zhang, X.; Li, J.; Zhang, R.; Song, W. Liposomal controlled release Ag-activated DNAzyme cycle amplification on a 2D pyrene COF-based photocathode for α-synuclein immunosensing. Anal. Chem. 2021, 93, 8647–8655. [Google Scholar] [CrossRef]
- Li, H.-J.; Huang, Y.; Zhang, S.; Chen, C.; Guo, X.; Xu, L.; Liao, Q.; Xu, J.; Zhu, M.; Wang, X.; et al. S-scheme porphyrin covalent organic framework heterojunction for boosted photoelectrochemical immunoassays in myocardial infarction diagnosis. ACS Sens. 2023, 8, 2030–2040. [Google Scholar] [CrossRef]
- Du, F.; Chen, Y.; Meng, C.; Lou, B.; Zhang, W.; Xu, G. Recent advances in electrochemiluminescence immunoassay based on multiple-signal strategy. Curr. Opin. Electrochem. 2021, 28, 100725. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, X.; Fang, Q. Recent advances in AIEgen-based crystalline porous materials for chemical sensing. Aggregate 2021, 2, e34. [Google Scholar] [CrossRef]
- Liu, S.; Liang, G.; Wang, S.; Hu, Q. Recent multifunctional applications of AIE-MOF/COF porous materials. CrystEngComm 2025, 27, 3643–3658. [Google Scholar] [CrossRef]
- Jia, Y.; Zhu, M.; Zhang, X.; Jia, D.; Tian, T.; Shi, B.; Ru, Z.; Ma, H.; Wan, Y.; Wei, Q. Nanobody-based microfluidic immunosensor chip using tetraphenylethylene-derived covalent organic frameworks as aggregation-induced electrochemiluminescence emitters for the detection of Thymic Stromal Lymphopoietin. Anal. Chem. 2024, 96, 10116–10120. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Y.; Gabrielli, S.; Cimarelli, C.; Guo, C.; Du, M.; Pellei, M.; Zhang, Z. Donor–acceptor conjugated and triazine-containing covalentorganic framework: Construction of a signal “on–off–on” electrochemiluminescence immunosensor for efficiently detecting zearalenone. Sens. Actuat. B Chem. 2025, 433, 137539. [Google Scholar] [CrossRef]
- Liu, T.; Xia, J.; Li, Y.; Chen, W.; Zhang, S.; Yi, L.; Zheng, L.; Yang, Y. Preparation of label-free C-reactive protein immunosensor based on the palladium-coordinated covalent organic frameworks (Pd/COF-LZU1) material. Chem. J. Chin. Univ. 2015, 36, 1880–1887. [Google Scholar]
- Tang, S.H.; Qin, L.; Yang, W.G.; Yuan, R.; Yang, J.; Li, Y.; Hu, S.S. Electrochemiluminescence immunoassay of cTnI with ruthenium-based metal covalent organic framework and dual DNAzymes cascade amplification strategy. Chem. Eng. J. 2025, 31, e202404053. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Wang, Y.-W.; Shan, H.-Y.; Chen, J.; Wang, A.-J.; Liu, W.; Yuan, P.-X.; Feng, J.-J. Covalent organic framework linked with amination luminol derivative as enhanced ECL luminophore for ultrasensitive analysis of cytochromec. Anal. Methods 2022, 14, 4767–4774. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, H.; Hu, S.; Li, N.; Cui, M.; Han, B.; Li, M.; Zhang, C. Covalent organic framework-based ratiometric electrochemical sensing platform for ultrasensitive determination of amyloid-β 42 oligomer. Talanta 2024, 280, 126699. [Google Scholar] [CrossRef]
- Li, X.; Wan, H.; Tian, Y.; Wang, J.; Xu, S.; Huang, K.; Liang, H.; Chen, M. Covalent organic framework-based immunosensor to detect plasma Latexin reveals novel biomarker for coronary artery diseases. Anal. Chim. Acta 2023, 1284, 341993. [Google Scholar] [CrossRef]
- Xia, P.; Fu, Y.; Chen, Q.; Shan, L.; Zhang, C.; Feng, S. A novel sandwich electrochemical immunosensor utilizing customized template and phosphotungstate catalytic amplification for CD44 detection. Bioelectrochemistry 2024, 160, 108787. [Google Scholar] [CrossRef]
- Zhang, T.; Ma, N.; Ali, A.; Wei, Q.; Wu, D.; Ren, X. Electrochemical ultrasensitive detection of cardiac troponin I using covalent organic frameworks for signal amplification. Biosens. Bioelectron. 2018, 119, 176–181. [Google Scholar] [CrossRef]
- Liang, H.; Xu, H.; Zhao, Y.; Zheng, J.; Zhao, H.; Li, G.; Li, C.-P. Ultrasensitive electrochemical sensor for prostate specific antigen detection with a phosphorene platform and magnetic covalent organic framework signal amplifier. Biosens. Bioelectron. 2019, 144, 111691. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, K.; Liu, Q.; Liu, Y.; Yang, H.; Kong, J. Electrochemical ultrasensitive detection of CYFRA21-1 using Ti3C2Tx-MXene as enhancer and covalent organic frameworks as labels. Anal. Bioanal. Chem. 2021, 413, 2543–2551. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Guo, M.; Wang, Z.; Mo, X.; Hu, F.; Du, Y. A novel electrochemical immunosensor for sensitive detection of depression marker Apo-A4 based on bipyridine-functionalized covalent organic frameworks. Microchim. Acta 2024, 191, 179. [Google Scholar] [CrossRef]
- Liang, H.; Ning, G.; Wang, L.; Li, C.; Zheng, J.; Zeng, J.; Zhao, H.; Li, C.-P. Covalent framework particles modified with MnO2 nanosheets and Au nanoparticles as electrochemical immunosensors for human chorionic gonadotropin. ACS Appl. Nano Mater. 2021, 4, 4593–4601. [Google Scholar] [CrossRef]
- Liang, H.; Pei, L.; Liu, Y.; Ma, G.; Wang, L. Immunosensing of carbohydrate antigen 19–9 based on covalent organic framework loaded Prussian blue as signal amplification platform. Microchem. J. 2024, 201, 110567. [Google Scholar] [CrossRef]
- Zheng, J.; Zhao, H.; Ning, G.; Sun, W.; Wang, L.; Liang, H.; Xu, H.; He, C.; Zhao, H.; Li, C.-P. A novel affinity peptide–antibody sandwich electrochemical biosensor for PSA based on the signal amplification of MnO2-functionalized covalent organic framework. Talanta 2021, 233, 122520. [Google Scholar] [CrossRef]
- Jin, W.; Chen, R.; Wu, L.; Peng, C.; Song, Y.; Miao, L.; Wang, L. An "on-off" electrochemical immunosensor for the detection of the glycan antigen CA125 by amplification signals using electropositive COFs. Talanta 2025, 286, 127593. [Google Scholar] [CrossRef]
- Yola, M.L.; Atar, N. Amperometric galectin-3 immunosensor-based gold nanoparticle-functionalized graphitic carbon nitride nanosheets and core–shell Ti-MOF@COFs composites. Nanoscale 2020, 12, 19824–19832. [Google Scholar] [CrossRef]
- Liang, H.; Xiao, Y.; Chen, R.; Li, Y.; Zhou, S.; Liu, J.; Song, Y.; Wang, L. Immunosensing of neuron-specific enolase based on signal amplification strategies via catalysis of ascorbic acid by heteropolysate COF. Biosen. Bioelectron. 2023, 238, 115593. [Google Scholar] [CrossRef]
- Guo, Q.; Huang, J.; Fang, H.; Li, X.; Su, Y.; Xiong, Y.; Leng, Y.; Huang, X. Gold nanoparticle-decorated covalent organic frameworks as amplified light-scattering probes for highly sensitive immunodetection of Salmonella in milk. Analyst 2023, 148, 4084–4090. [Google Scholar] [CrossRef]
- Feng, S.; Yan, M.; Xue, Y.; Huang, J.; Yang, X. Electrochemical immunosensor for cardiac Troponin I detection based on covalent organic framework and enzyme-catalyzed signal amplification. Anal. Chem. 2021, 93, 13572–13579. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Ma, J.; Zhou, X.; Sun, X.; Jing, H.; Lin, M.; Zhou, C. Enzyme-catalyzed electrochemical aptasensor for ultrasensitive detection of soluble PD-L1 in breast cancer based on decorated covalent organic frameworks and carbon nanotubes. Anal. Chim. Acta 2023, 1282, 341927. [Google Scholar] [CrossRef]
- Liang, H.; Luo, Y.; Li, Y.; Song, Y.; Wang, L. An immunosensor using electroactive COF as signal probe for electrochemical detection of carcinoembryonic antigen. Anal. Chem. 2022, 94, 5352–5358. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Luo, Y.; Xiao, Y.; Xiong, J.; Chen, R.; Song, Y.; Wang, L. Immunosensing of neuron-specific enolase based on dual signal amplification strategy via electrocatalytic oxygen reduction by iron-porphyrin covalent organic framework. Chem. Eng. J. 2023, 460, 141740. [Google Scholar] [CrossRef]
- Wu, L.; Chen, R.; Jin, W.; Peng, C.; Wang, L.; Miao, L.; Song, Y. An electrochemical immunosensor for carbohydrate antigen CA125 based on electroactive COFs as a signal probe. Talanta 2025, 286, 127546. [Google Scholar] [CrossRef]
- Fabre, B.; Falaise, C.; Cadot, E. Polyoxometalates-functionalized electrodes for (photo)electrocatalytic applications: Recent advances and prospects. ACS Catal. 2022, 12, 12055–12091. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, Y.; Liu, S.; Wu, D.; Su, Z.; Chen, G.; Liu, J.; Li, G. Recent advances in enzyme immobilization based on novel porous framework materials and its applications in biosensing. Coord. Chem. Rev. 2022, 459, 214414. [Google Scholar] [CrossRef]
- Nemiwal, M.; Zhang, T.C.; Kumar, D. Enzyme immobilized nanomaterials as electrochemical biosensors for detection of biomolecules. Enzyme Microb. Tech. 2022, 156, 110006. [Google Scholar] [CrossRef]
- Younas, R.; Jubeen, F.; Bano, N.; Andreescu, S.; Zhang, H.; Hayat, A. Covalent organic frameworks (COFs) as carrier for improved drug delivery and biosensing applications. Biotechnol. Bioengin. 2024, 121, 2017–2049. [Google Scholar] [CrossRef]
- Leng, D.; Ren, X.; Liu, L.; Zhang, D.; Zhang, N.; Ju, H.; Wei, Q. A self-powered photoelectrochemical biosensing platform for H-FABP monitoring mediated by CsPbBr3@COF–V. Biosens. Bioelectron. 2023, 241, 115710. [Google Scholar] [CrossRef]
- Han, B.; Wang, S.; Xie, F.; Wang, S.; Tang, F.; Xiang, S.; Li, Y.; Wang, P.; Li, Y.; Liu, Q.; et al. A quenching electrochemiluminescence energy resonance transfer system based on CdS and COFs for the ultrasensitive detection of CA242. New J. Chem. 2024, 48, 12733–12739. [Google Scholar] [CrossRef]
- Rizzo, F. Optical immunoassays methods in protein analysis: An overview. Chemosensors 2022, 10, 326. [Google Scholar] [CrossRef]
- Liu, L.; Chang, Y.; Lou, J.; Zhang, S.; Yi, X. Overview on the development of alkaline-phosphatase-linked optical immunoassays. Molecules 2023, 28, 6565. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Hao, Y.; Deng, D.; Xia, N. Nanomaterials-based colorimetric immunoassays. Nanomaterials 2019, 9, 316. [Google Scholar] [CrossRef] [PubMed]
- Wei, D.; Li, M.; Ai, F.; Wang, K.; Zhu, N.; Wang, Y.; Yin, D.; Zhang, Z. Fabrication of biomimetic cascade nanoreactor based on covalent organic framework capsule for biosensing. Anal. Chem. 2023, 95, 11052–11060. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Wei, C.; Su, C.; Liu, X.; Sun, P.; Xu, Z.; Lu, G.; Lin, Y.; Li, H. Improving both stability and sensitivity of immunosensor by spatially controlled enzyme-engineered covalent organic frameworks. Adv. Funct. Mater. 2025, 35, 2420159. [Google Scholar] [CrossRef]
- Lyu, A.; Wang, Y.; Cui, H. Enhanced chemiluminescence under the nanoconfinement of covalent–organic frameworks and its application in sensitive detection of cancer biomarkers. Anal. Chem. 2023, 95, 7914–7923. [Google Scholar] [CrossRef]
- Gong, H.; Zeng, Q.; Gai, S.; Du, Y.; Zhang, J.; Wang, Q.; Ding, H.; Wu, L.; Ansari, A.A.; Yang, P. Enzyme-based colorimetric signal amplification strategy in lateral flow immunoassay. Chin. Chem. Lett. 2025, 36, 110059. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, X.; Xue, S.; Yin, X.; Li, Y.; Wang, J.; Zhang, D. Full spectral overlap to enhanced fluorescence quenching ability by using covalent organic frameworks as a springboard of quencher for the turn-on fluorescence immunoassay. Anal. Chem. 2024, 97, 238–246. [Google Scholar] [CrossRef]
- Wang, S.; Liang, N.; Hu, X.; Li, W.; Guo, Z.; Zhang, X.; Huang, X.; Li, Z.; Zou, X.; Shi, J. Carbon dots and covalent organic frameworks based FRET immunosensor for sensitive detection of Escherichia coli O157:H7. Food Chem. 2024, 447, 138663. [Google Scholar] [CrossRef]
- Han, X.X.; Rodriguez, R.S.; Haynes, C.L.; Ozaki, Y.; Zhao, B. Surface-enhanced Raman spectroscopy. Nat. Rev. Method. Prime. 2021, 1, 87. [Google Scholar] [CrossRef]
- Yang, Y.; Li, G.; Wang, P.; Fan, L.; Shi, Y. Highly sensitive multiplex detection of foodborne pathogens using a SERS immunosensor combined with novel covalent organic frameworks based biologic interference-free Raman tags. Talanta 2022, 243, 123369. [Google Scholar] [CrossRef]
- Li, Y.; Yuan, J.; Zhan, S.; Hu, J.; Guo, Y.; Ding, L.; Huang, X.; Xiong, Y. Dynamic light scattering immunosensor based on metal-organic framework mediated gold growth strategy for the ultra-sensitive detection of alpha-fetoprotein. Sens. Actuat. B Chem. 2021, 341, 130030. [Google Scholar] [CrossRef]
- Guo, Q.; Ding, L.; Li, Y.; Xiong, S.; Fang, H.; Li, X.; Nie, L.; Xiong, Y.; Huang, X. Covalent organic framework-gold nanoparticle heterostructures amplified dynamic light scattering immunosensor for ultrasensitive detection of NT-proBNP in whole blood. Sens. Actuat. B Chem. 2022, 364, 131872. [Google Scholar] [CrossRef]
- Liang, H.; Chen, S.; Qileng, A.; Liu, W.; Xu, Z.; Zhang, S.; Liu, Y. Enhanced photothermal activity of nanoconjugated system via covalent organic frameworks as the springboard. Small 2023, 20, 2304720. [Google Scholar] [CrossRef] [PubMed]
- Biswal, B.P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 5328–5331. [Google Scholar] [CrossRef] [PubMed]
- Zhai, R.; Gong, X.; Xie, J.; Yuan, Y.; Xu, F.; Jiang, Y.; Huang, Z.; Dai, X.; Zhang, Y.; Qian, X.; et al. Ultrasensitive analysis of heat shock protein 90α with antibodies orderly arrayed on a novel type of immunoprobe based on magnetic COFs. Talanta 2019, 191, 553–560. [Google Scholar] [CrossRef]
- Ding, S.-Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W.-G.; Su, C.-Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816–19822. [Google Scholar] [CrossRef]
- Dey, S.; Bhunia, A.; Esquivelb, D.; Janiak, C. Covalent triazine-based frameworks (CTFs) from triptycene and fluorene motifs for CO2 adsorption. J. Mater. Chem. A 2016, 4, 6259–6263. [Google Scholar] [CrossRef]
- Kuhn, P.; Antonietti, M.; Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 2008, 47, 3450–3453. [Google Scholar] [CrossRef]
- Xu, H.; Gao, J.; Jiang, D. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 2015, 7, 905–912. [Google Scholar] [CrossRef]
- Xu, H.; Xu, Y.; Wang, Y.; Wang, Q.; Zhang, Y.; Liao, Q.; Xi, K. Covalent organic framework-based photocatalyst for activation of peroxymonosulfate: Implications for degradation of organic pollutants. ACS Appl. Nano Mater. 2024, 7, 3071–3081. [Google Scholar] [CrossRef]
- Ma, W.; Zheng, Q.; He, Y.; Li, G.; Guo, W.; Lin, Z.; Zhang, L. Size-controllable synthesis of uniform spherical covalent organic frameworks at room temperature for highly efficient and selective enrichment of hydrophobic peptides. J. Am. Chem. Soc. 2019, 141, 18271–18277. [Google Scholar] [CrossRef]
- Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M.V.; Heine, T.; Banerjee, R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 2012, 134, 19524–19527. [Google Scholar] [CrossRef]
- Chen, X.; Li, Y.; Wang, L.; Xu, Y.; Nie, A.; Li, Q.; Wu, F.; Sun, W.; Zhang, X.; Vajtai, R.; et al. High-lithium-affinity chemically exfoliated 2D covalent organic frameworks. Adv. Mater. 2019, 31, 1901640. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, L.; Zhao, H.; Li, B.; Ma, H. A two-dimensional cationic covalent organic framework membrane for selective molecular sieving. J. Mater. Chem. A 2018, 6, 13331–13339. [Google Scholar] [CrossRef]
- Liang, C.; Lin, H.; Wang, Q.; Shi, E.; Zhou, S.; Zhang, F.; Qu, F.; Zhu, G. A redox-active covalent organic framework for the efficient detection and removal of hydrazine. J. Hazard Mater. 2020, 381, 120983. [Google Scholar] [CrossRef] [PubMed]
COF Name | Reagent | Reaction Condition | Ref. |
---|---|---|---|
COFTp-BD | 120 °C for 3 days in the mixed solvent of mesitylene and dioxane with acetic acid as catalyst [115] | [45,49,80,111,116] | |
COF-LZU1 | 120 °C for 3 days in 1,4-dioxane with acetic acid as catalyst [117] | [46,51,52,56,75,79,89,105,113] | |
triazine-COF | 40 °C for 16 h in dichloromethane with AlCl3 as catalyst [118] | [48] | |
TPN-COF | 400 °C for 5 h with ZnCl2 as catalyst [119] | [47] | |
COFTAPB-DMTP | 70 °C for 24 h in the mixed solvent of n- butanol and 1,4 ethylene oxide with acetic acid as catalyst | [53,57,58,77,90,100,120] | |
COFDha-Tab | 25 °C for 45 min in DMSO with acetic acid as catalyst | [54,91] | |
MA-DBB | 150 °C for 2 h in DMSO | [55] | |
p-COF | 90 °C for 14 h in the mixed solvent of o-dichlorobenzene and 1-butanol with acetic acid as catalyst | [67] | |
PAF-130 | 120 °C for 3 days in the mixed solvent of o-dichlorobenzene and n-butanol with acetic acid as catalyst | [66] | |
T-COF | 120 °C for 96 h in the mixed solvent of mesitylene and dioxane with acetic acid as catalyst | [71] | |
TFPT-TAPB-COF | 120 °C for 3 days in the mixed solvent of 1,4-dioxane and mesitylene with acetic acid as catalyst [121] | [72] | |
Ru-MCOF | 120 °C for 3 days in the mixed solvent of o-dichlorobenzene and ethanol with acetic acid as catalyst | [74] | |
m-COF | 120 °C for 3 days in THF with acetic acid as catalyst | [50] | |
COF–V | 25 °C for 72 h in acetonitrile with acetic acid as catalyst [122] | [99,106,108] | |
COF | 120 °C for 3 days in the mixed solvent of mesitylene and dioxane with acetic acid as catalyst [123] | [83] | |
pCOF | 120 °C for 3 days in the mixed solvent of o-dichlorobenzene and 1-butanol with acetic acid as catalyst | [76] | |
COFTAGH-Dva | 120 °C for 3 days in the mixed solvent of mesitylene and dioxane with acetic acid as catalyst | [84,88] | |
TFPB-COF | 120 °C for 3 days in the mixed solvent of mesitylene and dioxane with acetic acid as catalyst [124] | [85,92] | |
COFBTT-DGMH | 120 °C for 3 days in the mixed solvent of acetone and of 1,4-dioxane with acetic acid as catalyst | [86] | |
COF | 25 °C for 30 min in the mixed solvent of 1,3,5-trimethylbenzene and dioxane with Scandium (III) triflate as catalyst | [78] | |
EB-COF:Br | 35 °C for 10 days in the mixed solvent of dichloromethane and water with amine-p-toluene sulfonic acid as catalyst [125] | [88] | |
bipyridine-COF | 150 °C for 24 h and then 180 °C for 24 h with polyphosphoric acid as solvent and catalyst | [82] | |
COFDAAQ-TFP | 120 °C for 3 days in 1,4-dioxane with acetic acid as catalyst [126] | [94] | |
COFp-Fepor NH2-BPA | 120 °C for 3 days in the mixed solvent of mesitylene and dioxane with acetic acid as catalyst | [93] | |
COFDva-TAB | 120 °C for 3 days in the mixed solvent of mesitylene and dioxane with acetic acid as catalyst | [93,114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, S.; Liu, H. Covalent Organic Frameworks for Immunoassays: A Review. Biosensors 2025, 15, 469. https://doi.org/10.3390/bios15070469
Yang S, Liu H. Covalent Organic Frameworks for Immunoassays: A Review. Biosensors. 2025; 15(7):469. https://doi.org/10.3390/bios15070469
Chicago/Turabian StyleYang, Suling, and Hongmin Liu. 2025. "Covalent Organic Frameworks for Immunoassays: A Review" Biosensors 15, no. 7: 469. https://doi.org/10.3390/bios15070469
APA StyleYang, S., & Liu, H. (2025). Covalent Organic Frameworks for Immunoassays: A Review. Biosensors, 15(7), 469. https://doi.org/10.3390/bios15070469