Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,305)

Search Parameters:
Keywords = polymer blending

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 7526 KiB  
Review
Novel Nanomaterials for Developing Bone Scaffolds and Tissue Regeneration
by Nazim Uddin Emon, Lu Zhang, Shelby Dawn Osborne, Mark Allen Lanoue, Yan Huang and Z. Ryan Tian
Nanomaterials 2025, 15(15), 1198; https://doi.org/10.3390/nano15151198 - 5 Aug 2025
Abstract
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses [...] Read more.
Nanotechnologies bring a rapid paradigm shift in hard and soft bone tissue regeneration (BTR) through unprecedented control over the nanoscale structures and chemistry of biocompatible materials to regenerate the intricate architecture and functional adaptability of bone. This review focuses on the transformative analyses and prospects of current and next-generation nanomaterials in designing bioactive bone scaffolds, emphasizing hierarchical architecture, mechanical resilience, and regenerative precision. Mainly, this review elucidated the innovative findings, new capabilities, unmet challenges, and possible future opportunities associated with biocompatible inorganic ceramics (e.g., phosphates, metallic oxides) and the United States Food and Drug Administration (USFDA) approved synthetic polymers, including their nanoscale structures. Furthermore, this review demonstrates the newly available approaches for achieving customized standard porosity, mechanical strengths, and accelerated bioactivity to construct an optimized nanomaterial-oriented scaffold. Numerous strategies including three-dimensional bioprinting, electro-spinning techniques and meticulous nanomaterials (NMs) fabrication are well established to achieve radical scientific precision in BTR engineering. The contemporary research is unceasingly decoding the pathways for spatial and temporal release of osteoinductive agents to enhance targeted therapy and prompt healing processes. Additionally, successful material design and integration of an osteoinductive and osteoconductive agents with the blend of contemporary technologies will bring radical success in this field. Furthermore, machine learning (ML) and artificial intelligence (AI) can further decode the current complexities of material design for BTR, notwithstanding the fact that these methods call for an in-depth understanding of bone composition, relationships and impacts on biochemical processes, distribution of stem cells on the matrix, and functionalization strategies of NMs for better scaffold development. Overall, this review integrated important technological progress with ethical considerations, aiming for a future where nanotechnology-facilitated bone regeneration is boosted by enhanced functionality, safety, inclusivity, and long-term environmental responsibility. Therefore, the assimilation of a specialized research design, while upholding ethical standards, will elucidate the challenge and questions we are presently encountering. Full article
(This article belongs to the Special Issue Applications of Functional Nanomaterials in Biomedical Science)
Show Figures

Graphical abstract

38 pages, 1138 KiB  
Review
Emerging Trends in Active Packaging for Food: A Six-Year Review
by Mariana A. Andrade, Cássia H. Barbosa, Regiane Ribeiro-Santos, Sidney Tomé, Ana Luísa Fernando, Ana Sanches Silva and Fernanda Vilarinho
Foods 2025, 14(15), 2713; https://doi.org/10.3390/foods14152713 - 1 Aug 2025
Viewed by 98
Abstract
The development of active food packaging has evolved rapidly in recent years, offering innovative solutions to enhance food preservation and safety while addressing sustainability challenges. This review compiles and analyzes recent advancements (2019–2024) in release-type active packaging, focusing on essential oils, natural extracts, [...] Read more.
The development of active food packaging has evolved rapidly in recent years, offering innovative solutions to enhance food preservation and safety while addressing sustainability challenges. This review compiles and analyzes recent advancements (2019–2024) in release-type active packaging, focusing on essential oils, natural extracts, and phenolic compounds as active agents. Primarily plant-derived, these compounds exhibit significant antioxidant and antimicrobial activities, extending shelf life and enhancing food quality. Technological strategies such as encapsulation and polymer blending have been increasingly adopted to overcome challenges related to volatility, solubility, and sensory impact. Integrating bio-based polymers, including chitosan, starch, and polylactic acid, further supports the development of environmentally friendly packaging systems. This review also highlights trends in compound-specific research, release mechanisms, and commercial applications, including a detailed analysis of patents and case studies across various food matrices. These developments have already been translated into practical applications, such as antimicrobial sachets for meat and essential oil-based pads for fresh produce. Moreover, by promoting the valorization of agro-industrial by-products and the use of biodegradable materials, emission-type active packaging contributes to the principles of the circular economy. This comprehensive overview underscores the potential of natural bioactive compounds in advancing sustainable and functional food packaging technologies. Full article
Show Figures

Figure 1

14 pages, 1649 KiB  
Article
Development of Cellulose Acetate Spherical Microparticles by Means of Melt Extrusion of Incompatible Polymer Blend
by Masaya Omura, Keiko Kobayashi, Kanji Nagai and Shu Shimamoto
Polymers 2025, 17(15), 2118; https://doi.org/10.3390/polym17152118 - 31 Jul 2025
Viewed by 159
Abstract
Cellulose acetate (CA), commercially produced from natural cellulose, is one of the promising candidates to solve the microplastic issue. In this study, attempts were made to prepare CA microparticles by means of melt extrusion of incompatible polymer blends comprising CA with plasticizer (triacetin [...] Read more.
Cellulose acetate (CA), commercially produced from natural cellulose, is one of the promising candidates to solve the microplastic issue. In this study, attempts were made to prepare CA microparticles by means of melt extrusion of incompatible polymer blends comprising CA with plasticizer (triacetin (TA)) and polyvinyl alcohol (PVA) followed by selective removable of TA and PVA. As implied by semi-theoretical equation previously established by Wu (Wu’s equation), particle size decreased with increasing shear rate or decreasing viscosity ratio of polymers. CA microparticles with a controlled size of 2–8 μm, narrow particle size distribution, and smooth surface were successfully obtained. Efforts were made to determine the numerical solution of Wu’s equation to compare them with observed particle size. To this end, interfacial tension between dispersed and matrix phases to be incorporated in the equation was determined by group contribution methods. The root mean squared error (RMSE) between the observed and calculated particle size was unsatisfactorily large, 4.46 μm. It was found that one of the possible reasons for the limited prediction accuracy was migration of TA from the dispersed to matrix phase affecting the viscosity ratio. Further efforts will be required to achieve a better prediction. Full article
(This article belongs to the Special Issue Advanced Cellulose Polymers and Derivatives)
Show Figures

Figure 1

17 pages, 3389 KiB  
Article
Enhanced OH Transport Properties of Bio-Based Anion-Exchange Membranes for Different Applications
by Suer Kurklu-Kocaoglu, Daniela Ramírez-Espinosa and Clara Casado-Coterillo
Membranes 2025, 15(8), 229; https://doi.org/10.3390/membranes15080229 - 31 Jul 2025
Viewed by 336
Abstract
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current [...] Read more.
The demand for anion exchange membranes (AEMs) is growing due to their applications in water electrolysis, CO2 reduction conversion and fuel cells, as well as water treatment, driven by the increasing energy demand and the need for a sustainable future. However, current AEMs still face challenges, such as insufficient permeability and stability in strongly acidic or alkaline media, which limit their durability and the sustainability of membrane fabrication. In this study, polyvinyl alcohol (PVA) and chitosan (CS) biopolymers are selected for membrane preparation. Zinc oxide (ZnO) and porous organic polymer (POP) nanoparticles are also introduced within the PVA-CS polymer blends to make mixed-matrix membranes (MMMs) with increased OH transport sites. The membranes are characterized based on typical properties for AEM applications, such as thickness, water uptake, KOH uptake, Cl and OH permeability and ion exchange capacity (IEC). The OH transport of the PVA-CS blend is increased by at least 94.2% compared with commercial membranes. The incorporation of non-porous ZnO and porous POP nanoparticles into the polymer blend does not compromise the OH transport properties. On the contrary, ZnO nanoparticles enhance the membrane’s water retention capacity, provide basic surface sites that facilitate hydroxide ion conduction and reinforce the mechanical and thermal stability. In parallel, POPs introduce a highly porous architecture that increases the internal surface area and promotes the formation of continuous hydrated pathways, essential to efficient OH mobility. Furthermore, the presence of POPs also contributes to reinforcing the mechanical integrity of the membrane. Thus, PVA-CS bio-based membranes are a promising alternative to conventional ion exchange membranes for various applications. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

29 pages, 7510 KiB  
Article
Stretchability and Melt Strength Enhancement of Biodegradable Polymer Blends for Packaging Solutions
by Katy D. Laevsky, Achiad Zilberfarb, Amos Ophir and Ana L. Dotan
Molecules 2025, 30(15), 3211; https://doi.org/10.3390/molecules30153211 - 31 Jul 2025
Viewed by 292
Abstract
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is [...] Read more.
Biodegradable polymers offer environmental advantages compared to fossil-based alternatives, but they currently lack the stretchability required for demanding applications such as mesh fabrics for woven flexible intermediate bulk container (FIBC) bags and stretch, shrink, and cling films. The goal of this research is to enhance the stretchability of biodegradable blends based on 80% poly(butylene adipate-co-terephthalate) (PBAT) and 20% poly(lactic acid) (PLA) through reactive extrusion. Radical initiator (dicumyl peroxide (DCP)) and chain extenders (maleic anhydride (MA), glycidyl methacrylate (GMA)) were employed to improve the melt strength and elasticity of the extruded films. The reactive blends were initially prepared using a batch mixer and subsequently compounded in a twin-screw extruder. Films were produced via cast extrusion. 0.1% wt. DCP led to a 200% increase in elongation at break and a 44% improvement in tensile strength. Differential scanning calorimetry and scanning electron microscopy revealed enhanced miscibility between components. Shear and complex viscosity increased by 38% and 85%, compared to the neat blend, respectively. Reactive extrusion led to a better dispersion and distribution of the phases. An improved interfacial adhesion between the phases, in addition to higher molecular weight, led to enhanced melt strength and improved stretchability. Full article
Show Figures

Figure 1

43 pages, 19225 KiB  
Review
Recent Progress in Flexible Wearable Sensors Utilizing Conductive Hydrogels for Sports Applications: Characteristics, Mechanisms, and Modification Strategies
by Jie Wu, Jingya Hong, Xing Gao, Yutong Wang, Wenyan Wang, Hongchao Zhang, Jaeyoung Park, Weiquan Shi and Wei Guo
Gels 2025, 11(8), 589; https://doi.org/10.3390/gels11080589 - 30 Jul 2025
Viewed by 153
Abstract
Conductive hydrogels demonstrate substantial potential for flexible wearable sensors in motion monitoring, owing to their unique physicochemical properties; however, current implementations still confront persistent challenges in long-term stability, sensitivity, response speed, and detection limits under complex dynamic conditions, which material innovations are urgently [...] Read more.
Conductive hydrogels demonstrate substantial potential for flexible wearable sensors in motion monitoring, owing to their unique physicochemical properties; however, current implementations still confront persistent challenges in long-term stability, sensitivity, response speed, and detection limits under complex dynamic conditions, which material innovations are urgently required to resolve. Consequently, this paper comprehensively reviews the recent advancements in conductive hydrogel-based flexible wearable sensors for sports applications. The paper examines the conductivity, self-adhesion, self-repair, and biocompatibility of conductive hydrogels, along with detailed analyses of their working principles in resistance, capacitance, piezoelectric, and battery-based sensing mechanisms. Additionally, the paper summarizes innovative strategies to enhance sensor performance through polymer blending, polyelectrolyte doping, inorganic salt doping, and nanomaterial integration. Furthermore, the paper highlights the latest applications of conductive hydrogel flexible wearable sensors in human motion monitoring, electrophysiological signal detection, and electrochemical biosignal monitoring. Finally, the paper provides an in-depth discussion of the advantages and limitations of existing technologies, offering valuable insights and new perspectives for future research directions. Full article
(This article belongs to the Special Issue Gels for Removal and Adsorption (3rd Edition))
Show Figures

Figure 1

14 pages, 2090 KiB  
Article
Strong Nucleating Effect of Si-Containing Tri-Block Oligomers on Poly(Ethylene Terephthalate)
by Quankai Sun, Yao Wang, Miaorong Zhang, Linjun Huang, Pengwei Zhang, Kang Li, Wei Wang and Jianguo Tang
Molecules 2025, 30(15), 3077; https://doi.org/10.3390/molecules30153077 - 23 Jul 2025
Viewed by 175
Abstract
The development of a silane coupling agent with an aminopropyl structure as a nucleating agent for poly(ethylene terephthalate) (PET) is reported in this study. The tri–block oligomers nucleating agent was formed by 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane/oxalic acid/low molecular weight PET (LPOBD). It was subsequently cross-linked with [...] Read more.
The development of a silane coupling agent with an aminopropyl structure as a nucleating agent for poly(ethylene terephthalate) (PET) is reported in this study. The tri–block oligomers nucleating agent was formed by 1,3-bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane/oxalic acid/low molecular weight PET (LPOBD). It was subsequently cross-linked with tetraethyl orthosilicate to form LPOBD-T. Composites of LPOBD/PET and LPOBD-T/PET were prepared by melt blending, and their thermal and crystallization behaviors were analyzed using XRD, DSC, TG, and POM. The results indicated that not only did the triblock polymer nucleating agent LPOBD exhibit a strong nucleation effect, but the crosslinked LPOBD-T also demonstrated superior crystallization performance. Specifically, the crystallinity of the 1 wt% LPOBD-T/PET composite increased by 3.3%, the crystallization temperature rose by 21.1 °C, and the t1/2 was reduced by 53 s. Moreover, the crystalline morphology was more uniform. These findings indicate that the tri-block oligomers synthesized from a silane coupling agent serve as effective nucleating agents for PET. Full article
(This article belongs to the Special Issue Recent Advances in Functional Composite Materials)
Show Figures

Graphical abstract

17 pages, 900 KiB  
Review
Cellulose Nanofibril-Based Biodegradable Polymers from Maize Husk: A Review of Extraction, Properties, and Applications
by Nthabiseng Motshabi, Gaofetoge Gobodiwang Lenetha, Moipone Alice Malimabe and Thandi Patricia Gumede
Polymers 2025, 17(14), 1947; https://doi.org/10.3390/polym17141947 - 16 Jul 2025
Viewed by 368
Abstract
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with [...] Read more.
The environmental impact of petroleum-based plastics has driven a global shift toward sustainable alternatives like biodegradable polymers, including polylactic acid (PLA), polybutylene succinate (PBS), and polycaprolactone (PCL). Yet, these bioplastics often face limitations in mechanical and thermal properties, hindering broader use. Reinforcement with cellulose nanofibrils (CNFs) has shown promise, yet most research focuses on conventional sources like wood pulp and cotton, neglecting agricultural residues. This review addresses the potential of maize husk, a lignocellulosic waste abundant in South Africa, as a source of CNFs. It evaluates the literature on the structure, extraction, characterisation, and integration of maize husk-derived CNFs into biodegradable polymers. The review examines the chemical composition, extraction methods, and key physicochemical properties that affect performance when blended with PLA, PBS, or PCL. However, high lignin content and heterogeneity pose extraction and dispersion challenges. Optimised maize husk CNFs can enhance the mechanical strength, barrier properties, and thermal resistance of biopolymer systems. This review highlights potential applications in packaging, biomedical, and agricultural sectors, aligning with South African bioeconomic goals. It concludes by identifying research priorities for improving compatibility and processing at an industrial scale, paving the way for maize husk CNFs as effective, locally sourced reinforcements in green material innovation. Full article
Show Figures

Figure 1

24 pages, 3919 KiB  
Article
High Drug Loading of Amorphous Solid Dispersion by Hot Melt Extrusion: The Role of Magnesium Aluminometasilicate (Neusilin® US2)
by Nithin Vidiyala, Pavani Sunkishala, Prashanth Parupathi, Preethi Mandati, Srujan Kumar Mantena, Raghu Rami Reddy Kasu and Dinesh Nyavanandi
Sci. Pharm. 2025, 93(3), 30; https://doi.org/10.3390/scipharm93030030 - 16 Jul 2025
Viewed by 219
Abstract
The objective of the current research is to investigate the role of Neusilin US2 as a porous carrier for improving the drug loading and stability of Ezetimibe (EZB) by hot melt extrusion (HME). The amorphous solid dispersions (ASDs) were developed from 10–40% of [...] Read more.
The objective of the current research is to investigate the role of Neusilin US2 as a porous carrier for improving the drug loading and stability of Ezetimibe (EZB) by hot melt extrusion (HME). The amorphous solid dispersions (ASDs) were developed from 10–40% of drug loading using Kollidon VA 64 (Copovidone) as a polymer matrix and Neusilin US2 as a porous carrier. The solid-state characterization of EZB was studied using differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). The formulation blends were characterized for flow properties, and CTC (compressibility, tabletability, compactibility) profile. The in-vitro drug release profiles were studied in 0.1 N HCl (pH 1.2). The incorporation of Neusilin US2 has facilitated the development of ASDs up to 40% of drug loading. The CTC profile has demonstrated excellent tabletability for the ternary (EZB, copovidone and Neusilin) dispersions over binary dispersion (EZB and copovidone) formulations. The tablet formulations with binary (20%) and ternary (30% and 40%) dispersions have demonstrated complete dissolution of the drug in 30 min in 0.1 N HCl (pH 1.2). The incorporation of copovidone has prevented the recrystallization of the drug in the solution state. Upon storage of formulations at accelerated conditions, the stability of ternary dispersion tablets was preserved attributing to the entrapment of the drug within Neusilin pores thereby inhibiting molecular mobility. Based on the observations, the current research concludes that it is feasible to incorporate Neusilin US2 to improve the drug loading and stability of ASD systems. Full article
Show Figures

Figure 1

15 pages, 721 KiB  
Article
Effect of Superabsorbent Polymer Size on Strength and Shrinkage in Concrete Mixtures
by Wissawin Arckarapunyathorn, Pochpagee Markpiban and Raktipong Sahamitmongkol
Polymers 2025, 17(14), 1942; https://doi.org/10.3390/polym17141942 - 16 Jul 2025
Viewed by 276
Abstract
This study investigates the influence of superabsorbent polymer (SAP) particle size on the mechanical and shrinkage behavior of concrete. Five concrete mixtures were prepared using SAPs with varying size ranges: 150–300 µm, 300–600 µm, 600–1800 µm, and a blended mix combining 300–600 µm [...] Read more.
This study investigates the influence of superabsorbent polymer (SAP) particle size on the mechanical and shrinkage behavior of concrete. Five concrete mixtures were prepared using SAPs with varying size ranges: 150–300 µm, 300–600 µm, 600–1800 µm, and a blended mix combining 300–600 µm and 600–1180 µm. The primary focus was on evaluating compressive strength, elastic modulus, autogenous shrinkage, drying shrinkage, and total shrinkage. The mechanical performance and dimensional stability were measured at different curing ages, and microstructural analysis was conducted using X-ray fluorescence (XRF) at 7 days to examine changes in chemical composition. Results showed that smaller SAP sizes contributed to more homogeneous internal curing, improved hydration, and higher matrix density. In contrast, larger SAP particles were more effective in reducing shrinkage but slightly compromised strength and stiffness. This study emphasizes the importance of selecting appropriate SAP particle sizes to balance mechanical integrity and shrinkage control, contributing to the development of high-performance concrete with reduced cracking potential. Full article
(This article belongs to the Special Issue Polymer Materials for Construction)
Show Figures

Figure 1

15 pages, 3491 KiB  
Article
Development and Characterization of Composite Films of Potato Starch and Carboxymethylcellulose/Poly(ethylene oxide) Nanofibers
by Yenny Paola Cruz Moreno, Andres Felipe Rubiano-Navarrete, Erika Rocio Cely Rincón, Adriana Elizabeth Lara Sandoval, Alfredo Maciel Cerda, Edwin Yesid Gomez-Pachon and Ricardo Vera-Graziano
Eng 2025, 6(7), 160; https://doi.org/10.3390/eng6070160 - 15 Jul 2025
Viewed by 543
Abstract
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through [...] Read more.
This study aimed to develop and characterize biodegradable films based on potato starch reinforced with carboxymethylcellulose (CMC) and polyethylene oxide (PEO) nanofibers, with the goal of improving their mechanical and thermal properties for potential use in sustainable packaging. The films were prepared through the thermal gelatinization of starch extracted from tubers, combined with nanofibers obtained by electrospinning CMC synthesized from potato starch. Key electrospinning variables, including solution concentration, voltage, distance, and flow rate, were analyzed. The films were morphologically characterized using scanning electron microscopy (SEM) and chemically analyzed by Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction (XRD), and their thermal properties were assessed by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results indicated an increase in tensile strength to 14.1 MPa in the reinforced films, compared to 13.6 MPa for pure starch and 7.1 MPa for the fiber-free CMC blend. The nanofibers had an average diameter of 63.3 nm and a porosity of 32.78%. A reduction in crystallinity and more stable thermal behavior were also observed in the composite materials. These findings highlight the potential of using agricultural waste as a functional reinforcement in biopolymers, providing a viable and environmentally friendly alternative to synthetic polymers. Full article
(This article belongs to the Section Materials Engineering)
Show Figures

Figure 1

16 pages, 2358 KiB  
Article
Enhancing Polycaprolactone with Levulinic Acid-Extracted Lignin: Toward Sustainable Bio-Based Polymer Blends
by Elodie Melro, Hugo Duarte, Filipe E. Antunes, Artur J. M. Valente, Anabela Romano and Bruno Medronho
J. Compos. Sci. 2025, 9(7), 366; https://doi.org/10.3390/jcs9070366 - 14 Jul 2025
Viewed by 249
Abstract
The growing demand for sustainable materials has intensified the search for biodegradable polymers. Poly(ε-caprolactone) (PCL), though biodegradable, is fossil-derived. In this study, a novel lignin extracted from pine wood using a green solvent was incorporated into PCL and compared with commercial lignins (dealkaline, [...] Read more.
The growing demand for sustainable materials has intensified the search for biodegradable polymers. Poly(ε-caprolactone) (PCL), though biodegradable, is fossil-derived. In this study, a novel lignin extracted from pine wood using a green solvent was incorporated into PCL and compared with commercial lignins (dealkaline, alkaline, and lignosulfonate). The lignin additions imparted antioxidant properties, enhanced thermal stability, and promoted circular economy goals through lignin valorization. Notably, the green-extracted lignin showed superior compatibility with PCL when compared with commercial lignins, as evidenced by lower water uptake and solubility, and improved surface hydrophobicity (higher contact angle). Although the addition of lignin reduced the tensile strength and elongation at break, it greatly increased the PCL radical scavenging activity (DPPH) from 8 ± 1% of neat PCL to 94.8 ± 0.3% when 20 wt% of lignin-LA was added. Among the tested lignins, lignin-LA stands out as the most promising candidate to be applied as a functional additive in biodegradable polymer blends and composites for advanced sustainable applications. Not only given its intrinsically higher sustainability but also due to its capacity for improving the thermal properties of PCL–lignin blends. Full article
Show Figures

Figure 1

23 pages, 3933 KiB  
Article
Evaluations on the Properties of Polymer and Nanomaterials Modified Bitumen Under Different Aging Conditions
by Shaban Ismael Albrka Ali, Khalifa Salem Gallouz, Ikenna D. Uwanuakwa, Mustafa Alas and Mohd Rosli Mohd Hasan
Nanomaterials 2025, 15(14), 1071; https://doi.org/10.3390/nano15141071 - 10 Jul 2025
Viewed by 320
Abstract
This research evaluates the rheological and mechanical properties of polymer- and nanomaterials-modified bitumen by incorporating nanosilica (NSA), nanoclay (NCY), and Acrylonitrile Styrene Acrylate (ASA) at 5% by weight of the bitumen. The samples were prepared at 165 °C for one hour to obtain [...] Read more.
This research evaluates the rheological and mechanical properties of polymer- and nanomaterials-modified bitumen by incorporating nanosilica (NSA), nanoclay (NCY), and Acrylonitrile Styrene Acrylate (ASA) at 5% by weight of the bitumen. The samples were prepared at 165 °C for one hour to obtain homogeneous blends. All samples were subjected to short- and long-term aging to simulate the effects of different operating conditions. The research conducted a series of tests, including consistency, frequency sweep, and multiple creep stress and recovery (MSCR) using the dynamic shear rheometer (DSR) and bending beam rheometer (BBR). The results showed that all modified bitumen outperformed the neat bitumen. The frequency sweep showed a higher complex modulus (G*) and lower phase angle (δ), indicating enhanced viscoelastic properties and, thus, higher resistance to permanent deformation. The BBR test revealed that the bitumen modified with NCY5% has a creep stiffness of 47.13 MPa, a 51.5% improvement compared to the neat bitumen, while the NSA5% has the highest m-value, a 28.5% enhancement compared with the neat bitumen. The MSCR showed that the modified blends have better recovery properties and, therefore, better resistance to permanent deformation under repeated loadings. The aging index demonstrated that the modified bitumen is less vulnerable to aging and maintains their good flexibility and resistance to permanent deformations. Finally, these results showed that adding 5% polymer and nanomaterials improved the bitumen’s’ performance before and after aging by reducing permanent deformation and enhancing crack resistance at low temperatures, thus extending the pavement service life and making them an effective alternative for improving pavement performance in various climatic conditions and under high traffic loads. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

23 pages, 3314 KiB  
Article
The Effect of Poly (Methyl Methacrylate) Content on Chemical, Thermomechanical, Mechanical, and Fatigue Life Characteristics of Ternary PC/ABS/PMMA Blends
by Hamdi Kuleyin and Recep Gümrük
Polymers 2025, 17(14), 1905; https://doi.org/10.3390/polym17141905 - 10 Jul 2025
Viewed by 498
Abstract
Polymer blending techniques enable the tailoring of desired properties for diverse applications. This study investigates the effect of PMMA content on the thermomechanical, chemical, mechanical, and fatigue life properties of PC/ABS/PMMA (polycarbonate/acrylonitrile–butadiene–styrene/polymethylmethacrylate) ternary blends. To this end, various characterization analyses, as well as [...] Read more.
Polymer blending techniques enable the tailoring of desired properties for diverse applications. This study investigates the effect of PMMA content on the thermomechanical, chemical, mechanical, and fatigue life properties of PC/ABS/PMMA (polycarbonate/acrylonitrile–butadiene–styrene/polymethylmethacrylate) ternary blends. To this end, various characterization analyses, as well as tensile, impact, and fatigue tests, were conducted. The results indicate that the viscoelastic modulus improves with increasing PMMA content in ternary blends. Furthermore, PC/ABS/PMMA blends exhibit an immiscible phase morphology. The elastic modulus, yield strength, and tensile strength increase with higher PMMA content, while the elongation at break and impact strength decrease. Fatigue strength and the fatigue strength exponent were found to vary nonlinearly with PMMA content. Compared to PC/ABS blends, PC/ABS/PMMA blends demonstrated improvements of approximately 12% to 58% and 26% to 117% in hysteresis energy and the dynamic elastic modulus, respectively. Additionally, fatigue life cycles improved by 5% to 11% at low stress amplitudes. This experimental study provides comprehensive insight into the complex interplay among the chemical, thermomechanical, mechanical, and fatigue properties of ternary PC/ABS/PMMA blends, highlighting their potential for applications requiring balanced or tailored structural and material characteristics. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

21 pages, 9386 KiB  
Article
Structural Characterization and Segmental Dynamics Evaluation in Eco-Friendly Polymer Electrospun Fibers Based on Poly(3-hydroxybutyrate)/Polyvinylpyrrolidone Blends to Evaluate Their Sustainability
by Svetlana G. Karpova, Anatoly A. Olkhov, Ivetta A. Varyan, Ekaterina P. Dodina, Yulia K. Lukanina, Natalia G. Shilkina, Anatoly A. Popov, Alexandre A. Vetcher, Anna G. Filatova and Alexey L. Iordanskii
J. Compos. Sci. 2025, 9(7), 355; https://doi.org/10.3390/jcs9070355 - 8 Jul 2025
Viewed by 357
Abstract
Ultrafine fibers from poly(3-hydroxybutyrate) (PHB) and polyvinylpyrrolidone (PVP) and their blends with different component ratios in the range of 0/100 to 100/0 wt.% were obtained, and their structure and dynamic properties were studied. The polymers were obtained via electrospinning in solution mode. The [...] Read more.
Ultrafine fibers from poly(3-hydroxybutyrate) (PHB) and polyvinylpyrrolidone (PVP) and their blends with different component ratios in the range of 0/100 to 100/0 wt.% were obtained, and their structure and dynamic properties were studied. The polymers were obtained via electrospinning in solution mode. The structure, morphology, and segmental dynamic behavior of the fibers were determined using optical microscopy, SEM, EPR, DSC, and IR spectroscopy. The low-temperature maximum on the DSC endotherms provided information on the state of the PVP hydrogen bond network, which made it possible to determine the enthalpies of thermal destruction of these bonds. The PHB/PVP fiber blend ratio significantly affected the structural and dynamic parameters of the system. Thus, at low concentrations of PVP (up to 9%) in the structure of ultra-fine fibers, the distribution of this polymer occurs in the form of tiny particles, which are crystallization centers, which causes a significant increase in the degree of crystallinity (χ) activation energy (Eact) and slowing down of molecular dynamics (τ). At higher concentrations of PVP, loose interphase layers were formed in the system, which caused a decrease in these parameters. The strongest changes in the concentration of hydrogen bonds occurred when PVP was added to the composition from 17 to 50%, which was due to the formation of intermolecular hydrogen bonds both in PVP and during the interaction of PVP and PHB. The diffusion coefficient of water vapor in the studied systems (D) decreased as the concentration of glassy PVP in the composition increased. The concentration of the radical decreased with an increase in the proportion of PVP, which can be explained by the glassy state of this polymer at room temperature. A characteristic point of the 50/50% mixture component ratio was found in the region where an inversion transition of PHB from a dispersion material to a dispersed medium was assumed. The conducted studies made it possible for the first time to conduct a comprehensive analysis of the effect of the component ratio on the structural and dynamic characteristics of the PHB/PVP fibrous material at the molecular scale. Full article
Show Figures

Figure 1

Back to TopTop