Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (926)

Search Parameters:
Keywords = polymer-matrix nanocomposite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 3076 KB  
Review
Progress and Applications of Nanocomposites in the Technology of Biosensors
by Catalina Cioates Negut, Raluca-Ioana Stefan-van Staden and Ruxandra-Maria Ilie-Mihai
Nanomaterials 2025, 15(24), 1905; https://doi.org/10.3390/nano15241905 - 18 Dec 2025
Viewed by 114
Abstract
There has been tremendous progress in the development and application of nanotechnology in the past ten years. There are a plethora of nanoparticles and nanomaterials that have been developed and used to improve the biosensors’ overall performance. Nanocomposites integrate several nanomaterials inside a [...] Read more.
There has been tremendous progress in the development and application of nanotechnology in the past ten years. There are a plethora of nanoparticles and nanomaterials that have been developed and used to improve the biosensors’ overall performance. Nanocomposites integrate several nanomaterials inside a matrix to improve their structural and functional characteristics, resulting in enhanced biosensor efficacy. This review covers the achievements in nanocomposites containing metal, polymer, inorganic, carbon-based, or gold nanoparticles as new biosensors for detecting a wide range of (bio)molecules with improved sensitivity, selectivity, and a low limit of detection. The purpose is to give an overview of current advances and applications in the field of nanocomposites utilized in biosensors’ design. Emphasis will be placed on the possible uses of these nanocomposites in biosensing across a range of industries, medication delivery, food safety, healthcare, and environmental monitoring. Full article
(This article belongs to the Special Issue Applications and Advances of Nanocomposites for Biosensors)
Show Figures

Figure 1

24 pages, 6846 KB  
Article
Comparative Role of rGO, AgNWs, and rGO–AgNWs Hybrid Structure in the EMI Shielding Performance of Polyaniline/PCL-Based Flexible Films
by Brankica Gajić, Marija Radoičić, Muhammad Yasir, Warda Saeed, Silvester Bolka, Blaž Nardin, Jelena Potočnik, Gordana Ćirić-Marjanović, Zoran Šaponjić and Svetlana Jovanović
Molecules 2025, 30(24), 4693; https://doi.org/10.3390/molecules30244693 - 8 Dec 2025
Viewed by 314
Abstract
The present study explores the comparative influence of reduced graphene oxide (rGO), silver nanowires (AgNWs), and their hybrid rGO–AgNWs on the electromagnetic interference (EMI) shielding performance of polyaniline (PANI)-based flexible films prepared using a polycaprolactone (PCL) matrix. The nanocomposites were synthesized through in [...] Read more.
The present study explores the comparative influence of reduced graphene oxide (rGO), silver nanowires (AgNWs), and their hybrid rGO–AgNWs on the electromagnetic interference (EMI) shielding performance of polyaniline (PANI)-based flexible films prepared using a polycaprolactone (PCL) matrix. The nanocomposites were synthesized through in situ oxidative polymerization of aniline in the presence of individual or hybrid fillers, followed by their dispersion in the PCL matrix and casting of the corresponding films. Morphological and structural characterization (SEM, Raman, and FTIR spectroscopy) confirmed a uniform PANI coating on both rGO sheets and AgNWs, forming hierarchical 3D conductive networks. Thermal (TGA) and thermomechanical (TMA) analyses revealed enhanced thermal stability and stiffness across all composite systems, driven by strong interfacial interactions and restricted polymer chain mobility. Tmax increased from 437.9 °C for neat PCL to 487.9 °C for PANI/PCL, 480.6 °C for PANI/rGO/PCL, 499.4 °C for PANI/AgNWs/PCL and 495.0 °C for the hybrid PANI/rGO–AgNWs/PCL film. The gradual decrease in contact angle following the order PANI/AgNWs/PCL < PANI/rGO–AgNWs/PCL < PANI/rGO/PCL < PANI/PCL < PCL clearly indicates a systematic increase in surface polarity and surface energy with the incorporation of conductive nanofillers. Electrical conductivity reached 60.8 S cm−1 for PANI/rGO/PCL, gradually decreasing to 27.4 S cm−1 for PANI/AgNWs/PCL and 22.1 S cm−1 for the quaternary hybrid film. The EMI shielding effectiveness (SET) measurements in the X-band (8–12 GHz) demonstrated that the PANI/rGO/PCL film exhibited the highest attenuation (~7.2 dB). In contrast, the incorporation of AgNWs partially disrupted the conductive network, reducing SE to ~5–6 dB. The findings highlight the distinct and synergistic roles of 1D and 2D fillers in modulating the electrical, thermal, and mechanical properties of biodegradable polymer films, offering a sustainable route toward lightweight, flexible EMI shielding materials. Full article
Show Figures

Figure 1

19 pages, 4542 KB  
Article
Synergetic Effect of Fullerene and Fullerenol/Carbon Nanotubes in Cellulose-Based Composites for Electromechanical and Thermoresistive Applications
by Ane Martín-Ayerdi, Timur Tropin, Nikola Peřinka, José Luis Vilas-Vilela, Pedro Costa, Vasil M. Garamus, Dmytro Soloviov, Viktor Petrenko and Senentxu Lanceros-Méndez
Polymers 2025, 17(24), 3259; https://doi.org/10.3390/polym17243259 - 7 Dec 2025
Viewed by 405
Abstract
A water-soluble hydroxypropyl cellulose (HPC) polymer matrix has been filled with different weight percentages (wt.%) of multiwalled carbon nanotubes (MWCNTs), fullerenes C60, fullerenols C60(OH)24, and their combinations. We study the potential of the 0D nanoparticles for improving electrical [...] Read more.
A water-soluble hydroxypropyl cellulose (HPC) polymer matrix has been filled with different weight percentages (wt.%) of multiwalled carbon nanotubes (MWCNTs), fullerenes C60, fullerenols C60(OH)24, and their combinations. We study the potential of the 0D nanoparticles for improving electrical properties of the conductive MWCNT network in a biocompatible matrix. Physicochemical effects of fillers content, both individually and in combinations (MWCNTs/C60 and MWCNTs/C60(OH)24), for these composite systems, have been investigated. The performed SAXS analysis shows improved nanofiller dispersion for films with two fillers. The electrical percolation threshold (Pc) in MWCNTs composites occurs at ≈1.0 wt.%. A synergistic effect for binary filler composites on the electrical conductivity has been evaluated by keeping a constant amount of 0.5 wt.% MWCNTs (σ ≈ 3 × 10−9 S·m−1) and increasing the amount of C60 or C60(OH)24. A large increase in the electrical conductivity is obtained for the bifiller composites with 0.5 wt.% MWCNTs and 1.5 wt.% of C60(OH)24, reaching σ ≈ 0.008 S·m−1. Further, the sensing properties of 4.0/1.0 MWCNT/C60 nanocomposites were demonstrated by measuring both piezoresistive (PR) and thermoresistive (TR) responses. The combination of semiconductive fullerene/fullerenols combined with MWCNTs allows obtaining more homogeneous composites in comparison to single MWCNTs composites and also gives possibilities for tuning the electrical conductivity of the system. Overall, it is demonstrated that the use of bifillers with a water soluble biopolymeric matrix allows the development of eco-friendly high-performance electroactive materials for sustainable digitalization. Full article
(This article belongs to the Special Issue Conductive and Magnetic Properties of Polymer Nanocomposites)
Show Figures

Figure 1

33 pages, 1512 KB  
Review
Pineapple-Derived Nanocellulose for Nanocomposites: Extraction, Processing, and Properties
by Marianelly Esquivel-Alfaro, Oscar Rojas-Carrillo, Belkis Sulbarán-Rangel, Lilliana Rodríguez-Barquero, Hasbleidy Palacios-Hinestroza and Orlando J. Rojas
J. Compos. Sci. 2025, 9(12), 652; https://doi.org/10.3390/jcs9120652 - 1 Dec 2025
Viewed by 703
Abstract
Pineapple waste is an underexplored source for producing nanocomposites, from which nanocellulose, namely cellulose nanocrystals (CNCs) or cellulose nanofibers (CNFs), can be produced. This review summarizes extraction methods from different pineapple residues (leaves, crown leaves, stem, peel, pulp, and pomace), covering top-down processes [...] Read more.
Pineapple waste is an underexplored source for producing nanocomposites, from which nanocellulose, namely cellulose nanocrystals (CNCs) or cellulose nanofibers (CNFs), can be produced. This review summarizes extraction methods from different pineapple residues (leaves, crown leaves, stem, peel, pulp, and pomace), covering top-down processes (hydrolysis, oxidation, carboxymethylation, and mechanical fibrillation) and bottom-up strategies (ionic liquids and deep eutectic solvents). The review examines the influence of the morphology and crystallinity of nanocellulose on the functional performance of the nanocomposites. Strategies for processing pineapple-derived nanocellulose composites are analyzed by technique (solution casting, film stacking, and melt blending/extrusion) and polymer matrices (starch, PVA, chitosan, PLA, PHBV, PBAT, proteins, and polysaccharides), including typical loading levels for most polymer-reinforced systems (0.5–5 wt.%), while higher levels (15–50 wt.%) are used in particular cases such as PVA, CMC, and cellulosic matrices. The impact on mechanical strength, barrier behavior, UV shielding, and optical properties is summarized, along with reports of self-reinforced and hybrid cellulose-derived matrices. A benchmarking section was prepared to show nanocellulose loading ranges, trends in properties, and processing-relevant information categorized by type of matrix. Finally, the review describes the potential roles of pineapple waste within a bioeconomy context and identifies some extraction by-products that could be incorporated into diverse value chains. Full article
(This article belongs to the Section Nanocomposites)
Show Figures

Graphical abstract

25 pages, 5715 KB  
Article
Exploring Structural and Electrical Behavior of Nanostructured Polypyrrole/Strontium Titanate Composites for CO2 Sensor
by S. Mytreyi, Sharanappa Chapi, Sutar Rani Ananda, Nagaraj Nandihalli and M. V. Murugendrappa
Micro 2025, 5(4), 54; https://doi.org/10.3390/micro5040054 - 28 Nov 2025
Viewed by 215
Abstract
The current research presents the synthesis, characterization, and application of a novel gas sensor based on polypyrrole/strontium titanate (PPy/STO) nanocomposites for the selective detection of CO2. Utilizing chemical oxidative polymerization, PPy and PPy/STO nanocomposites with varying STO (10–50) wt.% were synthesized [...] Read more.
The current research presents the synthesis, characterization, and application of a novel gas sensor based on polypyrrole/strontium titanate (PPy/STO) nanocomposites for the selective detection of CO2. Utilizing chemical oxidative polymerization, PPy and PPy/STO nanocomposites with varying STO (10–50) wt.% were synthesized and characterized. The structural and morphological analysis confirms the formation of spherical structure and well-dispersed PPy nanoparticles with increasing crystallinity and interaction of STO in PPy chain particle compactness as the STO content increases. The integration of perovskite STO within the conducting polymer matrix enhances the electronic structure, porosity, and surface area of the composite, promoting improved gas sensing performance. Electrical impedance spectroscopy reveals that the composites exhibit a frequency-dependent dielectric response and conduction attributed to charge carrier mobility and interfacial polarization effects. PPy/STO 20% exhibits highest conductivity and dielectric constants of 0.03604 Scm−1 and 1.074 × 104, respectively. Real-time CO2 sensing experiments conducted at 50 °C demonstrate good sensitivity, stability, and rapid response/recovery characteristics, particularly for the PPy/STO 10% and 40% composites. These findings highlight the potential of PPy/STO nanocomposites as flexible, lightweight, and efficient materials for portable CO2 gas sensors, addressing the growing needs for environmental and health monitoring. Full article
Show Figures

Figure 1

15 pages, 1435 KB  
Article
Composite Proton Exchange Membrane Based on Poly-1-Vinyl-1,2,4-Triazole with Sulfofullerene
by Ruslan Usmanov, Artem Emel’yanov, Nadezhda Kuznetsova, Tatyana Semenova, Dmitriy Chepenko, Galina Prozorova and Alexander Pozdnyakov
Polymers 2025, 17(23), 3171; https://doi.org/10.3390/polym17233171 - 28 Nov 2025
Viewed by 241
Abstract
Proton exchange membrane fuel cells are environmentally friendly, safe clean energy devices that have the potential to change the world. Proton exchange membrane fuel cells are a promising replacement for traditional power generation devices. Nanocomposite proton exchange membranes have high energy efficiency, which [...] Read more.
Proton exchange membrane fuel cells are environmentally friendly, safe clean energy devices that have the potential to change the world. Proton exchange membrane fuel cells are a promising replacement for traditional power generation devices. Nanocomposite proton exchange membranes have high energy efficiency, which allows them to be considered as a new generation of proton exchange materials. This paper presents for the first time the synthesis and properties of nanocomposite proton exchange membranes based on poly-1-vinyl-1,2,4-triazole modified with polyhydroxysulfonated fullerene. Sulfofullerene intercalated into the polymer matrix improves all key membrane properties. The PEM nanocomposites exhibit a proton conductivity of up to 1.67 mS/cm and a uniform distribution of carbon nanoparticles of up to 10 nm in size. It was established that high dispersion and stabilization of nanoparticles are ensured by the acid–base interaction of sulfofullerene with the heterocycles of the polymer matrix. Stabilization of functionalized fullerenes by a matrix of semi-interpenetrating polymer networks is an innovative approach for creating nanocomposite proton-conducting systems. The obtained fullerene-containing PEMs demonstrate a high potential for wide practical application in various fuel cells. Full article
Show Figures

Figure 1

22 pages, 5131 KB  
Article
Bioinspired Fabrication of Ca-ZnO/CuO/Alginate Beads for Enhanced Wastewater Treatment and Antibacterial Applications
by Prachi Verma, Sunita Sanwaria, Jyoti Patel, Ajaya Kumar Singh, Ravin Jugade and Sónia A. C. Carabineiro
Catalysts 2025, 15(12), 1107; https://doi.org/10.3390/catal15121107 - 27 Nov 2025
Viewed by 468
Abstract
This study focuses on optimizing the photochemical degradation of methylene blue (MB) using calcium-functionalized zinc oxide–copper oxide–alginate (ZnO/CuO/Alg) nanocomposite hydrogel beads under sunlight irradiation. Pure ZnO and CuO nanoparticles (NPs) were synthesized via a green co-precipitation method employing plant extracts and were subsequently [...] Read more.
This study focuses on optimizing the photochemical degradation of methylene blue (MB) using calcium-functionalized zinc oxide–copper oxide–alginate (ZnO/CuO/Alg) nanocomposite hydrogel beads under sunlight irradiation. Pure ZnO and CuO nanoparticles (NPs) were synthesized via a green co-precipitation method employing plant extracts and were subsequently embedded into an alginate polymer matrix. Various characterization techniques, including powder X-ray diffraction (PXRD), ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy with energy-dispersive X-ray analysis (SEM–EDX), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA), were employed to analyze the structure and morphology of the catalysts. The photocatalytic performance of the nanocomposites was evaluated by studying the effects of pH, catalyst dose, irradiation time and MB concentration. Mathematical modeling was used to determine the optimal degradation conditions, achieving a maximum photocatalytic efficiency of 77.86% under the following parameters: MB concentration of 20 mg/L, catalyst dose of 50 mg, irradiation time of 75 min and pH 8. The model fit the experimental data well, showing a coefficient of determination (R2) of 0.963, confirming its reliability. Additionally, the antibacterial potential of the nanocomposite powders was investigated. Tests were conducted using equal concentrations of pure ZnO, ZnO/CuO and ZnO/CuO/Alg nanocomposites on Petri dishes inoculated with both Gram-positive and Gram-negative bacterial cultures. The results revealed significant bacterial growth inhibition, with the ZnO/CuO/Alg nanocomposite exhibiting the largest inhibition zone of 20 mm, compared to 14 mm for pure ZnO, indicating superior antibacterial efficacy. Full article
(This article belongs to the Special Issue Catalysis by Metals and Metal Oxides)
Show Figures

Figure 1

21 pages, 24480 KB  
Article
Processing Strategies for High-Performance Polyester-Based Adhesives Reinforced by Bio-Derived Nanoparticles
by Nathan R. Hsieh, Aaron Guan, Saraswati Koul and Siu N. Leung
J. Manuf. Mater. Process. 2025, 9(12), 382; https://doi.org/10.3390/jmmp9120382 - 21 Nov 2025
Viewed by 472
Abstract
This study explores the enhancement of mechanical and adhesive properties of unsaturated polyester resins (UPR) through the incorporation of bio-derived chitin nanowhiskers (CNWs) into the polymer matrix. CNWs are high-performance nanoparticles extracted from chitin, an abundant and renewable biopolymer. The research investigates the [...] Read more.
This study explores the enhancement of mechanical and adhesive properties of unsaturated polyester resins (UPR) through the incorporation of bio-derived chitin nanowhiskers (CNWs) into the polymer matrix. CNWs are high-performance nanoparticles extracted from chitin, an abundant and renewable biopolymer. The research investigates the effects of processing strategies and CNW loadings on the chemical structure, thermal behaviour, mechanical strength, and adhesive performance of UPR–CNW nanocomposites. CNWs were incorporated into the UPR matrix via slurry compounding using different suspension media, including ethanol, acetone, and methyl ethyl ketone, and through direct mechanical mixing with CNW dry powders. Experimental results show that the thermal and mechanical properties of the nanocomposites are highly sensitive to both the thermal history during processing and the choice of suspension medium. Most importantly, the optimal adhesive performance was achieved via slurry compounding with a CNW suspension in ethanol, following an evaporative pre-treatment of the suspension to reduce ethanol content and thereby minimize transesterification of the polyester matrix. Full article
Show Figures

Figure 1

19 pages, 1928 KB  
Article
Coupled Mechanical/Dielectric Behavior of Bio-Modified PP/PBS Nanocomposites Reinforced with Organically Modified Montmorillonite
by Sirine Taktak, Nouha Ghorbel, Sébastien Rondot, Omar Jbara and Ahmed Tara
Polymers 2025, 17(22), 3063; https://doi.org/10.3390/polym17223063 - 19 Nov 2025
Viewed by 463
Abstract
The performance of heterogeneous polymer-based materials is largely governed by the efficiency of interfacial adhesion and the strength of interactions between their constituent phases. This work mainly focuses on correlating the properties of dielectrically active interfaces, identified through broadband dielectric spectroscopy (BDS), with [...] Read more.
The performance of heterogeneous polymer-based materials is largely governed by the efficiency of interfacial adhesion and the strength of interactions between their constituent phases. This work mainly focuses on correlating the properties of dielectrically active interfaces, identified through broadband dielectric spectroscopy (BDS), with the mechanical behavior of heterogeneous polymer-based materials. Blends of polypropylene (PP) and biodegradable poly (butylene succinate) (PBS) were investigated across a wide composition range (100/0, 80/20, 70/30, 50/50, 20/80, and 0/100 PP/PBS). The interface between the immiscible PP and PBS phases induces a Maxwell–Wagner–Sillars (MWS) interfacial polarization in the permittivity spectrum. For the 80PP/20PBS formulation, the high activation energy of this polarization is well correlated with the material’s elevated tensile strength measured under uniaxial tension. A series of nanocomposites based on the 80PP/20PBS blend and reinforced with organically modified montmorillonite (Cloisite 20A) were thoroughly investigated. A strong correlation was established between their mechanical performance and the additional interfacial polarization arising from charge accumulation at the clay–matrix interface. The 80PP*/20PBS–3%C20 nanocomposite demonstrated superior matrix–filler adhesion, reflected by the highest activation energy of interfacial polarization and a marked increase in Young’s modulus (~22%) and zero-shear viscosity η0 (~44%). Complementary rheological measurements confirmed a substantial increase in viscosity and relaxation time for the 80PP/20PBS–3%C20 nanocomposites, indicating restricted chain mobility and the formation of a percolated network. Morphological analysis by SEM provided insights into the overall microstructure of the polymer blends and nanocomposites. These results demonstrate a direct correlation between interfacial structure, chain dynamics, and macroscopic performance in immiscible polymer blends and nanocomposites. Full article
Show Figures

Figure 1

25 pages, 5108 KB  
Article
In Situ Polymerization as an Effective Method, Compared to Melt Mixing, for Synthesis of Flexible Poly(lactic acid) Nanocomposites Based on Metal Nanoparticles
by Kyriaki Lazaridou, Rafail O. Ioannidis and Dimitrios N. Bikiaris
J. Compos. Sci. 2025, 9(11), 610; https://doi.org/10.3390/jcs9110610 - 5 Nov 2025
Viewed by 731
Abstract
A comprehensive investigation was conducted focusing on two series of poly(lactic acid) (PLA)-based nanocomposites filled with small amounts (0.5 and 1.0%) of metal (Ag/Cu) nanoparticles (NPs). Our work aimed to synthesize PLA/Ag nanocomposites via in situ ring-opening polymerization (ROP), and for comparison purposes, [...] Read more.
A comprehensive investigation was conducted focusing on two series of poly(lactic acid) (PLA)-based nanocomposites filled with small amounts (0.5 and 1.0%) of metal (Ag/Cu) nanoparticles (NPs). Our work aimed to synthesize PLA/Ag nanocomposites via in situ ring-opening polymerization (ROP), and for comparison purposes, the same materials were also prepared via solution casting followed by melt mixing. PLA/Cu nanocomposites were also prepared via melt extrusion. Gel permeation chromatography (GPC) and intrinsic viscosity measurements [η] showed that the incorporation of Ag nanoparticles (AgNPs) resulted in a decrease in the molecular weight of the PLA matrix, indicating a direct effect of the AgNPs on its macromolecular structure. Fourier-transform infrared spectroscopy (FTIR) revealed no significant changes in the characteristic peaks of the nanocomposites, except for an in situ sample containing 1.0 wt% of AgNPs, where slight interactions in the C=O region were detected. Differential scanning calorimetry (DSC) analysis confirmed the semi-crystalline nature of the materials. Glass transition temperature was strongly affected by the presence of NPs in the case of the in situ-based samples. Melt crystallized studies suggested potential indirect polymer–NP interactions, while isothermal melt crystallization experiments confirmed the nucleation ability of the NPs. The mechanical performance was assessed via tensile and flexural measurements, revealing that the in situ-based samples exhibited remarkable flexibility. Moreover, during the three-point bending tests, none of the in situ nanocomposite samples broke. In this context, next-generation PLA-based nanocomposites have been proposed for advanced applications, including flexible printed electronics. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Graphical abstract

16 pages, 5682 KB  
Article
Enhanced Stability of Water-Processed Sb2Te3: PEO Thermoelectric Hybrids via Thiol-Based Surface Functionalization
by Oskars Bitmets, Bejan Hamawandi, Raitis Grzibovskis, Jose Francisco Serrano Claumarchirant, Muhammet S. Toprak and Kaspars Pudzs
Sustain. Chem. 2025, 6(4), 37; https://doi.org/10.3390/suschem6040037 - 25 Oct 2025
Viewed by 570
Abstract
This study explores the development of a water-based hybrid thermoelectric (TE) material composed of Sb2Te3 nanoparticles (NPs) and polyethylene oxide (PEO). Sb2Te3 NPs were synthesized via the microwave-assisted colloidal route, where X-ray diffraction confirmed the purity and [...] Read more.
This study explores the development of a water-based hybrid thermoelectric (TE) material composed of Sb2Te3 nanoparticles (NPs) and polyethylene oxide (PEO). Sb2Te3 NPs were synthesized via the microwave-assisted colloidal route, where X-ray diffraction confirmed the purity and quality of the Sb2Te3 NPs. Key properties, including the Seebeck coefficient (S), electrical conductivity (σ), power factor (PF), and long-term stability, were studied. X-ray photoelectron spectroscopy (XPS) analysis revealed that exposure to water and oxygen leads to NP oxidation, which can be partially mitigated by hydrochloric acid (HCl) treatment, though this does not halt ongoing oxidation. Scanning electron microscopy (SEM) images displayed a percolation network of NPs within the PEO matrix. While the initial σ was high, a decline occurred over eight weeks, resulting in similar conductivity among all samples. The effect of surface treatments, such as 1,6-hexanedithiol (HDT), was demonstrated to enhance long-term stability. The results highlight both the challenges and potential of Sb2Te3/PEO hybrids for TE applications, especially regarding oxidation and durability, and underscore the need for improved synthesis and processing techniques to optimize their performance. This study provides valuable insights for the design of next-generation hybrid TE materials and emphasizes the importance of surface chemistry control in polymer–inorganic nanocomposites. Full article
Show Figures

Graphical abstract

15 pages, 4722 KB  
Article
Anti-Aging Effect of Nano-ZnO on Asphalt: Chemo-Rheological Behavior, Molecular Size Evolution of Polymers, and Nanoscale Parameters
by Baifu An, Yang Shen, Jianan Liu, Junmeng Li, Haosen Jing and Shisong Ren
Polymers 2025, 17(20), 2774; https://doi.org/10.3390/polym17202774 - 16 Oct 2025
Viewed by 531
Abstract
Asphalt is a widely used polymeric material in pavement engineering. However, it is easily affected by heat and ultraviolet rays, which accelerate its molecular degradation and physicochemical aging, thereby limiting its service life. To improve the anti-aging properties of asphalt, three types of [...] Read more.
Asphalt is a widely used polymeric material in pavement engineering. However, it is easily affected by heat and ultraviolet rays, which accelerate its molecular degradation and physicochemical aging, thereby limiting its service life. To improve the anti-aging properties of asphalt, three types of nano-zinc oxide (ZnO)-modified asphalt were prepared. The chemo-rheological behavior, structural evolution of polymeric components, molecular weight distribution, and nanoscale morphology of nano-ZnO-modified asphalt were studied via dynamic shear rheometry (DSR), Fourier transform infrared spectrometry (FTIR), gel permeation chromatography (GPC) and atomic force microscopy (AFM), and the aging resistance of nano-ZnO-modified asphalt was quantitatively analyzed using the rutting factor index, functional group index, molecular size ratio, and nanoscale parameters. The findings indicate that nano-ZnO enhances the high-temperature rheological properties of asphalt and delays the increase in the rutting factor of aged asphalt. Nano-ZnO is dispersed in the asphalt matrix in the form of a physical mixture without inducing new chemical bonds, and can reduce the nanoscale roughness of asphalt. After aging, the nanoscale roughness and the aspect ratio of the bee structure decreased, and the bee structure area increased. According to the changes in the functional group index and the proportions of molecular sizes in the asphalt, it was found that nano-ZnO can significantly improve asphalt’s aging resistance. The results of this study provide insights into the nanoscale modification and structure–property relationships of polymeric asphalt binders, providing a reference for the design and application of functional polymer nanocomposite systems with improved durability. Full article
Show Figures

Figure 1

17 pages, 5282 KB  
Article
Effects of the Mixing Method of Expanded Graphite on Thermal, Electrical, and Water Transport Properties of Thermosetting Nanocomposites
by Raffaele Longo, Elisa Calabrese, Francesca Aliberti, Luigi Vertuccio, Giorgia De Piano, Roberto Pantani, Marialuigia Raimondo and Liberata Guadagno
Polymers 2025, 17(20), 2759; https://doi.org/10.3390/polym17202759 - 15 Oct 2025
Viewed by 442
Abstract
The present research aims to investigate the impact of various mixing techniques (centrifugal planetary mixing, ultrasonication, and high-temperature magnetic stirring) on the properties of nanocomposite epoxy resins using expanded graphite particles. Differential scanning calorimetry reveals that the curing behavior and glass transition temperature [...] Read more.
The present research aims to investigate the impact of various mixing techniques (centrifugal planetary mixing, ultrasonication, and high-temperature magnetic stirring) on the properties of nanocomposite epoxy resins using expanded graphite particles. Differential scanning calorimetry reveals that the curing behavior and glass transition temperature are influenced by the selected method, indicating that a suitable choice allows increasing curing degree (C.D.) and glass transition temperature up to 10% and 12%, respectively. Morphological analysis performed via Scanning Electron Microscopy and Tunneling Atomic Force Microscopy offers detailed insights into the dispersion characteristics of fillers within polymer matrices, which sensitively affect the properties of the materials. The electrical conductivity values vary by more than five orders of magnitude among the various mixing methods. Centrifugal mixing leads to a decrease in the equilibrium concentration of water (Ceq) by up to 23% compared to that of the unfilled matrix, thanks to the chemical interactions that occur between the graphitic particles and the epoxy matrix (detectable via Fourier Transform Infrared Spectroscopy). Such a reduction is strongly desired in strategic fields such as the transport sector. The analysis of the obtained results suggests choosing the dispersion method of the filler in the matrix by considering the required performance for the specific planned application. Full article
Show Figures

Graphical abstract

23 pages, 4262 KB  
Article
Methylcellulose Bionanocomposite Films Incorporated with Zein Nanoparticles Containing Propolis and Curcumin for Functional Packaging
by Michael Ramos Nunes, Cleonice Gonçalves da Rosa, Gabriel Salvador, Sarah Cardoso de Oliveira Teixeira, Maria Clara Marinho da Costa, Aline da Rosa Almeida, Vanessa Valgas dos Santos, Ana Emília Siegloch, Fernando Domingo Zinger, Jaqueline Suave and Dachamir Hotza
Polysaccharides 2025, 6(4), 91; https://doi.org/10.3390/polysaccharides6040091 - 9 Oct 2025
Viewed by 655
Abstract
The increasing demand for sustainable alternatives to non-biodegradable plastic packaging is driving the development of active packaging based on biopolymers such as methylcellulose. In this study, innovative methylcellulose nanocomposite films incorporating zein nanoparticles loaded with propolis and curcumin were developed for active packaging [...] Read more.
The increasing demand for sustainable alternatives to non-biodegradable plastic packaging is driving the development of active packaging based on biopolymers such as methylcellulose. In this study, innovative methylcellulose nanocomposite films incorporating zein nanoparticles loaded with propolis and curcumin were developed for active packaging applications. The zein nanoparticles revealed excellent physicochemical properties, with a zeta potential above 30 mV, suggesting adequate stability. Transmission electron microscopy confirmed nanoparticles containing curcumin and propolis with uniform sizes ranging from approximately 130 to 140 nm with low polydispersity. Release studies revealed that approximately 25% of the curcumin and 35% of the propolis were released from the nanoparticles within 24 h. The release mechanism was best described by the Korsmeyer–Peppas model, suggesting a sustained release profile. The nanoparticles reduced the hydrophobicity and rigidity of the films, as evidenced by a lower elastic modulus and higher percentage elongation, thereby suggesting greater flexibility. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed the incorporation of bioactive compounds in the polymer matrix. Differential scanning calorimetry (DSC) revealed the thermal parameters of the synthesized films. Furthermore, the films exhibited antibacterial and antioxidant activities, making them highly suitable for use as biodegradable active packaging. Full article
Show Figures

Figure 1

22 pages, 3370 KB  
Article
Preparation and Characterization of Chemically Cross-Linked Xanthan/Poly(Vinylalcohol) Hydrogel Films Containing Cerium Oxide Nanoparticles for Potential Application in Removal of Methylene Blue and Crystal Violet Dyes
by Nicusor Fifere, Maria Marinela Lazar, Irina Elena Raschip, Anton Airinei, Cristian-Dragos Varganici and Maria Valentina Dinu
Gels 2025, 11(10), 809; https://doi.org/10.3390/gels11100809 - 9 Oct 2025
Viewed by 565
Abstract
In this work, hydrogel nanocomposites, as films, were prepared by embedding cerium oxide nanoparticles (CeO2NPs) within xanthan gum (Xn)/poly(vinylalcohol) (PVA) matrices. Their physicochemical properties were tuned by adjusting the ratio between components and thermal treatment conditions. The cross-linking of the polymer [...] Read more.
In this work, hydrogel nanocomposites, as films, were prepared by embedding cerium oxide nanoparticles (CeO2NPs) within xanthan gum (Xn)/poly(vinylalcohol) (PVA) matrices. Their physicochemical properties were tuned by adjusting the ratio between components and thermal treatment conditions. The cross-linking of the polymer network was confirmed by attenuated total reflectance–Fourier transform infrared (ATR-FTIR), thermal analysis, and swelling behavior. Morphological features were evaluated by atomic force microscopy (AFM), scanning electron microscopy (SEM), while optical properties were investigated by UV–Vis spectroscopy. Undoped films displayed high transparency (~80% transmittance at 400 nm), with thermal cross-linking determined only slight yellowing and negligible changes in absorption edge (300 ± 2 nm). In contrast, CeO2NPs incorporation increased reflectance and introduced a new absorption threshold around 400 ± 2 nm, indicating nanoparticle–matrix interactions that modify optical behavior. Sorption studies with Methylene Blue (MB) and Crystal Violet (CV) dyes highlighted the influence of nanoparticle content and cross-linking on functional performance, with thermally treated samples showing the highest efficiency (~97–98% MB and 71–83% CV removal). Overall, the results demonstrate how structural tailoring and cross-linking control the characteristics of Xn/PVA/CeO2 nanocomposites, providing insight into their design as multifunctional hydrogel materials for environmental applications. Full article
Show Figures

Figure 1

Back to TopTop