Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,161)

Search Parameters:
Keywords = polymer association

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 1619 KB  
Article
Morphological and Performance Assessment of Commercial Menstrual and Incontinence Absorbent Hygiene Products
by Liesbeth Birchall, Millie Newmarch, Charles Cohen and Muhammad Tausif
Polymers 2026, 18(3), 318; https://doi.org/10.3390/polym18030318 (registering DOI) - 24 Jan 2026
Abstract
Disposable absorbent hygiene products (AHPs) contain plastics that are challenging to recycle and not biodegradable, making a significant contribution to landfill. Decreasing the nonbiodegradable mass of products could reduce this burden. Despite this, public data on how AHP design and material selection relate [...] Read more.
Disposable absorbent hygiene products (AHPs) contain plastics that are challenging to recycle and not biodegradable, making a significant contribution to landfill. Decreasing the nonbiodegradable mass of products could reduce this burden. Despite this, public data on how AHP design and material selection relate to performance is limited. In this work, fifteen commercial AHPs were characterised using dimensional measurement, infrared spectroscopy, and imaging. Simulated urination, air permeability, and moisture management testing were used to assess expected leakage and user comfort. Sustainable materials currently in use were identified, and their performance compared to typical plastics, informing opportunities to replace or reduce nonbiodegradable materials. Polybutylene adipate terephthalate-based leakproof layers replaced polyolefins. Commercial alternatives to polyacrylate superabsorbent polymers (SAPs), with comparable absorption, were not seen. Although absorbency correlated with the mass of absorbants, SAPs reduced surface moisture after absorption and are known for high absorption capacity under pressure, preventing rewetting. Channels and side guards were observed to prevent side leakage and guide fluid distribution, potentially reducing the need for nonbiodegradable nonwoven and absorbant content by promoting efficient use of the full product mass. While synthetic nonwovens typically outperformed cellulosics, apertured and layered nonwovens were associated with improved moisture transport; polylactic acid rivalled typical thermoplastics as a bio-derived, compostable alternative. Although the need for biopolymer-based SAPs and foams remains, it is hoped that these findings will guide AHP design and promote research in sustainable materials. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
19 pages, 11499 KB  
Article
A Novel Plasticization Mechanism in Poly(Lactic Acid)/PolyEthyleneGlycol Blends: From Tg Depression to a Structured Melt State
by Nawel Mechernene, Lina Benkraled, Assia Zennaki, Khadidja Arabeche, Abdelkader Berrayah, Lahcene Mechernene, Amina Bouriche, Sid Ahmed Benabdellah, Zohra Bouberka, Ana Barrera and Ulrich Maschke
Polymers 2026, 18(3), 317; https://doi.org/10.3390/polym18030317 (registering DOI) - 24 Jan 2026
Abstract
Polylactic acid (PLA) is a promising biodegradable polymer whose widespread application is hindered by inherent brittleness. Polyethylene glycol (PEG) is a common plasticizer, but the effects of intermediate molecular weights, such as 4000 g/mol, on the coupled thermal, mechanical, and rheological properties of [...] Read more.
Polylactic acid (PLA) is a promising biodegradable polymer whose widespread application is hindered by inherent brittleness. Polyethylene glycol (PEG) is a common plasticizer, but the effects of intermediate molecular weights, such as 4000 g/mol, on the coupled thermal, mechanical, and rheological properties of PLA remain insufficiently understood. This study presents a comprehensive analysis of PLA plasticized with 0–20 wt% PEG 4000, employing differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and rheology. DSC confirmed excellent miscibility and a significant glass transition temperature (Tg) depression exceeding 19 °C for the highest concentration. A complex, non-monotonic evolution of crystallinity was observed, associated with the formation of different crystalline forms (α′ and α). Critically, DMA revealed that the material’s thermo-mechanical response is dominated by its thermal history: while the plasticizing effect is masked in highly crystalline, as-cast films, it is unequivocally demonstrated in quenched amorphous samples. The core finding emerges from a targeted rheological investigation. An anomalous increase in melt viscosity and elasticity at intermediate PEG concentrations (5–15 wt%), observed at 180 °C, was systematically shown to vanish at 190 °C and in amorphous samples. This proves that the anomaly stems from residual crystalline domains (α′ precursors) persisting near the melting point, not from a transient molecular network. These results establish that PEG 4000 is a highly effective PLA plasticizer whose impact is profoundly mediated by processing-induced crystallinity. This work provides essential guidelines for tailoring PLA properties by controlling thermal history to optimize flexibility and processability for advanced applications, specifically in melt-processing for flexible packaging. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

12 pages, 1022 KB  
Systematic Review
Natural Antimicrobial Peptides in the Control of Oral Biofilms: A Systematic Review of In Vitro Studies
by Ana Carolina Cambuí Pereira, Thalya Fernanda Horsth Maltarollo, Ana Carolina Brito Pereira, Mary Caroline Skelton-Macedo and Ericka Tavares Pinheiro
J 2026, 9(1), 2; https://doi.org/10.3390/j9010002 - 22 Jan 2026
Viewed by 9
Abstract
Due to the limitations of conventional antibiotics, antimicrobial peptides (AMPs) have emerged as promising therapeutic alternatives for the prevention and treatment of oral infections. This study systematically evaluated in vitro evidence regarding the antimicrobial and anti-biofilm activity of natural AMPs against oral pathogens. [...] Read more.
Due to the limitations of conventional antibiotics, antimicrobial peptides (AMPs) have emerged as promising therapeutic alternatives for the prevention and treatment of oral infections. This study systematically evaluated in vitro evidence regarding the antimicrobial and anti-biofilm activity of natural AMPs against oral pathogens. A systematic search using the PICOT strategy was conducted in PubMed, EMBASE, and Scopus, retrieving 7711 articles. After title and abstract screening, 109 studies were selected for full-text analysis, resulting in 26 articles that met the eligibility criteria. Among the AMPs evaluated, nisin (n = 15) and LL-37 (n = 5) were the most frequently investigated, while other peptides included lactoferrin, lactoferricin, melittin, lysozyme, histatin-5, cystatin C, chromogranin A, parasin-1, protamine, AmyI-1-18, and DCD-1L. Natural AMPs of human and animal origin demonstrated antimicrobial activity against bacteria associated with oral infections, particularly Streptococcus mutans and Enterococcus faecalis. These peptides were tested in different formulations, including solutions, incorporation into dental materials and polymers, and application in sonodynamic antimicrobial therapy. Overall, the findings indicate that natural AMPs represent a promising class of biomolecules for controlling oral biofilms; however, further clinical studies are required to validate their long-term efficacy and safety. Full article
Show Figures

Figure 1

23 pages, 1377 KB  
Article
Pulmonary Delivery of Inhalable Sustained Release Nanocomposites Microparticles Encapsulating Osimertinib for Non-Small Cell Lung Cancer Therapy
by Iman M. Alfagih, Alanood Almurshedi, Basmah Aldosari, Bushra Alquadeib, Baraa Hajjar, Hafsa Elwali, Hadeel ALtukhaim, Eman Alzahrani, Sara Alhumaidan and Ghaida Alharbi
Pharmaceutics 2026, 18(1), 134; https://doi.org/10.3390/pharmaceutics18010134 - 21 Jan 2026
Viewed by 85
Abstract
Background/Objective: Osimertinib (OSI) is a third-generation tyrosine kinase inhibitor approved for non-small cell lung cancer (NSCLC) therapy. OSI is administered orally; this route limits the amount of OSI reaching the tumor in the lungs and is associated with serious systemic toxicity. This study [...] Read more.
Background/Objective: Osimertinib (OSI) is a third-generation tyrosine kinase inhibitor approved for non-small cell lung cancer (NSCLC) therapy. OSI is administered orally; this route limits the amount of OSI reaching the tumor in the lungs and is associated with serious systemic toxicity. This study aimed to develop a dry powder inhalable formulation to provide tumor-targeted delivery and minimize systemic toxicity. To the best of our knowledge, this is the first study to prepare and evaluate a dry powder inhalation formulation of OSI. Methods: Chitosan-coated PLGA nanoparticles (PLGA-C NPs) encapsulating OSI were prepared using a single emulsion-solvent evaporation technique. PLGA-C NPs were assembled into respirable nanocomposite microparticles (NCMPs) via spray drying with L-leucine as a carrier. PLGA-C NPs were characterized for particle size, zeta-potential, encapsulation efficiency, and in vitro efficacy in A-549 cell line. NCMPs were evaluated for solid-state properties, aerosolization performance, stability and in vitro release. Results: PLGA-C NPs exhibited a particle size of 145.18 ± 3.0 nm, high encapsulation efficiency and a positive zeta potential. In vitro studies demonstrated a 3.6-fold reduction in IC50 compared to free OSI, superior antimigratory effects and enhanced cell cycle arrest. Solid-state characterization of NCMPs demonstrated drug encapsulation in the polymer without chemical interaction. NCMPs exhibited excellent aerosolization (mass median aerodynamic diameter of 1.09 ± 0.23 μm, fine particle fraction of 73.48 ± 8.6%) and sustained drug release (61.76 ± 3.9% at 24 h). Stability studies confirmed the physicochemical stability integrity. Conclusions: These findings suggest that this novel dry powder inhalable OSI formulation may improve therapeutic outcomes while reducing systemic toxicity. Full article
(This article belongs to the Special Issue Anticancer Nanotherapeutics for Lung Cancer Therapy)
23 pages, 7078 KB  
Review
Progress on Suzuki–Miyaura Cross-Coupling Reactions Promoted by Palladium–Lanthanide Coordination Polymers as Catalytic Systems
by Fu Ding, Ileana Dragutan, Lixin You, Yaguang Sun and Valerian Dragutan
Molecules 2026, 31(2), 378; https://doi.org/10.3390/molecules31020378 - 21 Jan 2026
Viewed by 60
Abstract
Lanthanide coordination polymers have been developed at a fast rate during the past two decades due to their appealing applications in the modern field of materials science and emerging technologies like luminescence, magnetism, sensing, gas adsorption, and catalysis. The role of lanthanides in [...] Read more.
Lanthanide coordination polymers have been developed at a fast rate during the past two decades due to their appealing applications in the modern field of materials science and emerging technologies like luminescence, magnetism, sensing, gas adsorption, and catalysis. The role of lanthanides in imparting specific properties to the coordination polymers has been fully documented in extensive studies carried out by numerous research groups. It has been shown that because lanthanide(III) ions possess a variable coordination number, they readily build two-dimensional and three-dimensional architectures with definite channels, permanent pores, and distinct surface areas. Due to their strong oxophilic propensity and hard Lewis acid character, lanthanides favor the construction of stable coordination polymers and MOF configurations by strongly binding the coordinating groups of the organic linkers. Associated with palladium complexes, the lanthanide ions provide synergistic effects with Lewis acid sites, beneficial to the catalytic activity. These attractive characteristics of lanthanides enabled them to be fruitfully applied in Pd-Ln coordination polymers with catalytic properties. This review covers an array of Pd-Ln coordination polymers applied as heterogeneous catalysts in Suzuki–Miyaura C(sp2)-C(sp2) cross-coupling reactions. The activity and chemoselectivity of Pd(II) ions and Pd nanoparticles associated in coordination polymers with different lanthanides from a selected array of rare earth elements (Eu, Sm, Eu, Gd, Pr, Nd, Ce, La, or Tb) is discussed. High yields (>99%) are attained under optimized reaction conditions. The specific role of lanthanides and organic ligands in creating sustainable and recyclable heterogeneous Pd catalysts is evidenced. Mechanistic aspects of the C(sp2)-C(sp2) cross-coupling reactions are considered. The synergistic interaction between lanthanides and palladium as well as with the organic ligands is highlighted. Full article
Show Figures

Figure 1

16 pages, 5027 KB  
Article
Surface Properties of Dental Materials Influence the In Vitro Multi-Species Biofilm Formation
by Sabina Noreen Wuersching, David Manghofer, Bogna Stawarczyk, Jan-Frederik Gueth and Maximilian Kollmuss
Polymers 2026, 18(2), 288; https://doi.org/10.3390/polym18020288 - 21 Jan 2026
Viewed by 85
Abstract
This study examined the association between biofilm growth and surface properties of 3D printed, milled, and conventional materials used for manufacturing fixed dental prostheses. Disc-shaped specimens were produced and finished from five 3D-printing resins (VarseoSmile Crown plus [VSC], NextDent C&B MFH [ND], VarseoSmile [...] Read more.
This study examined the association between biofilm growth and surface properties of 3D printed, milled, and conventional materials used for manufacturing fixed dental prostheses. Disc-shaped specimens were produced and finished from five 3D-printing resins (VarseoSmile Crown plus [VSC], NextDent C&B MFH [ND], VarseoSmile Temp [VST], Temp PRINT [TP], P Pro Crown & Bridge [P]), two polymer milling blocks (composite: TetricCAD [TC], PMMA: TelioCAD [TEL]), two conventional polymer materials (Tetric EvoCeram [TEC], Protemp 4 [PT]), and zirconia (ZR). Surface roughness (Ra), wettability, interfacial tension (IFT) and surface topography were examined. Three-day biofilms were grown on the specimens using A. naeslundii, S. gordonii, S. mutans, S. oralis, and S. sanguinis in a multi-species suspension. Biofilms were quantified by crystal violet staining and with a plating and culture method (CFU/mL). Linear regression analysis was computed to demonstrate associations between the surface properties and biofilm growth. The strength of this relationship was quantified by calculating Spearman’s ρ. TC exhibited the highest, and TP the lowest IFT. TEC showed the highest Ra, while TEL had the lowest, with significant differences detected particularly between milled and 3D-printed specimens. TP specimens exhibited the highest biofilm mass, while ZR surfaces retained the least. Bacterial viability within the biofilms remained similar across all tested materials. There was a strong negative correlation between total IFT and biofilm mass, and a moderate positive correlation between Ra and CFU/mL. Surface properties are shaped by material composition, microstructure, and manufacturing methods and play a crucial role in biofilm formation on dental restorations. Full article
Show Figures

Figure 1

16 pages, 2350 KB  
Article
New Type of Superabsorbent Polymer Reinforced with Vermicompost and Biochar to Enhance Salt Tolerance of Sesbania cannabina in Severely Saline-Alkali Soils
by Hongji Ding, Haoyue Qin, Mengli Liu and Chong Wang
Agronomy 2026, 16(2), 252; https://doi.org/10.3390/agronomy16020252 - 21 Jan 2026
Viewed by 71
Abstract
In severely saline-alkali soils, surface salt accumulation caused by intense water evaporation results in elevated salinity, low organic matter content, and suppressed microbial activity, collectively impairing plant physiological metabolism and growth. Superabsorbent polymers hold significant potential for ameliorating saline-alkali soils by regulating soil [...] Read more.
In severely saline-alkali soils, surface salt accumulation caused by intense water evaporation results in elevated salinity, low organic matter content, and suppressed microbial activity, collectively impairing plant physiological metabolism and growth. Superabsorbent polymers hold significant potential for ameliorating saline-alkali soils by regulating soil water–salt dynamics. Biochar, a carbon-rich organic material, plays a pivotal role in enhancing soil organic matter storage, whereas vermicompost, a microbiologically active organic amendment, contributes substantially to improving soil microbial functions. Therefore, this study developed a novel superabsorbent polymer reinforced with vermicompost and biochar (VB-SAP) and further investigated its effects on metabolic pathways associated with enhanced S. cannabina stress resistance in severely saline-alkali soils. The results showed that VB-SAPs significantly increased soil water and organic matter contents by 10.9% and 38.7% (p < 0.05), respectively, and decreased topsoil salinity of saline soils by 44.9% (p < 0.05). The application of VB-SAP altered the soil bacterial community structure and increased the complexity of the bacterial co-occurrence network, specifically enriching members of the phylum Pseudomonadota, which are widely recognized as common plant growth-promoting rhizobacteria. Moreover, VB-SAPs significantly upregulated root-associated salt tolerance genes involved in phenylpropanoid biosynthesis, tryptophan metabolism, and arginine–proline pathways, thereby enhancing root biomass accumulation, nutrient uptake, and shoot growth of S. cannabina. Collectively, these findings reveal that the new type of superabsorbent polymer reinforced with vermicompost and biochar may enhance the salt tolerance and growth of S. cannabina by reshaping the rhizosphere microenvironment, including reducing soil salinity, increasing soil water and organic matter contents, and promoting beneficial bacteria in severely saline-alkali soil, thereby providing novel strategies for the integrated improvement of saline soils. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

13 pages, 2145 KB  
Article
Dual-Target Antimicrobial Strategy Combining Cell-Penetrating Protamine Peptides and Membrane-Active ε-Poly-L-lysine
by Ryosuke Nakamura, Rie Togawa, Daisuke Koizumi, Masataka Kawarasaki, Keishi Iohara and Michiyo Honda
Micro 2026, 6(1), 7; https://doi.org/10.3390/micro6010007 - 21 Jan 2026
Viewed by 63
Abstract
Dental caries is a major global health issue associated with biofilm formation by Streptococcus mutans (S. mutans). Conventional antimicrobials often fail to eliminate biofilms due to their structural resistance, highlighting the need for new strategies. This study investigated the antibacterial and [...] Read more.
Dental caries is a major global health issue associated with biofilm formation by Streptococcus mutans (S. mutans). Conventional antimicrobials often fail to eliminate biofilms due to their structural resistance, highlighting the need for new strategies. This study investigated the antibacterial and antibiofilm effects of protamine peptides (PPs), which are cell-penetrating antimicrobial peptides derived from salmon protamine, alone and in combination with antimicrobial agents. Antimicrobial susceptibility was evaluated using alamarBlue® and colony count assays, while biofilm formation was analyzed using crystal violet staining, confocal microscopy, and extracellular polysaccharide (EPS) quantification. PP exhibited moderate antibacterial activity but strongly suppressed EPS accumulation and biofilm development, leading to a flattened biofilm structure. Cotreatment with ε-poly-L-lysine (PL) significantly enhanced antibacterial and antibiofilm effects compared with either agent alone, whereas this effect was not observed with other cationic polymers. Fluorescence imaging revealed that PL promoted the intracellular localization of PP without increasing membrane damage, indicating a cooperative mechanism by which PL enhances membrane permeability and PP targets intracellular sites. These findings demonstrate that combining a cell-penetrating peptide with a membrane-active agent is a novel approach to overcome bacterial tolerance. The PP–PL combination effectively suppressed S. mutans growth and biofilm formation through dual action on membranes and EPS metabolism, offering a promising basis for the development of peptide-based preventive agents and biofilm-resistant dental materials. Full article
(This article belongs to the Section Microscale Biology and Medicines)
Show Figures

Figure 1

68 pages, 4947 KB  
Review
Antithrombotic Polymers: A Narrative Review on Current and Future Strategies for Their Design, Synthesis, and Application
by Anna Smola-Dmochowska, Natalia Śmigiel-Gac, Katarzyna Jelonek, Kamila Lewicka-Brzoza, Jakub Bojdol and Piotr Dobrzyński
Int. J. Mol. Sci. 2026, 27(2), 1026; https://doi.org/10.3390/ijms27021026 - 20 Jan 2026
Viewed by 119
Abstract
Bleeding and thromboembolism are among the leading causes of mortality worldwide. Thrombosis encompasses both arterial forms—primarily associated with atherosclerosis and leading to heart attacks or strokes—and venous forms. Microvascular thrombosis typically arises in the context of sepsis or systemic inflammation, and it became [...] Read more.
Bleeding and thromboembolism are among the leading causes of mortality worldwide. Thrombosis encompasses both arterial forms—primarily associated with atherosclerosis and leading to heart attacks or strokes—and venous forms. Microvascular thrombosis typically arises in the context of sepsis or systemic inflammation, and it became particularly prominent during the COVID-19 pandemic, substantially contributing to increased mortality. Given this burden, the rapid development of new therapies using advanced techniques and materials to prevent and treat these conditions is essential. This review summarizes recent advances in the design of antithrombotic polymers, discussing mechanisms of action, surface-modification strategies, and current clinical and preclinical applications. It also outlines criteria for evaluating hemocompatibility, describes in vitro and in vivo testing methods, and highlights key barriers to translating these materials into clinical practice. The review concludes by identifying promising directions for future research, including multifunctional approaches that combine antifouling properties, controlled drug release, and bioresistance strategies with the greatest potential to reduce thromboembolic complications associated with medical materials. It further evaluates the progress made to date in combating thrombotic diseases and identifies remaining gaps in the development and clinical implementation of new antithrombotic materials. Full article
Show Figures

Figure 1

36 pages, 3438 KB  
Review
Classical Food Fermentations as Modern Biotechnological Platforms: Alcoholic, Acetic, Butyric, Lactic and Propionic Pathways and Applications
by Anna Rymuszka and Wiktoria Gorczynska
Molecules 2026, 31(2), 333; https://doi.org/10.3390/molecules31020333 - 19 Jan 2026
Viewed by 130
Abstract
Fermentation remains central to food manufacturing and to the bio-based production of organic acids, solvents, and functional metabolites. This review integrates the biochemical pathways, key microorganisms, and application space of five major industrial fermentations—alcoholic, acetic, butyric, lactic, and propionic. We summarize the principal [...] Read more.
Fermentation remains central to food manufacturing and to the bio-based production of organic acids, solvents, and functional metabolites. This review integrates the biochemical pathways, key microorganisms, and application space of five major industrial fermentations—alcoholic, acetic, butyric, lactic, and propionic. We summarize the principal metabolic routes (EMP/ED glycolysis; oxidative ethanol metabolism; butyrate-forming pathways; and the Wood–Werkman, acrylate, and 1,2-propanediol routes to propionate) and relate them to the dominant microbial groups involved, including yeasts, acetic acid bacteria, lactic acid bacteria, clostridia, and propionibacteria. We highlight how the resulting metabolite spectra—ethanol, acetic acid, butyrate, lactate, propionate, and associated secondary metabolites—underpin product quality and safety in fermented foods and beverages and enable the industrial synthesis of platform chemicals, polymers, and biofuels. Finally, we discuss current challenges and opportunities for sustainable fermentation, including waste stream valorization, process intensification, and the integration of systems biology and metabolic engineering within circular economy frameworks. Full article
(This article belongs to the Special Issue Bioactive Compounds in Foods and Their By-Products)
Show Figures

Graphical abstract

17 pages, 2752 KB  
Article
Evaluation of Chromium-Crosslinked AMPS-HPAM Copolymer Gels: Effects of Key Parameters on Gelation Time and Strength
by Maryam Sharifi Paroushi, Baojun Bai, Thomas P. Schuman, Yin Zhang and Mingzhen Wei
Gels 2026, 12(1), 87; https://doi.org/10.3390/gels12010087 - 19 Jan 2026
Viewed by 114
Abstract
Controlling CO2 channeling in heterogeneous reservoirs remains a major challenge for both enhanced oil recovery (EOR) and secure geological storage. AMPS-HPAM copolymers exhibit high-temperature resistance and brine tolerance compared with conventional HPAM gels, making them well suited for the harsh environments associated [...] Read more.
Controlling CO2 channeling in heterogeneous reservoirs remains a major challenge for both enhanced oil recovery (EOR) and secure geological storage. AMPS-HPAM copolymers exhibit high-temperature resistance and brine tolerance compared with conventional HPAM gels, making them well suited for the harsh environments associated with CO2 injection. Chromium-based crosslinkers (CrAc and CrCl3) were investigated because sulfonic acid groups in AMPS can coordinate with trivalent chromium ions, enabling dual ionic crosslinking and the formation of a robust gel network. While organic crosslinked AMPS-HPAM gels have been widely studied, the behavior of chromium-crosslinked AMPS-containing systems, particularly their gelation kinetics under CO2 exposure, remains less explored. This experimental study evaluates the gelation behavior and stability of chromium-crosslinked AMPS-HPAM gels by examining the effects of the polymer concentration, molecular weight, polymer–crosslinker ratio, temperature, pH, salinity, and dissolved CO2. The results clarify the crosslinking behavior across a range of formulations and environmental conditions and establish criteria for designing robust gel systems. Gelation times can be controlled from 5 to 10 h, and the resulting gels maintained structural integrity under CO2 exposure with less than 3.6% dehydration. Long-term thermal testing has shown that the gel remains stable after 10 months at 100 °C, with evaluation still ongoing. These results demonstrate that chromium-crosslinked AMPS-HPAM gels provide both durability and tunability for diverse subsurface conditions. Full article
(This article belongs to the Special Issue State-of-the Art Gel Research in USA)
Show Figures

Graphical abstract

14 pages, 1932 KB  
Article
Rheological and Stability Assessment of Alternative Polymer Modifiers for Coal Dust Combustion
by Krystian Czernek, Andżelika Krupińska, Kamil Makowski, Marek Ochowiak, Magdalena Matuszak, Zdzisław Bielecki, Ivan Pavlenko and Sylwia Włodarczak
Appl. Sci. 2026, 16(2), 956; https://doi.org/10.3390/app16020956 - 16 Jan 2026
Viewed by 112
Abstract
This study focuses on the development and physicochemical evaluation of an alternative liquid carrier for coal dust combustion modifiers containing solid catalyst particles. A commercially used acrylic-polymer-based carrier, whose viscosity is regulated by sodium hydroxide addition, was investigated and compared with a proposed [...] Read more.
This study focuses on the development and physicochemical evaluation of an alternative liquid carrier for coal dust combustion modifiers containing solid catalyst particles. A commercially used acrylic-polymer-based carrier, whose viscosity is regulated by sodium hydroxide addition, was investigated and compared with a proposed safer substitute based on an aqueous sodium carboxymethyl cellulose (Na-CMC) solution. Rheological properties were measured in the shear-rate range relevant to industrial transport and injection systems, while sedimentation behavior was assessed using image-based analysis. The results show that the Na-CMC carrier exhibits shear-thinning behavior and viscosity levels comparable to the commercial formulation, enabling stable suspension of catalyst particles without the need for alkali additives. Unlike the reference system, the alternative carrier does not generate gas during storage, eliminating potential safety hazards associated with hydrogen evolution. Although no direct combustion experiments were performed, the obtained rheological and stability characteristics indicate that the proposed Na-CMC-based carrier is suitable for short-term storage and injection of catalyst-containing modifiers in coal dust combustion systems. Direct validation of combustion performance is planned in future work. Full article
(This article belongs to the Special Issue Recent Research on Heat and Mass Transfer)
17 pages, 3103 KB  
Article
Investigation of the Use of Cu as Top Electrode in Polymer Solar Cells
by Semih Yurtdaş
Polymers 2026, 18(2), 232; https://doi.org/10.3390/polym18020232 - 16 Jan 2026
Viewed by 134
Abstract
Reducing electrode-related costs is an important step toward the large-scale commercialization of polymer solar cells. In this study, Cu is investigated as a low-cost top electrode in inverted polymer solar cells with the architecture ITO/ZnO/P3HT:PCBM/MoO3/Cu. The fabricated devices achieved a maximum [...] Read more.
Reducing electrode-related costs is an important step toward the large-scale commercialization of polymer solar cells. In this study, Cu is investigated as a low-cost top electrode in inverted polymer solar cells with the architecture ITO/ZnO/P3HT:PCBM/MoO3/Cu. The fabricated devices achieved a maximum power conversion efficiency (η) of 2.86%, with an open-circuit voltage (Voc) of 610 mV, a short-circuit current density (Jsc) of 6.90 mA cm−2, and a fill factor (FF) of 68%. Long-term stability tests were carried out over a period of 12 weeks under glovebox, desiccator, and ambient room conditions, during which efficiency decreases of 23%, 53%, and 78% were observed, respectively. Structural and spectroscopic analyses suggest that device degradation is closely associated with O2- and moisture-induced effects on the Cu electrode. The results demonstrate that Cu can be effectively employed as a top electrode in polymer solar cells under controlled environmental conditions, highlighting its potential as a cost-effective electrode material for polymer solar cell applications. Full article
(This article belongs to the Special Issue High-Performance Conductive Polymer Composites)
Show Figures

Graphical abstract

13 pages, 606 KB  
Article
Associations of Fecal Microplastics with Oxidative Damage and Cardiopulmonary Function: Evidence from a Pilot Study
by Lili Xiao, Wenfeng Lu, Lan Qiu, Shuguang Wang, Jiayi Li, Jiayi Lai, Zhixuan Ji, Xiaoliang Li and Yun Zhou
Toxics 2026, 14(1), 75; https://doi.org/10.3390/toxics14010075 - 14 Jan 2026
Viewed by 187
Abstract
The ubiquity of microplastics (MPs) in the environment has raised significant concerns, yet their potential impacts on human health are not fully elucidated. This study aimed to quantify human exposure to MPs in feces and evaluate their associations with oxidative stress and cardiopulmonary [...] Read more.
The ubiquity of microplastics (MPs) in the environment has raised significant concerns, yet their potential impacts on human health are not fully elucidated. This study aimed to quantify human exposure to MPs in feces and evaluate their associations with oxidative stress and cardiopulmonary function. A panel study was conducted in 16 male college students with three-round visits. Fecal MPs were quantified using infrared micro-spectroscopy, and health effects were assessed through urinary biomarkers of oxidative damage (MDA and 8-OHdG) and cardiopulmonary function tests. Associations between MP exposure and health outcomes were analyzed using linear mixed-effect models. We found that fecal MP amount across 48 samples from 16 participants showed high intra-individual variation and poor reproducibility (ICCs < 0.4). MPs in feces were predominantly identified as sheets and fragments in the 100–200 μm size range, with polyamide (PA), polyester, polyethylene (PE), and polypropylene as the primary polymer types. Significant relationships were observed between fecal MP amount and oxidative damage biomarkers. Each one-unit increase in MPs corresponded to a 0.827 increase in MDA (95% CI: 0.116, 1.54) and a 1.11 increase in 8-OHdG (95% CI: 0.235, 1.98), with fibrous shapes and specific polymers (PE and PA) being the primary drivers. No significant associations were found between MP exposure and lung function or blood pressure. These findings indicated that MP exposure was significantly linked to increased oxidative damage, highlighting a pressing public health concern regarding their subclinical biological effects. Full article
(This article belongs to the Special Issue Identification of Emerging Pollutants and Human Exposure)
Show Figures

Graphical abstract

16 pages, 3473 KB  
Article
Hybrid Phy-X/PSD–Geant4 Assessment of Gamma and Neutron Shielding in Lead-Free HDPE Composites Reinforced with High-Z Oxides
by Ahmed Alharbi, Nassar N. Asemi and Hamed Alnagran
Polymers 2026, 18(2), 179; https://doi.org/10.3390/polym18020179 - 9 Jan 2026
Viewed by 359
Abstract
This study evaluates lead-free high-density polyethylene (HDPE) composites reinforced with high-Z oxides (Bi2O3, WO3, Gd2O3, TeO2, and a Bi2O3/WO3 hybrid) as lightweight materials for gamma-ray and [...] Read more.
This study evaluates lead-free high-density polyethylene (HDPE) composites reinforced with high-Z oxides (Bi2O3, WO3, Gd2O3, TeO2, and a Bi2O3/WO3 hybrid) as lightweight materials for gamma-ray and fast-neutron shielding. A hybrid computational framework combining Phy-X/PSD with Geant4 Monte Carlo simulations was used to obtain key shielding parameters, including the linear and mass attenuation coefficients (μ, μ/ρ), half-value layer (HVL), mean free path (MFP), effective atomic number (Zeff), effective electron density (Neff), exposure and energy-absorption buildup factors (EBF, EABF), and fast-neutron removal cross section (ΣR). The incorporation of heavy oxides produced a pronounced improvement in gamma-ray attenuation, particularly at low energies, where the linear attenuation coefficient increased from below 1 cm−1 for neat HDPE to values exceeding 130–150 cm−1 for Bi- and W-rich composites. In the intermediate Compton-scattering region (≈0.3–1 MeV), all oxide-reinforced systems maintained a clear attenuation advantage, with μ values around 0.12–0.13 cm−1 compared with ≈0.07 cm−1 for pure HDPE. At higher photon energies, the dense composites continued to outperform the polymer matrix, yielding μ values of approximately 0.07–0.09 cm−1 versus ≈0.02 cm−1 for HDPE due to enhanced pair-production interactions. The Bi2O3/WO3 hybrid composite exhibited attenuation behavior comparable, and in some regions slightly exceeding, that of the single-oxide systems, indicating that mixed fillers can effectively balance density and shielding efficiency. Oxide addition significantly reduced exposure and energy-absorption buildup factors below 1 MeV, with a moderate increase at higher energies associated with secondary radiation processes. Fast-neutron removal cross sections were also modestly enhanced, with Gd2O3-containing composites showing the highest values due to the combined effects of hydrogen moderation and neutron capture. The close agreement between Phy-X/PSD and Geant4 results confirms the reliability of the dual-method approach. Overall, HDPE composites containing about 60 wt.% oxide filler offer a practical compromise between shielding performance, manufacturability, and environmental safety, making them promising candidates for medical, nuclear, and aerospace radiation-protection applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop