Metabolic Engineering Strategies for Enhanced Polyhydroxyalkanoate (PHA) Production in Cupriavidus necator
Abstract
1. Introduction
2. PHB Metabolism in Cupriavidus necator
3. Metabolic Engineering Strategies to Enhance PHA Production
3.1. PHB
3.1.1. Enhancing Production Through PHB Pathway Engineering
3.1.2. Improving Cofactor Availability
3.1.3. Engineering Metabolic Context Through Granule-Associated Proteins and Transcriptional Regulation
3.2. PHBV
Enhancing Propionyl-CoA Supply Through Metabolic Engineering
3.3. PHBHHx
3.3.1. PHA Synthase
3.3.2. Engineering the β-Oxidation Pathway and Enoyl-CoA Hydratases
3.3.3. Artificial C4–C6 Pathway via Crotonyl-CoA Carboxylase/Reductase and Ethylmalonyl-CoA Decarboxylase
3.4. Other PHA Copolymers
3.4.1. P(3HB-co-LA)
3.4.2. P(3HB-co-3HP)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
PHA | Polyhydroxyalkanoate |
PHB | Polyhydroxybutyrate |
PHBV | Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) |
PHBHHx | Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) |
P(3HB-co-LA) | Poly(3-hydroxybutyrate-co-lactate) |
P(3HB-co-3HP) | Poly(3-hydroxybutyrate-co-3-hydroxypropionate) |
CDW | Cell dry weight |
TCA | Tricarboxylic acid |
scl-PHA | Short-chain-length polyhydroxyalkanoate |
mcl-PHA | Medium-chain-length polyhydroxyalkanoate |
lcl-PHA | Long-chain-length polyhydroxyalkanoate |
PGAP | PHB granule-associated protein |
CPKO | Crude palm kernel oil |
ACC | Acetyl-CoA carboxylase |
MCR | Malonyl-CoA Reductase |
CoA | Coenzyme A |
3HB | 3-Hydroxybutyrate |
3HHx | 3-Hydroxyhexanoate |
3HV | 3-Hydroxyvalerate |
LEL | Lowest explosion limit |
References
- Ali, S.S.; Elsamahy, T.; Koutra, E.; Kornaros, M.; El-Sheekh, M.; Abdelkarim, E.A.; Zhu, D.; Sun, J. Degradation of Conventional Plastic Wastes in the Environment: A Review on Current Status of Knowledge and Future Perspectives of Disposal. Sci. Total Environ. 2021, 771, 144719. [Google Scholar] [CrossRef] [PubMed]
- Achilias, D.S.; Roupakias, C.; Megalokonomos, P.; Lappas, A.A.; Antonakou, Ε.V. Chemical Recycling of Plastic Wastes Made from Polyethylene (LDPE and HDPE) and Polypropylene (PP). J. Hazard. Mater. 2007, 149, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Konik, J.; Kaufman, H. The Knowns and Unknowns in Our Understanding of How Plastics Impact Climate Change: A Systematic Review. Front. Environ. Sci. 2025, 13, 1563488. [Google Scholar] [CrossRef]
- Kaufman, H.; Zhu, X.; Diedrich, C.; Doherty, J. Plastics: Exposing Their Climate Impacts; The Plastics & Climate Project: Washington, DC, USA, 2025. [Google Scholar]
- Thushari, G.G.N.; Senevirathna, J.D.M. Plastic Pollution in the Marine Environment. Heliyon 2020, 6, e04709. [Google Scholar] [CrossRef]
- Marcharla, E.; Vinayagam, S.; Gnanasekaran, L.; Soto-Moscoso, M.; Chen, W.-H.; Thanigaivel, S.; Ganesan, S. Microplastics in Marine Ecosystems: A Comprehensive Review of Biological and Ecological Implications and Its Mitigation Approach Using Nanotechnology for the Sustainable Environment. Environ. Res. 2024, 256, 119181. [Google Scholar] [CrossRef]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic Waste Inputs from Land into the Ocean. Science 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Plastics Europe. The Circular Economy for Plastics A European Analysis; Plastics Europe: Brussels, Belgium, 2024. [Google Scholar]
- Verma, R.; Vinoda, K.S.; Papireddy, M.; Gowda, A.N.S. Toxic Pollutants from Plastic Waste—A Review. Procedia Environ. Sci. 2016, 35, 701–708. [Google Scholar] [CrossRef]
- Vlasopoulos, A.; Malinauskaite, J.; Żabnieńska-Góra, A.; Jouhara, H. Life Cycle Assessment of Plastic Waste and Energy Recovery. Energy 2023, 277, 127576. [Google Scholar] [CrossRef]
- Radhakrishnan, K.; Kumar, P.S.; Rangasamy, G.; Perumal, L.P.; Sanaulla, S.; Nilavendhan, S.; Manivasagan, V.; Saranya, K. A Critical Review on Pyrolysis Method as Sustainable Conversion of Waste Plastics into Fuels. Fuel 2023, 337, 126890. [Google Scholar] [CrossRef]
- Schade, A.; Melzer, M.; Zimmermann, S.; Schwarz, T.; Stoewe, K.; Kuhn, H. Plastic Waste Recycling—A Chemical Recycling Perspective. ACS Sustain. Chem. Eng. 2024, 12, 12270–12288. [Google Scholar] [CrossRef]
- Mahapatra, S.; Kumar, D.; Singh, B.; Sachan, P.K. Biofuels and Their Sources of Production: A Review on Cleaner Sustainable Alternative against Conventional Fuel, in the Framework of the Food and Energy Nexus. Energy Nexus 2021, 4, 100036. [Google Scholar] [CrossRef]
- Lee, D.-H. Bio-Based Economies in Asia: Economic Analysis of Development of Bio-Based Industry in China, India, Japan, Korea, Malaysia and Taiwan. Int. J. Hydrogen Energy 2016, 41, 4333–4346. [Google Scholar] [CrossRef]
- Palmeiro-Sánchez, T.; O’Flaherty, V.; Lens, P.N.L. Polyhydroxyalkanoate Bio-Production and Its Rise as Biomaterial of the Future. J. Biotechnol. 2022, 348, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.G.-Q. Plastics from Bacteria: Natural functions and Applications; Springer Science & Business Media: Heidelberg, Germany, 2009; Volume 14, ISBN 3-642-03287-7. [Google Scholar]
- Hoffmann, N.; Rehm, B.H.A. Regulation of Polyhydroxyalkanoate Biosynthesis in Pseudomonas putida and Pseudomonas aeruginosa. FEMS Microbiol. Lett. 2004, 237, 1–7. [Google Scholar] [CrossRef]
- Halami, P.M. Production of Polyhydroxyalkanoate from Starch by the Native Isolate Bacillus cereus CFR06. World J. Microbiol. Biotechnol. 2008, 24, 805–812. [Google Scholar] [CrossRef]
- Ronďošová, S.; Legerská, B.; Chmelová, D.; Ondrejovič, M.; Miertuš, S. Optimization of Growth Conditions to Enhance PHA Production by Cupriavidus necator. Fermentation 2022, 8, 451. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, Z.; Tsui, T.-H.; Loh, K.-C.; Dai, Y.; Tong, Y.W. A Review on Enhancing Cupriavidus necator Fermentation for Poly(3-Hydroxybutyrate) (PHB) Production from Low-Cost Carbon Sources. Front. Bioeng. Biotechnol. 2022, 10, 946085. [Google Scholar] [CrossRef]
- Povolo, S.; Toffano, P.; Basaglia, M.; Casella, S. Polyhydroxyalkanoates Production by Engineered Cupriavidus necator from Waste Material Containing Lactose. Bioresour. Technol. 2010, 101, 7902–7907. [Google Scholar] [CrossRef]
- Tan, D.; Wu, Q.; Chen, J.-C.; Chen, G.-Q. Engineering Halomonas TD01 for the Low-Cost Production of Polyhydroxyalkanoates. Metab. Eng. 2014, 26, 34–47. [Google Scholar] [CrossRef]
- Mai, J.; Kockler, K.; Parisi, E.; Chan, C.M.; Pratt, S.; Laycock, B. Synthesis and Physical Properties of Polyhydroxyalkanoate (PHA)-Based Block Copolymers: A Review. Int. J. Biol. Macromol. 2024, 263, 130204. [Google Scholar] [CrossRef]
- Muthuraj, R.; Valerio, O.; Mekonnen, T.H. Recent Developments in Short-and Medium-Chain-Length Polyhydroxyalkanoates: Production, Properties, and Applications. Int. J. Biol. Macromol. 2021, 187, 422–440. [Google Scholar] [CrossRef]
- Reddy, V.U.N.; Ramanaiah, S.V.; Reddy, M.V.; Chang, Y.-C. Review of the Developments of Bacterial Medium-Chain-Length Polyhydroxyalkanoates (Mcl-PHAs). Bioengineering 2022, 9, 225. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Chen, W.; Xiang, H.; Yang, J.; Zhou, Z.; Zhu, M. Modification and Potential Application of Short-Chain-Length Polyhydroxyalkanoate (SCL-PHA). Polymers 2016, 8, 273. [Google Scholar] [CrossRef] [PubMed]
- Zinn, M. Biosynthesis of Medium-Chain-Length Poly[(R)-3-Hydroxyalkanoates]. Plast. Bact. Nat. Funct. Appl. 2010, 14, 213–236. [Google Scholar]
- Koller, M. Chemical and Biochemical Engineering Approaches in Manufacturing Polyhydroxyalkanoate (PHA) Biopolyesters of Tailored Structure with Focus on the Diversity of Building Blocks. Chem. Biochem. Eng. Q. 2018, 32, 413–438. [Google Scholar] [CrossRef]
- Vandamme, P.; Coenye, T. Taxonomy of the Genus Cupriavidus: A Tale of Lost and Found. Int. J. Syst. Evol. Microbiol. 2004, 54, 2285–2289. [Google Scholar] [CrossRef]
- Calloway, D.H.; Kumar, A.M. Protein Quality of the Bacterium Hydrogenomonas eutropha. Appl. Microbiol. 1969, 17, 176–178. [Google Scholar] [CrossRef]
- Morlino, M.S.; García, R.S.; Savio, F.; Zampieri, G.; Morosinotto, T.; Treu, L.; Campanaro, S. Cupriavidus necator as a Platform for PHA Production: An Overview of Strains, Metabolism, and Modeling Approaches. Biotechnol. Adv. 2023, 69, 108264. [Google Scholar] [CrossRef]
- Bellini, S.; Tommasi, T.; Fino, D. Poly(3-Hydroxybutyrate) Biosynthesis by Cupriavidus necator: A Review on Waste Substrates Utilization for a Circular Economy Approach. Bioresour. Technol. Rep. 2022, 17, 100985. [Google Scholar] [CrossRef]
- Singh, A.K.; Srivastava, J.K.; Chandel, A.K.; Sharma, L.; Mallick, N.; Singh, S.P. Biomedical Applications of Microbially Engineered Polyhydroxyalkanoates: An Insight into Recent Advances, Bottlenecks, and Solutions. Appl. Microbiol. Biotechnol. 2019, 103, 2007–2032. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, J.-C.; Ma, Y.-M.; Chen, G.-Q. Engineering Biosynthesis of Polyhydroxyalkanoates (PHA) for Diversity and Cost Reduction. Metab. Eng. 2020, 58, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Kosseva, M.R.; Rusbandi, E. Trends in the Biomanufacture of Polyhydroxyalkanoates with Focus on Downstream Processing. Int. J. Biol. Macromol. 2018, 107, 762–778. [Google Scholar] [CrossRef]
- Rosenboom, J.-G.; Langer, R.; Traverso, G. Bioplastics for a Circular Economy. Nat. Rev. Mater. 2022, 7, 117–137. [Google Scholar] [CrossRef]
- Orita, I.; Iwazawa, R.; Nakamura, S.; Fukui, T. Identification of Mutation Points in Cupriavidus necator NCIMB 11599 and Genetic Reconstitution of Glucose-Utilization Ability in Wild Strain H16 for Polyhydroxyalkanoate Production. J. Biosci. Bioeng. 2012, 113, 63–69. [Google Scholar] [CrossRef]
- Santolin, L.; Riedel, S.L.; Brigham, C.J. Synthetic Biology Toolkit of Ralstonia eutropha (Cupriavidus necator). Appl. Microbiol. Biotechnol. 2024, 108, 450. [Google Scholar] [CrossRef]
- Pan, H.; Wang, J.; Wu, H.; Li, Z.; Lian, J. Synthetic Biology Toolkit for Engineering Cupriviadus necator H16 as a Platform for CO2 Valorization. Biotechnol. Biofuels 2021, 14, 212. [Google Scholar] [CrossRef]
- Alagesan, S.; Minton, N.P.; Malys, N. 13C-Assisted Metabolic Flux Analysis to Investigate Heterotrophic and Mixotrophic Metabolism in Cupriavidus necator H16. Metabolomics 2018, 14, 9. [Google Scholar] [CrossRef]
- Sharma, P.K.; Fu, J.; Spicer, V.; Krokhin, O.V.; Cicek, N.; Sparling, R.; Levin, D.B. Global Changes in the Proteome of Cupriavidus necator H16 During Poly-(3-Hydroxybutyrate) Synthesis from Various Biodiesel by-Product Substrates. Amb Express 2016, 6, 36. [Google Scholar] [CrossRef]
- Kohlmann, Y.; Pohlmann, A.; Schwartz, E.; Zühlke, D.; Otto, A.; Albrecht, D.; Grimmler, C.; Ehrenreich, A.; Voigt, B.; Becher, D.; et al. Coping with Anoxia: A Comprehensive Proteomic and Transcriptomic Survey of Denitrification. J. Proteome Res. 2014, 13, 4325–4338. [Google Scholar] [CrossRef] [PubMed]
- Jugder, B.-E.; Chen, Z.; Ping, D.T.T.; Lebhar, H.; Welch, J.; Marquis, C.P. An Analysis of the Changes in Soluble Hydrogenase and Global Gene Expression in Cupriavidus necator (Ralstonia eutropha) H16 Grown in Heterotrophic Diauxic Batch Culture. Microb. Cell Factories 2015, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Gutschmann, B.; Bock, M.C.E.; Jahns, S.; Neubauer, P.; Brigham, C.J.; Riedel, S.L. Untargeted Metabolomics Analysis of Ralstonia eutropha During Plant Oil Cultivations Reveals the Presence of a Fucose Salvage Pathway. Sci. Rep. 2021, 11, 14267. [Google Scholar] [CrossRef]
- Pearcy, N.; Garavaglia, M.; Millat, T.; Gilbert, J.P.; Song, Y.; Hartman, H.; Woods, C.; Tomi-Andrino, C.; Reddy Bommareddy, R.; Cho, B.-K.; et al. A Genome-Scale Metabolic Model of Cupriavidus necator H16 Integrated with TraDIS and Transcriptomic Data Reveals Metabolic Insights for Biotechnological Applications. PLoS Comput. Biol. 2022, 18, e1010106. [Google Scholar] [CrossRef]
- Park, J.M.; Kim, T.Y.; Lee, S.Y. Genome-Scale Reconstruction and in Silico Analysis of the Ralstonia eutropha H16 for Polyhydroxyalkanoate Synthesis, Lithoautotrophic Growth, and 2-Methyl Citric Acid Production. BMC Syst. Biol. 2011, 5, 101. [Google Scholar] [CrossRef] [PubMed]
- Jahn, M.; Crang, N.; Gynnå, A.H.; Kabova, D.; Frielingsdorf, S.; Lenz, O.; Charpentier, E.; Hudson, E.P. The Energy Metabolism of Cupriavidus necator in Different Trophic Conditions. Appl. Environ. Microbiol. 2024, 90, e00748-24. [Google Scholar] [CrossRef] [PubMed]
- Pohlmann, A.; Fricke, W.F.; Reinecke, F.; Kusian, B.; Liesegang, H.; Cramm, R.; Eitinger, T.; Ewering, C.; Pötter, M.; Schwartz, E. Genome Sequence of the Bioplastic-Producing “Knallgas” Bacterium Ralstonia eutropha H16. Nat. Biotechnol. 2006, 24, 1257–1262. [Google Scholar] [CrossRef] [PubMed]
- Koller, M.; Salerno, A.; Braunegg, G. Polyhydroxyalkanoates: Basics, Production and Applications of Microbial Biopolyesters. Bio-Based Plast. Mater. Appl. 2013, 137–170. [Google Scholar] [CrossRef]
- Mozumder, M.S.I.; Garcia-Gonzalez, L.; De Wever, H.; Volcke, E.I.P. Poly (3-Hydroxybutyrate)(PHB) Production from CO2: Model Development and Process Optimization. Biochem. Eng. J. 2015, 98, 107–116. [Google Scholar] [CrossRef]
- Schubert, P.; Krüger, N.; Steinbüchel, A. Molecular Analysis of the Alcaligenes eutrophus Poly(3-Hydroxybutyrate) Biosynthetic Operon: Identification of the N Terminus of Poly(3-Hydroxybutyrate) Synthase and Identification of the Promoter. J. Bacteriol. 1991, 173, 168–175. [Google Scholar] [CrossRef]
- Schubert, P.; Steinbüchel, A.; Schlegel, H.G. Cloning of the Alcaligenes eutrophus Genes for Synthesis of Poly-Beta-Hydroxybutyric Acid (PHB) and Synthesis of PHB in Escherichia coli. J. Bacteriol. 1988, 170, 5837–5847. [Google Scholar] [CrossRef]
- Peplinski, K.; Ehrenreich, A.; Döring, C.; Bömeke, M.; Reinecke, F.; Hutmacher, C.; Steinbüchel, A. Genome-Wide Transcriptome Analyses of the ‘Knallgas’ Bacterium Ralstonia eutropha H16 with Regard to Polyhydroxyalkanoate Metabolism. Microbiology 2010, 156, 2136–2152. [Google Scholar] [CrossRef]
- Kim, E.-J.; Kim, K.-J. Crystal Structure and Biochemical Characterization of PhaA from Ralstonia eutropha, a Polyhydroxyalkanoate-Producing Bacterium. Biochem. Biophys. Res. Commun. 2014, 452, 124–129. [Google Scholar] [CrossRef]
- Budde, C.F.; Mahan, A.E.; Lu, J.; Rha, C.; Sinskey, A.J. Roles of Multiple Acetoacetyl Coenzyme A Reductases in Polyhydroxybutyrate Biosynthesis in Ralstonia eutropha H16. J. Bacteriol. 2010, 192, 5319–5328. [Google Scholar] [CrossRef]
- Tang, R.; Peng, X.; Weng, C.; Han, Y. The Overexpression of Phasin and Regulator Genes Promoting the Synthesis of Polyhydroxybutyrate in Cupriavidus necator H16 under Nonstress Conditions. Appl. Environ. Microbiol. 2022, 88, e01458-21. [Google Scholar] [CrossRef]
- Wittenborn, E.C.; Jost, M.; Wei, Y.; Stubbe, J.; Drennan, C.L. Structure of the Catalytic Domain of the Class I Polyhydroxybutyrate Synthase from Cupriavidus necator. J. Biol. Chem. 2016, 291, 25264–25277. [Google Scholar] [CrossRef] [PubMed]
- Gerngross, T.U.; Reilly, P.; Stubbe, J.; Sinskey, A.J.; Peoples, O.P. Immunocytochemical Analysis of Poly-Beta-Hydroxybutyrate (PHB) Synthase in Alcaligenes eutrophus H16: Localization of the Synthase Enzyme at the Surface of PHB Granules. J. Bacteriol. 1993, 175, 5289–5293. [Google Scholar] [CrossRef] [PubMed]
- Haywood, G.W.; Anderson, A.J.; Dawes, E.A. The Importance of PHB-Synthase Substrate Specificity in Polyhydroxyalkanoate Synthesis by Alcaligenes eutrophus. FEMS Microbiol. Lett. 1989, 57, 1–6. [Google Scholar] [CrossRef]
- Stubbe, J.; Tian, J. Polyhydroxyalkanoate (PHA) Homeostasis: The Role of the PHA Synthase. Nat. Prod. Rep. 2003, 20, 445–457. [Google Scholar] [CrossRef]
- Jendrossek, D.; Pfeiffer, D. New Insights in the Formation of Polyhydroxyalkanoate Granules (Carbonosomes) and Novel Functions of Poly(3-hydroxybutyrate). Environ. Microbiol. 2014, 16, 2357–2373. [Google Scholar] [CrossRef]
- Bresan, S.; Jendrossek, D. New Insights into PhaM-PhaC-Mediated Localization of Polyhydroxybutyrate Granules in Ralstonia eutropha H16. Appl. Environ. Microbiol. 2017, 83, e00505-17. [Google Scholar] [CrossRef]
- Kutralam-Muniasamy, G.; Peréz-Guevara, F. Genome Characteristics Dictate Poly-R-(3)-Hydroxyalkanoate Production in Cupriavidus necator H16. World J. Microbiol. Biotechnol. 2018, 34, 79. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, S.Y.; Kim, J.; Jin, K.S.; Lee, S.Y.; Kim, K. Structure and Function of the N-terminal Domain of Ralstonia eutropha Polyhydroxyalkanoate Synthase, and the Proposed Structure and Mechanisms of the Whole Enzyme. Biotechnol. J. 2017, 12, 1600649. [Google Scholar] [CrossRef]
- Pfeiffer, D.; Jendrossek, D. PhaM Is the Physiological Activator of Poly(3-Hydroxybutyrate) (PHB) Synthase (PhaC1) in Ralstonia eutropha. Appl. Environ. Microbiol. 2014, 80, 555–563. [Google Scholar] [CrossRef]
- Pfeiffer, D.; Jendrossek, D. Localization of Poly(3-Hydroxybutyrate) (PHB) Granule-Associated Proteins During PHB Granule Formation and Identification of Two New Phasins, PhaP6 and PhaP7, in Ralstonia eutropha H16. J. Bacteriol. 2012, 194, 5909–5921. [Google Scholar] [CrossRef]
- Reinecke, F.; Steinbüchel, A. Ralstonia eutropha Strain H16 as Model Organism for PHA Metabolism and for Biotechnological Production of Technically Interesting Biopolymers. J. Mol. Microbiol. Biotechnol. 2008, 16, 91–108. [Google Scholar] [CrossRef] [PubMed]
- Steinbüchel, A.; Aerts, K.; Liebergesell, M.; Wieczorek, R.; Babel, W.; Föllner, C.; Madkour, M.H.; Mayer, F.; Pieper-Fürst, U.; Pries, A.; et al. Considerations on the Structure and Biochemistry of Bacterial Polyhydroxyalkanoic Acid Inclusions. Can. J. Microbiol. 1995, 41, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, R.; Pries, A.; Steinbüchel, A.; Mayer, F. Analysis of a 24-Kilodalton Protein Associated with the Polyhydroxyalkanoic Acid Granules in Alcaligenes eutrophus. J. Bacteriol. 1995, 177, 2425–2435. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, D.; Jendrossek, D. Interaction between Poly(3-Hydroxybutyrate) Granule-Associated Proteins as Revealed by Two-Hybrid Analysis and Identification of a New Phasin in Ralstonia eutropha H16. Microbiology 2011, 157, 2795–2807. [Google Scholar] [CrossRef]
- York, G.M.; Stubbe, J.; Sinskey, A.J. The Ralstonia eutropha PhaR Protein Couples Synthesis of the PhaP Phasin to the Presence of Polyhydroxybutyrate in Cells and Promotes Polyhydroxybutyrate Production. J. Bacteriol. 2002, 184, 59–66. [Google Scholar] [CrossRef]
- Pötter, M.; Madkour, M.H.; Mayer, F.; Steinbüchel, A. Regulation of Phasin Expression and Polyhydroxyalkanoate (PHA) Granule Formation in Ralstonia eutropha H16. Microbiology 2002, 148, 2413–2426. [Google Scholar] [CrossRef]
- Potter, M.; Muller, H.; Reinecke, F.; Wieczorek, R.; Fricke, F.; Bowien, B.; Friedrich, B.; Steinbuchel, A. The Complex Structure of Polyhydroxybutyrate (PHB) Granules: Four Orthologous and Paralogous Phasins Occur in Ralstonia eutropha. Microbiology 2004, 150, 2301–2311. [Google Scholar] [CrossRef]
- Potter, M.; Muller, H.; Steinbuchel, A. Influence of Homologous Phasins (PhaP) on PHA Accumulation and Regulation of Their Expression by the Transcriptional Repressor PhaR in Ralstonia eutropha H16. Microbiology 2005, 151, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-S.; Park, H.-C.; Huh, T.-L.; Lee, Y.-H. Production of Poly-β-Hydroxybutyrate by Alcaligenes eutrophus Transformants Harbouring Cloned phbCAB Genes. Biotechnol. Lett. 1995, 17, 735–740. [Google Scholar] [CrossRef]
- Taguchi, S.; Nakamura, H.; Kichise, T.; Tsuge, T.; Yamato, I.; Doi, Y. Production of Polyhydroxyalkanoate (PHA) from Renewable Carbon Sources in Recombinant Ralstonia eutropha Using Mutants of Original PHA Synthase. Biochem. Eng. J. 2003, 16, 107–113. [Google Scholar] [CrossRef]
- Jung, Y.-M.; Park, J.-S.; Lee, Y.-H. Metabolic Engineering of Alcaligenes eutrophus through the Transformation of Cloned phbCAB Genes for the Investigation of the Regulatory Mechanism of Polyhydroxyalkanoate Biosynthesis. Enzym. Microb. Technol. 2000, 26, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Barati, F.; Asgarani, E.; Gharavi, S.; Soudi, M.R. Considerable Increase in Poly(3-Hydroxybutyrate) Production via phbC Gene Overexpression in Ralstonia eutropha PTCC 1615. BioImpacts 2021, 11, 53. [Google Scholar]
- Schlegel, H.-G.; Lafferty, R.; Krauss, I. The Isolation of Mutants not Accumulating Poly-β-Hydroxybutyric Acid. Arch. Für Mikrobiol. 1970, 71, 283–294. [Google Scholar] [CrossRef]
- Raberg, M.; Voigt, B.; Hecker, M.; Steinbüchel, A. A Closer Look on the Polyhydroxybutyrate-(PHB-) Negative Phenotype of Ralstonia eutropha PHB-4. PLoS ONE 2014, 9, e95907. [Google Scholar] [CrossRef]
- Taguchi, S.; Maehara, A.; Takase, K.; Nakahara, M.; Nakamura, H.; Doi, Y. Analysis of Mutational Effects of a Polyhydroxybutyrate (PHB) Polymerase on Bacterial PHB Accumulation Using an in Vivo Assay System. FEMS Microbiol. Lett. 2001, 198, 65–71. [Google Scholar] [CrossRef]
- Park, J.-S.; Lee, Y.-H. Metabolic Characteristics of Isocitrate Dehydrogenase Leaky Mutant of Alcaligenes eutrophus and Its Utilization for Poly-β-Hydroxybutyrate Production. J. Ferment. Bioeng. 1996, 81, 197–205. [Google Scholar] [CrossRef]
- Yamane, T. Yield of poly-D(-)-3-hydroxybutyrate from Various Carbon Sources: A Theoretical Study. Biotechnol. Bioeng. 1993, 41, 165–170. [Google Scholar] [CrossRef]
- Lim, S.-J.; Jung, Y.-M.; Shin, H.-D.; Lee, Y.-H. Amplification of the NADPH-Related Genes Zwf and Gnd for the Oddball Biosynthesis of PHB in an E. Coli Transformant Harboring a Cloned phbCAB Operon. J. Biosci. Bioeng. 2002, 93, 543–549. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.-M.; Lee, Y.-H. Utilization of Oxidative Pressure for Enhanced Production of Poly-β-Hydroxybutyrate and Poly(3-Hydroxybutyrate-3-Hydroxyvalerate) in Ralstonia eutropha. J. Biosci. Bioeng. 2000, 90, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Tseng, H.-C.; Martin, C.H.; Nielsen, D.R.; Prather, K.L.J. Metabolic Engineering of Escherichia coli for Enhanced Production of (R)-and (S)-3-Hydroxybutyrate. Appl. Environ. Microbiol. 2009, 75, 3137–3145. [Google Scholar] [CrossRef] [PubMed]
- Oeding, V.; Schlegel, H.G. β-Ketothiolase from Hydrogenomonas eutropha H16 and Its Significance in the Regulation of Poly-β-Hydroxybutyrate Metabolism. Biochem. J. 1973, 134, 239–248. [Google Scholar] [CrossRef]
- Lee, J.; Shin, H.; Lee, Y. Metabolic Engineering of Pentose Phosphate Pathway in Ralstonia eutropha for Enhanced Biosynthesis of Poly-β-hydroxybutyrate. Biotechnol. Prog. 2003, 19, 1444–1449. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, T.W.; Park, J.S.; Huh, T.L. Effect of the Supplement of Metabolites on Cell Growth and Poly-Beta-Hydroxybutyrate Biosynthesis of Alcaligenes latus. J. Microbiol. Biotechnol. 1996, 6, 120–127. [Google Scholar]
- Obruca, S.; Snajdar, O.; Svoboda, Z.; Marova, I. Application of Random Mutagenesis to Enhance the Production of Polyhydroxyalkanoates by Cupriavidus necator H16 on Waste Frying Oil. World J. Microbiol. Biotechnol. 2013, 29, 2417–2428. [Google Scholar] [CrossRef]
- Stephanopoulos, G.; Aristidou, A.A.; Nielsen, J. Metabolic Engineering: Principles and Methodologies; Academic Press: Cambridge, MA, USA, 1998; ISBN 978-0-08-053628-6. [Google Scholar]
- Ishizaki, A.; Tanaka, K.; Taga, N. Microbial Production of Poly-D-3-Hydroxybutyrate from CO2. Appl. Microbiol. Biotechnol. 2001, 57, 6–12. [Google Scholar]
- Ishizaki, A.; Tanaka, K. Production of Poly-β-Hydroxybutyric Acid from Carbon Dioxide by Alcaligenes eutrophus ATCC 17697T. J. Ferment. Bioeng. 1991, 71, 254–257. [Google Scholar] [CrossRef]
- Tang, R.; Weng, C.; Peng, X.; Han, Y. Metabolic Engineering of Cupriavidus necator H16 for Improved Chemoautotrophic Growth and PHB Production under Oxygen-Limiting Conditions. Metab. Eng. 2020, 61, 11–23. [Google Scholar] [CrossRef]
- Johnson, A.O.; Gonzalez-Villanueva, M.; Tee, K.L.; Wong, T.S. An Engineered Constitutive Promoter Set with Broad Activity Range for Cupriavidus necator H16. ACS Synth. Biol. 2018, 7, 1918–1928. [Google Scholar] [CrossRef]
- Vollbrecht, D. Oxygen-Dependent Switch-over from Respiratory to Fermentative Metabolism in the Strictly Aerobic Alcaligenes eutrophus. Eur. J. Appl. Microbiol. Biotechnol. 1982, 15, 117–122. [Google Scholar] [CrossRef]
- Weng, C.; Tang, R.; Peng, X.; Han, Y. Co-Conversion of Lignocellulose-Derived Glucose, Xylose, and Aromatics to Polyhydroxybutyrate by Metabolically Engineered Cupriavidus necator. Bioresour. Technol. 2023, 374, 128762. [Google Scholar] [CrossRef] [PubMed]
- Farhana, A.; Guidry, L.; Srivastava, A.; Singh, A.; Hondalus, M.K.; Steyn, A.J.C. Reductive Stress in Microbes: Implications for Understanding Mycobacterium tuberculosis Disease and Persistence. Adv. Microb. Physiol. 2010, 57, 43–117. [Google Scholar] [PubMed]
- Senior, P.J.; Dawes, E.A. The Regulation of Poly-β-Hydroxybutyrate Metabolism in Azotobacter beijerinckii. Biochem. J. 1973, 134, 225–238. [Google Scholar] [CrossRef] [PubMed]
- de Las Heras, A.M.; Portugal-Nunes, D.J.; Rizza, N.; Sandström, A.G.; Gorwa-Grauslund, M.F. Anaerobic Poly-3-D-Hydroxybutyrate Production from Xylose in Recombinant Saccharomyces cerevisiae Using a NADH-Dependent Acetoacetyl-CoA Reductase. Microb. Cell Factories 2016, 15, 197. [Google Scholar] [CrossRef]
- Jackson, F.A.; Dawes, E.A. Regulation of the Tricarboxylic Acid Cycle and Poly-β-Hydroxybutyrate Metabolism in Azotobacter beijerinckii Grown under Nitrogen or Oxygen Limitation. Microbiology 1976, 97, 303–312. [Google Scholar] [CrossRef]
- Ling, C.; Qiao, G.-Q.; Shuai, B.-W.; Olavarria, K.; Yin, J.; Xiang, R.-J.; Song, K.-N.; Shen, Y.-H.; Guo, Y.; Chen, G.-Q. Engineering NADH/NAD+ Ratio in Halomonas bluephagenesis for Enhanced Production of Polyhydroxyalkanoates (PHA). Metab. Eng. 2018, 49, 275–286. [Google Scholar] [CrossRef]
- Ritchie, G.A.F.; Senior, P.J.; Dawes, E.A. The Purification and Characterization of Acetoacetyl-Coenzyme A Reductase from Azotobacter beijerinckii. Biochem. J. 1971, 121, 309–316. [Google Scholar] [CrossRef]
- Liebergesell, M.; Steinbüchel, A. Cloning and Nucleotide Sequences of Genes Relevant for Biosynthesis of Poly(3-hydroxybutyric Acid) in Chromatium vinosum Strain D. Eur. J. Biochem. 1992, 209, 135–150. [Google Scholar] [CrossRef]
- Olavarria, K.; Carnet, A.; van Renselaar, J.; Quakkelaar, C.; Cabrera, R.; da Silva, L.G.; Smids, A.L.; Villalobos, P.A.; van Loosdrecht, M.C.M.; Wahl, S.A. An NADH Preferring Acetoacetyl-CoA Reductase Is Engaged in Poly-3-Hydroxybutyrate Accumulation in Escherichia coli. J. Biotechnol. 2021, 325, 207–216. [Google Scholar] [CrossRef]
- Olavarria, K.; Pijman, Y.O.; Cabrera, R.; van Loosdrecht, M.C.M.; Wahl, S.A. Engineering an Acetoacetyl-CoA Reductase from Cupriavidus necator Toward NADH Preference under Physiological Conditions. Sci. Rep. 2022, 12, 3757. [Google Scholar] [CrossRef]
- Cueto-Rojas, H.F.; Van Maris, A.J.A.; Wahl, S.A.; Heijnen, J.J. Thermodynamics-Based Design of Microbial Cell Factories for Anaerobic Product Formation. Trends Biotechnol. 2015, 33, 534–546. [Google Scholar] [CrossRef]
- Mezzina, M.P.; Pettinari, M.J. Phasins, Multifaceted Polyhydroxyalkanoate Granule-Associated Proteins. Appl. Environ. Microbiol. 2016, 82, 5060–5067. [Google Scholar] [CrossRef]
- Kim, S.; Jang, Y.J.; Gong, G.; Lee, S.-M.; Um, Y.; Kim, K.H.; Ko, J.K. Engineering Cupriavidus necator H16 for Enhanced Lithoautotrophic Poly(3-Hydroxybutyrate) Production from CO2. Microb. Cell Factories 2022, 21, 231. [Google Scholar] [CrossRef] [PubMed]
- Kaniuk, Ł.; Stachewicz, U. Development and Advantages of Biodegradable PHA Polymers Based on Electrospun PHBV Fibers for Tissue Engineering and Other Biomedical Applications. ACS Biomater. Sci. Eng. 2021, 7, 5339–5362. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.-Y.; Qin, Z.-Y. Surface Grafting of Cellulose Nanocrystals with Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate). Carbohydr. Polym. 2014, 101, 471–478. [Google Scholar] [CrossRef]
- Zinn, M.; Witholt, B.; Egli, T. Occurrence, Synthesis and Medical Application of Bacterial Polyhydroxyalkanoate. Adv. Drug Deliv. Rev. 2001, 53, 5–21. [Google Scholar] [CrossRef] [PubMed]
- Steinbüchel, A.; Schlegel, H.G. Physiology and Molecular Genetics of Poly(β-hydroxyalkanoic Acid) Synthesis in Alcaligenes eutrophus. Mol. Microbiol. 1991, 5, 535–542. [Google Scholar] [CrossRef]
- Aldor, I.S.; Kim, S.-W.; Prather, K.L.J.; Keasling, J.D. Metabolic Engineering of a Novel Propionate-Independent Pathway for the Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) in Recombinant Salmonella enterica serovar typhimurium. Appl. Environ. Microbiol. 2002, 68, 3848–3854. [Google Scholar] [CrossRef]
- Policastro, G.; Panico, A.; Fabbricino, M. Improving Biological Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) (PHBV) Co-Polymer: A Critical Review. Rev. Environ. Sci. Bio/Technol. 2021, 20, 479–513. [Google Scholar] [CrossRef]
- Holmes, P.A. Applications of PHB—A Microbially Produced Biodegradable Thermoplastic. Phys. Technol. 1985, 16, 32. [Google Scholar] [CrossRef]
- Poirier, Y.; Nawrath, C.; Somerville, C. Production of Polyhydroxyalkanoates, a Family of Biodegradable Plastics and Elastomers, in Bacteria and Plants. Bio/Technol. 1995, 13, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Nagamani, P.; Mahmood, S.K. Production of Poly(3-Hydroxybutyrate-co-3hydroxyvalerate) by a Novel Bacillus OU40T from Inexpensive Carbon Sources. Int J Pharma Bio Sci 2013, 4, 182–193. [Google Scholar]
- Grousseau, E.; Blanchet, E.; Déléris, S.; Albuquerque, M.G.E.; Paul, E.; Uribelarrea, J.-L. Phosphorus Limitation Strategy to Increase Propionic Acid Flux Towards 3-Hydroxyvaleric Acid Monomers in Cupriavidus necator. Bioresour. Technol. 2014, 153, 206–215. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Q.; Wei, G.; Liang, Q.; Qi, Q. Production in Escherichia coli of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) with Differing Monomer Compositions from Unrelated Carbon Sources. Appl. Environ. Microbiol. 2011, 77, 4886–4893. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, X.; Qi, Q. Biosynthesis of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) from Glucose with Elevated 3-Hydroxyvalerate Fraction via Combined Citramalate and Threonine Pathway in Escherichia coli. Appl. Microbiol. Biotechnol. 2014, 98, 3923–3931. [Google Scholar] [CrossRef]
- Yang, J.E.; Choi, Y.J.; Lee, S.J.; Kang, K.-H.; Lee, H.; Oh, Y.H.; Lee, S.H.; Park, S.J.; Lee, S.Y. Metabolic Engineering of Escherichia coli for Biosynthesis of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) from Glucose. Appl. Microbiol. Biotechnol. 2014, 98, 95–104. [Google Scholar] [CrossRef]
- Steinbüchel, A.; Pieper, U. Production of a Copolyester of 3-Hydroxybutyric Acid and 3-Hydroxyvaleric Acid from Single Unrelated Carbon Sources by a Mutant of Alcaligenes eutrophus. Appl. Microbiol. Biotechnol. 1992, 37, 1–6. [Google Scholar] [CrossRef]
- Brämer, C.O.; Steinbüchel, A. The Methylcitric Acid Pathway in Ralstonia eutropha: New Genes Identified Involved in Propionate Metabolism. Microbiology 2001, 147, 2203–2214. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Liu, G.-M.; Weng, W.-Q.; Ding, J.-Y.; Liu, S.-J. Engineering of Ralstonia eutropha for the Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) from Glucose. J. Biotechnol. 2015, 195, 82–88. [Google Scholar] [CrossRef]
- Han, J.; Hou, J.; Zhang, F.; Ai, G.; Li, M.; Cai, S.; Liu, H.; Wang, L.; Wang, Z.; Zhang, S.; et al. Multiple Propionyl Coenzyme A-Supplying Pathways for Production of the Bioplastic Poly (3-Hydroxybutyrate-co-3-Hydroxyvalerate) in Haloferax Mediterranei. Appl. Environ. Microbiol. 2013, 79, 2922–2931. [Google Scholar] [CrossRef] [PubMed]
- Raux, E.; Lanois, A.; Levillayer, F.; Warren, M.J.; Brody, E.; Rambach, A.; Thermes, C. Salmonella typhimurium Cobalamin (Vitamin B12) Biosynthetic Genes: Functional Studies in S. Typhimurium and Escherichia coli. J. Bacteriol. 1996, 178, 753–767. [Google Scholar] [CrossRef] [PubMed]
- Salinas, A.; McGregor, C.; Irorere, V.; Arenas-López, C.; Bommareddy, R.R.; Winzer, K.; Minton, N.P.; Kovács, K. Metabolic Engineering of Cupriavidus necator H16 for Heterotrophic and Autotrophic Production of 3-Hydroxypropionic Acid. Metab. Eng. 2022, 74, 178–190. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.Y.; Park, S.; Gong, G.; Roh, S.; Yoo, J.; Ahn, J.H.; Lee, S.-M.; Um, Y.; Kim, K.H.; Ko, J.K. Enhanced Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) with Modulated 3-Hydroxyvalerate Fraction by Overexpressing Acetolactate Synthase in Cupriavidus necator H16. Int. J. Biol. Macromol. 2023, 242, 125166. [Google Scholar] [CrossRef]
- Slater, S.; Houmiel, K.L.; Tran, M.; Mitsky, T.A.; Taylor, N.B.; Padgette, S.R.; Gruys, K.J. Multiple β-Ketothiolases Mediate Poly(β-Hydroxyalkanoate) Copolymer Synthesis in Ralstonia eutropha. J. Bacteriol. 1998, 180, 1979–1987. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, T.W.; Lim, S.-C.; Kim, T.W.; Lee, H.; Kim, M.K.; Lee, S.H.; Song, B.K.; Lee, S.Y. Biosynthesis of Polyhydroxyalkanoates Containing 2-Hydroxybutyrate from Unrelated Carbon Source by Metabolically Engineered Escherichia coli. Appl. Microbiol. Biotechnol. 2012, 93, 273–283. [Google Scholar] [CrossRef]
- Atsumi, S.; Liao, J.C. Directed Evolution of Methanococcus jannaschii Citramalate Synthase for Biosynthesis of 1-Propanol and 1-Butanol by Escherichia coli. Appl. Environ. Microbiol. 2008, 74, 7802–7808. [Google Scholar] [CrossRef]
- Choi, Y.J.; Park, J.H.; Kim, T.Y.; Lee, S.Y. Metabolic Engineering of Escherichia coli for the Production of 1-Propanol. Metab. Eng. 2012, 14, 477–486. [Google Scholar] [CrossRef]
- Loo, C.Y.; Sudesh, K. Polyhydroxyalkanoates: Bio-Based Microbial Plastics and Their Properties. Malays. Polym. J. 2007, 2, 31–57. [Google Scholar]
- Turco, R.; Santagata, G.; Corrado, I.; Pezzella, C.; Di Serio, M. In Vivo and Post-Synthesis Strategies to Enhance the Properties of PHB-Based Materials: A Review. Front. Bioeng. Biotechnol. 2021, 8, 619266. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.M.; Wang, Z.H.; Luo, H.N.; Xu, M.; Ren, X.Y.; Zheng, G.X.; Wu, B.J.; Zhang, X.H.; Lu, X.Y.; Chen, F.; et al. Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate)-Based Scaffolds for Tissue Engineering. Braz. J. Med. Biol. Res. 2014, 47, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Berrabah, I.; Kaci, M.; Dehouche, N.; Delaite, C.; Deguines, C.-H.; Bououdina, M. Advancing Food Packaging: Enhancing Stability and Performance of Biodegradable PHBHHx with ZnO Nanofillers. Polym. Bull. 2024, 81, 10953–10971. [Google Scholar] [CrossRef]
- Eraslan, K.; Aversa, C.; Nofar, M.; Barletta, M.; Gisario, A.; Salehiyan, R.; Goksu, Y.A. Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate)(PHBH): Synthesis, Properties, and Applications—A Review. Eur. Polym. J. 2022, 167, 111044. [Google Scholar] [CrossRef]
- Brandl, H.; Knee, E.J., Jr.; Fuller, R.C.; Gross, R.A.; Lenz, R.W. Ability of the Phototrophic Bacterium Rhodospirillum rubrum to Produce Various Poly(β-Hydroxyalkanoates): Potential Sources for Biodegradable Polyesters. Int. J. Biol. Macromol. 1989, 11, 49–55. [Google Scholar] [CrossRef]
- Bhubalan, K.; Kam, Y.C.; Yong, K.H.; Sudesh, K. Cloning and Expression of the PHA Synthase Gene from a Locally Isolated Chromobacterium Sp. USM2. Malays. J. Microbiol. 2010, 6, 81–90. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, G.; Park, S.; Lee, S. Industrial Scale Production of Poly (3-Hydroxybutyrate-co-3-Hydroxyhexanoate). Appl. Microbiol. Biotechnol. 2001, 57, 50–55. [Google Scholar]
- Gan, Z.; Zhang, G.; Mo, X.; Chen, G.; Wu, Q. Synthesis of Copolyesters Consisting of 3-Hydroxybutyrate and 3-Hydroxyhexanoate by Aeromonas hydrophila WQ and Its Molecular Basis. Wei Sheng Wu Xue Bao Acta Microbiol. Sin. 2003, 43, 809–812. [Google Scholar]
- Zhang, J.; Zhang, G.; Chen, J.; Hua, X.; Chen, G. Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) Using Aeromonas hydrophila 4AK4 Grown in Mixed Carbon Source. Tsinghua Sci. Technol. 2002, 7, 393–397. [Google Scholar]
- Lu, X.Y.; Wu, Q.; Chen, G.Q. Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) with Flexible 3-Hydroxyhexanoate Content in Aeromonas hydrophila CGMCC 0911. Appl. Microbiol. Biotechnol. 2004, 64, 41–45. [Google Scholar] [CrossRef]
- Doi, Y.; Kitamura, S.; Abe, H. Microbial Synthesis and Characterization of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate). Macromolecules 1995, 28, 4822–4828. [Google Scholar] [CrossRef]
- Lageveen, R.G.; Huisman, G.W.; Preusting, H.; Ketelaar, P.; Eggink, G.; Witholt, B. Formation of Polyesters by Pseudomonas oleovorans: Effect of Substrates on Formation and Composition of Poly-(R)-3-Hydroxyalkanoates and Poly-(R)-3-Hydroxyalkenoates. Appl. Environ. Microbiol. 1988, 54, 2924–2932. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Wong, H.H.; Choi, J.; Lee, S.H.; Lee, S.C.; Han, C.S. Production of Medium-chain-length Polyhydroxyalkanoates by High-cell-density Cultivation of Pseudomonas putida under Phosphorus Limitation. Biotechnol. Bioeng. 2000, 68, 466–470. [Google Scholar] [CrossRef]
- Rai, R.; Keshavarz, T.; Roether, J.A.; Boccaccini, A.R.; Roy, I. Medium Chain Length Polyhydroxyalkanoates, Promising New Biomedical Materials for the Future. Mater. Sci. Eng. R Rep. 2011, 72, 29–47. [Google Scholar] [CrossRef]
- Steinbüchel, A.; Wiese, S. A Pseudomonas Strain Accumulating Polyesters of 3-Hydroxybutyric Acid and Medium-Chain-Length 3-Hydroxyalkanoic Acids. Appl. Microbiol. Biotechnol. 1992, 37, 691–697. [Google Scholar] [CrossRef]
- Neoh, S.Z.; Chek, M.F.; Tan, H.T.; Linares-Pastén, J.A.; Nandakumar, A.; Hakoshima, T.; Sudesh, K. Polyhydroxyalkanoate Synthase (PhaC): The Key Enzyme for Biopolyester Synthesis. Curr. Res. Biotechnol. 2022, 4, 87–101. [Google Scholar] [CrossRef]
- Fukui, T.; Doi, Y. Cloning and Analysis of the Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) Biosynthesis Genes of Aeromonas caviae. J. Bacteriol. 1997, 179, 4821–4830. [Google Scholar] [CrossRef]
- Foong, C.P.; Lakshmanan, M.; Abe, H.; Taylor, T.D.; Foong, S.Y.; Sudesh, K. A Novel and Wide Substrate Specific Polyhydroxyalkanoate (PHA) Synthase from Unculturable Bacteria Found in Mangrove Soil. J. Polym. Res. 2018, 25, 23. [Google Scholar] [CrossRef]
- Dennis, D.; McCoy, M.; Stangl, A.; Valentin, H.E.; Wu, Z. Formation of Poly (3-Hydroxybutyrate-co-3-Hydroxyhexanoate) by PHA Synthase from Ralstonia eutropha. J. Biotechnol. 1998, 64, 177–186. [Google Scholar] [CrossRef]
- Budde, C.F.; Riedel, S.L.; Willis, L.B.; Rha, C.; Sinskey, A.J. Production of Poly (3-Hydroxybutyrate-co-3-Hydroxyhexanoate) from Plant Oil by Engineered Ralstonia eutropha Strains. Appl. Environ. Microbiol. 2011, 77, 2847–2854. [Google Scholar] [CrossRef]
- Matsumoto, K.; Nakae, S.; Taguchi, K.; Matsusaki, H.; Seki, M.; Doi, Y. Biosynthesis of Poly(3-Hydroxybutyrate-co-3-Hydroxyalkanoates) Copolymer from Sugars by Recombinant Ralstonia eutropha Harboring the phaC1Ps and the phaGPs Genes of Pseudomonas Sp. 61-3. Biomacromolecules 2001, 2, 934–939. [Google Scholar] [CrossRef]
- Kahar, P.; Tsuge, T.; Taguchi, K.; Doi, Y. High Yield Production of Polyhydroxyalkanoates from Soybean Oil by Ralstonia eutropha and Its Recombinant Strain. Polym. Degrad. Stab. 2004, 83, 79–86. [Google Scholar] [CrossRef]
- Fukui, T.; Doi, Y. Efficient Production of Polyhydroxyalkanoates from Plant Oils by Alcaligenes eutrophus and Its Recombinant Strain. Appl. Microbiol. Biotechnol. 1998, 49, 333–336. [Google Scholar] [CrossRef]
- Kichise, T.; Taguchi, S.; Doi, Y. Enhanced Accumulation and Changed Monomer Composition in Polyhydroxyalkanoate (PHA) Copolyester by in Vitro Evolution of Aeromonas caviae PHA Synthase. Appl. Environ. Microbiol. 2002, 68, 2411–2419. [Google Scholar] [CrossRef]
- Tsuge, T.; Watanabe, S.; Shimada, D.; Abe, H.; Doi, Y.; Taguchi, S. Combination of N149S and D171G Mutations in Aeromonas caviae Polyhydroxyalkanoate Synthase and Impact on Polyhydroxyalkanoate Biosynthesis. FEMS Microbiol. Lett. 2007, 277, 217–222. [Google Scholar] [CrossRef]
- Harada, K.; Kobayashi, S.; Oshima, K.; Yoshida, S.; Tsuge, T.; Sato, S. Engineering of Aeromonas caviae Polyhydroxyalkanoate Synthase through Site-Directed Mutagenesis for Enhanced Polymerization of the 3-Hydroxyhexanoate Unit. Front. Bioeng. Biotechnol. 2021, 9, 627082. [Google Scholar] [CrossRef] [PubMed]
- Matsusaki, H.; Manji, S.; Taguchi, K.; Kato, M.; Fukui, T.; Doi, Y. Cloning and Molecular Analysis of the Poly(3-Hydroxybutyrate) and Poly(3-Hydroxybutyrate-co-3-Hydroxyalkanoate) Biosynthesis Genes in Pseudomonas Sp. Strain 61-3. J. Bacteriol. 1998, 180, 6459–6467. [Google Scholar] [CrossRef] [PubMed]
- Trakunjae, C.; Sudesh, K.; Neoh, S.Z.; Boondaeng, A.; Apiwatanapiwat, W.; Janchai, P.; Vaithanomsat, P. Biosynthesis of P(3HB-co-3HHx) Copolymers by a Newly Engineered Strain of Cupriavidus necator PHB−4/pBBR_CnPro-phaCRp for Skin Tissue Engineering Application. Polymers 2022, 14, 4074. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.J.; Neoh, S.Z.; Sudesh, K. A Review on Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) [P(3HB-co-3HHx)] and Genetic Modifications That Affect Its Production. Front. Bioeng. Biotechnol. 2022, 10, 1057067. [Google Scholar] [CrossRef]
- Fukui, T.; Shiomi, N.; Doi, Y. Expression and Characterization of (R)-Specific Enoyl Coenzyme A Hydratase Involved in Polyhydroxyalkanoate Biosynthesis by Aeromonas caviae. J. Bacteriol. 1998, 180, 667–673. [Google Scholar] [CrossRef]
- Kawashima, Y.; Cheng, W.; Mifune, J.; Orita, I.; Nakamura, S.; Fukui, T. Characterization and Functional Analyses of R-Specific Enoyl Coenzyme A Hydratases in Polyhydroxyalkanoate-Producing Ralstonia eutropha. Appl. Environ. Microbiol. 2012, 78, 493–502. [Google Scholar] [CrossRef]
- Mifune, J.; Nakamura, S.; Fukui, T. Engineering of Pha Operon on Cupriavidus necator Chromosome for Efficient Biosynthesis of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) from Vegetable Oil. Polym. Degrad. Stab. 2010, 95, 1305–1312. [Google Scholar] [CrossRef]
- Kawashima, Y.; Orita, I.; Nakamura, S.; Fukui, T. Compositional Regulation of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) by Replacement of Granule-Associated Protein in Ralstonia eutropha. Microb. Cell Factories 2015, 14, 187. [Google Scholar] [CrossRef]
- Arikawa, H.; Matsumoto, K. Evaluation of Gene Expression Cassettes and Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) with a Fine Modulated Monomer Composition by Using It in Cupriavidus necator. Microb. Cell Factories 2016, 15, 184. [Google Scholar] [CrossRef]
- Tan, H.T.; Chek, M.F.; Lakshmanan, M.; Foong, C.P.; Hakoshima, T.; Sudesh, K. Evaluation of BP-M-CPF4 Polyhydroxyalkanoate (PHA) Synthase on the Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) from Plant Oil Using Cupriavidus necator Transformants. Int. J. Biol. Macromol. 2020, 159, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.T.; Chek, M.F.; Miyahara, Y.; Kim, S.-Y.; Tsuge, T.; Hakoshima, T.; Sudesh, K. Characterization of an (R)-Specific Enoyl-CoA Hydratase from Streptomyces Sp. Strain CFMR 7: A Metabolic Tool for Enhancing the Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate). J. Biosci. Bioeng. 2022, 134, 288–294. [Google Scholar] [CrossRef] [PubMed]
- Insomphun, C.; Mifune, J.; Orita, I.; Numata, K.; Nakamura, S.; Fukui, T. Modification of β-Oxidation Pathway in Ralstonia eutropha for Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) from Soybean Oil. J. Biosci. Bioeng. 2014, 117, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Ren, Q.; Sierro, N.; Witholt, B.; Kessler, B. FabG, an NADPH-Dependent 3-Ketoacyl Reductase of Pseudomonas aeruginosa, Provides Precursors for Medium-Chain-Length Poly-3-Hydroxyalkanoate Biosynthesis in Escherichia coli. J. Bacteriol. 2000, 182, 2978–2981. [Google Scholar] [CrossRef]
- Nomura, C.T.; Taguchi, K.; Gan, Z.; Kuwabara, K.; Tanaka, T.; Takase, K.; Doi, Y. Expression of 3-Ketoacyl-Acyl Carrier Protein Reductase (fabG) Genes Enhances Production of Polyhydroxyalkanoate Copolymer from Glucose in Recombinant Escherichia coli JM109. Appl. Environ. Microbiol. 2005, 71, 4297–4306. [Google Scholar] [CrossRef]
- Taguchi, K.; Aoyagi, Y.; Matsusaki, H.; Fukui, T.; Doi, Y. Co-Expression of 3-Ketoacyl-ACP Reductase and Polyhydroxyalkanoate Synthase Genes Induces PHA Production in Escherichia coli HB101 Strain. FEMS Microbiol. Lett. 1999, 176, 183–190. [Google Scholar] [CrossRef]
- Insomphun, C.; Xie, H.; Mifune, J.; Kawashima, Y.; Orita, I.; Nakamura, S.; Fukui, T. Improved Artificial Pathway for Biosynthesis of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) with High C6-Monomer Composition from Fructose in Ralstonia eutropha. Metab. Eng. 2015, 27, 38–45. [Google Scholar] [CrossRef]
- Fukui, T.; Abe, H.; Doi, Y. Engineering of Ralstonia eutropha for Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) from Fructose and Solid-State Properties of the Copolymer. Biomacromolecules 2002, 3, 618–624. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Kurita, S.; Orita, I.; Nakamura, S.; Fukui, T. Modification of Acetoacetyl-CoA Reduction Step in Ralstonia eutropha for Biosynthesis of Poly(3-Hydroxybutyrate-co-3-Hydroxyhexanoate) from Structurally Unrelated Compounds. Microb. Cell Factories 2019, 18, 147. [Google Scholar] [CrossRef] [PubMed]
- Segawa, M.; Wen, C.; Orita, I.; Nakamura, S.; Fukui, T. Two NADH-Dependent (S)-3-Hydroxyacyl-CoA Dehydrogenases from Polyhydroxyalkanoate-Producing Ralstonia eutropha. J. Biosci. Bioeng. 2019, 127, 294–300. [Google Scholar] [CrossRef] [PubMed]
- Erb, T.J.; Berg, I.A.; Brecht, V.; Müller, M.; Fuchs, G.; Alber, B.E. Synthesis of C5-Dicarboxylic Acids from C2-Units Involving Crotonyl-CoA Carboxylase/Reductase: The Ethylmalonyl-CoA Pathway. Proc. Natl. Acad. Sci. USA 2007, 104, 10631–10636. [Google Scholar] [CrossRef]
- Erb, T.J.; Brecht, V.; Fuchs, G.; Müller, M.; Alber, B.E. Carboxylation Mechanism and Stereochemistry of Crotonyl-CoA Carboxylase/Reductase, a Carboxylating Enoyl-Thioester Reductase. Proc. Natl. Acad. Sci. USA 2009, 106, 8871–8876. [Google Scholar] [CrossRef]
- Tanaka, K.; Yoshida, K.; Orita, I.; Fukui, T. Biosynthesis of Poly (3-Hydroxybutyrate-co-3-Hydroxyhexanoate) from CO2 by a Recombinant Cupriavidus necator. Bioengineering 2021, 8, 179. [Google Scholar] [CrossRef]
- Arikawa, H.; Matsumoto, K.; Fujiki, T. Polyhydroxyalkanoate Production from Sucrose by Cupriavidus necator Strains Harboring Csc Genes from Escherichia coli W. Appl. Microbiol. Biotechnol. 2017, 101, 7497–7507. [Google Scholar] [CrossRef]
- Huong, K.-H.; Orita, I.; Fukui, T. Microaerobic Insights into Production of Polyhydroxyalkanoates Containing 3-Hydroxyhexanoate via Native Reverse β-Oxidation from Glucose in Ralstonia eutropha H16. Microb. Cell Factories 2024, 23, 21. [Google Scholar] [CrossRef]
- Yang, T.H.; Kim, T.W.; Kang, H.O.; Lee, S.; Lee, E.J.; Lim, S.; Oh, S.O.; Song, A.; Park, S.J.; Lee, S.Y. Biosynthesis of Polylactic Acid and Its Copolymers Using Evolved Propionate CoA Transferase and PHA Synthase. Biotechnol. Bioeng. 2010, 105, 150–160. [Google Scholar] [CrossRef]
- Jung, Y.K.; Kim, T.Y.; Park, S.J.; Lee, S.Y. Metabolic Engineering of Escherichia coli for the Production of Polylactic Acid and Its Copolymers. Biotechnol. Bioeng. 2010, 105, 161–171. [Google Scholar] [CrossRef]
- Sohn, Y.J.; Kim, H.T.; Baritugo, K.-A.; Song, H.M.; Ryu, M.H.; Kang, K.H.; Jo, S.Y.; Kim, H.; Kim, Y.J.; Choi, J.; et al. Biosynthesis of Polyhydroxyalkanoates from Sucrose by Metabolically Engineered Escherichia coli Strains. Int. J. Biol. Macromol. 2020, 149, 593–599. [Google Scholar] [CrossRef]
- Wu, J.; Wei, X.; Guo, P.; He, A.; Xu, J.; Jin, M.; Zhang, Y.; Wu, H. Efficient Poly(3-Hydroxybutyrate-Co-Lactate) Production from Corn Stover Hydrolysate by Metabolically Engineered Escherichia coli. Bioresour. Technol. 2021, 341, 125873. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Park, S.-J.; Lee, S.-Y.; Jung, Y.-K. Cells or Plants Producing Polylactate or Its Copolymers and Uses Thereof. US9410167B2, 09 August 2016. [Google Scholar]
- Park, S.J.; Jang, Y.-A.; Lee, H.; Park, A.-R.; Yang, J.E.; Shin, J.; Oh, Y.H.; Song, B.K.; Jegal, J.; Lee, S.H.; et al. Metabolic Engineering of Ralstonia eutropha for the Biosynthesis of 2-Hydroxyacid-Containing Polyhydroxyalkanoates. Metab. Eng. 2013, 20, 20–28. [Google Scholar] [CrossRef] [PubMed]
- Lindenkamp, N.; Schürmann, M.; Steinbüchel, A. A Propionate CoA-Transferase of Ralstonia eutropha H16 with Broad Substrate Specificity Catalyzing the CoA Thioester Formation of Various Carboxylic Acids. Appl. Microbiol. Biotechnol. 2013, 97, 7699–7709. [Google Scholar] [CrossRef] [PubMed]
- Park, S.J.; Jang, Y.; Noh, W.; Oh, Y.H.; Lee, H.; David, Y.; Baylon, M.G.; Shin, J.; Yang, J.E.; Choi, S.Y.; et al. Metabolic Engineering of Ralstonia eutropha for the Production of Polyhydroxyalkanoates from Sucrose. Biotechnol. Bioeng. 2015, 112, 638–643. [Google Scholar] [CrossRef]
- Nakamura, S.; Kunioka, M.; Doi, Y. Biosynthesis and Characterization of Bacterial Poly(3-Hydroxybutyrate-co-3-Hydroxypropionate). Macromol. Rep. 1991, 28, 15–24. [Google Scholar] [CrossRef]
- Wang, Q.; Yang, P.; Xian, M.; Yang, Y.; Liu, C.; Xue, Y.; Zhao, G. Biosynthesis of Poly(3-Hydroxypropionate-co-3-Hydroxybutyrate) with Fully Controllable Structures from Glycerol. Bioresour. Technol. 2013, 142, 741–744. [Google Scholar] [CrossRef]
- Meng, D.-C.; Wang, Y.; Wu, L.-P.; Shen, R.; Chen, J.-C.; Wu, Q.; Chen, G.-Q. Production of Poly(3-Hydroxypropionate) and Poly(3-Hydroxybutyrate-co-3-Hydroxypropionate) from Glucose by Engineering Escherichia coli. Metab. Eng. 2015, 29, 189–195. [Google Scholar] [CrossRef]
- Fukui, T.; Suzuki, M.; Tsuge, T.; Nakamura, S. Microbial Synthesis of Poly((R)-3-Hydroxybutyrate-co-3-Hydroxypropionate) from Unrelated Carbon Sources by Engineered Cupriavidus necator. Biomacromolecules 2009, 10, 700–706. [Google Scholar] [CrossRef]
- Alber, B.E.; Fuchs, G. Propionyl-Coenzyme A Synthase from Chloroflexus aurantiacus, a Key Enzyme of the 3-Hydroxypropionate Cycle for Autotrophic CO2 Fixation. J. Biol. Chem. 2002, 277, 12137–12143. [Google Scholar] [CrossRef]
- Li, M.; Li, W.; Zhang, T.; Guo, K.; Feng, D.; Liang, F.; Xu, C.; Xian, M.; Zou, H. De Novo Synthesis of Poly(3-Hydroxybutyrate-co-3-Hydroxypropionate) from Oil by Engineered Cupriavidus necator. Bioengineering 2023, 10, 446. [Google Scholar] [CrossRef]
- Liu, C.; Ding, Y.; Zhang, R.; Liu, H.; Xian, M.; Zhao, G. Functional Balance between Enzymes in Malonyl-CoA Pathway for 3-Hydroxypropionate Biosynthesis. Metab. Eng. 2016, 34, 104–111. [Google Scholar] [CrossRef]
- Borodina, I.; Kildegaard, K.R.; Jensen, N.B.; Blicher, T.H.; Maury, J.; Sherstyk, S.; Schneider, K.; Lamosa, P.; Herrgård, M.J.; Rosenstand, I.; et al. Establishing a Synthetic Pathway for High-Level Production of 3-Hydroxypropionic Acid in Saccharomyces cerevisiae via β-Alanine. Metab. Eng. 2015, 27, 57–64. [Google Scholar] [CrossRef]
- Song, C.W.; Kim, J.W.; Cho, I.J.; Lee, S.Y. Metabolic Engineering of Escherichia coli for the Production of 3-Hydroxypropionic Acid and Malonic Acid through β-Alanine Route. ACS Synth. Biol. 2016, 5, 1256–1263. [Google Scholar] [CrossRef] [PubMed]
- McGregor, C.; Minton, N.P.; Kovács, K. Biosynthesis of Poly(3HB-co-3HP) with Variable Monomer Composition in Recombinant Cupriavidus necator H16. ACS Synth. Biol. 2021, 10, 3343–3352. [Google Scholar] [CrossRef] [PubMed]
- Arenas-López, C.; Locker, J.; Orol, D.; Walter, F.; Busche, T.; Kalinowski, J.; Minton, N.P.; Kovács, K.; Winzer, K. The Genetic Basis of 3-Hydroxypropanoate Metabolism in Cupriavidus necator H16. Biotechnol. Biofuels 2019, 12, 150. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, D.; Andreessen, B.; Madkour, M.H.; Al-Ghamdi, M.A.; Shabbaj, I.I.; Steinbüchel, A. From Waste to Plastic: Synthesis of Poly(3-Hydroxypropionate) in Shimwellia blattae. Appl. Environ. Microbiol. 2013, 79, 3582–3589. [Google Scholar] [CrossRef]
Genetic Background | Target Genes/ Enzymes | Engineering Approach | Carbon Sources | PHB Titers (g/L) | PHB Content (%) | PHB Titer Improvement | Study |
---|---|---|---|---|---|---|---|
C. necator PHB−4 | phaCAB, phaAB, phaC | Plasmid-based overexpression | Fructose | 4.89 F | 53.2 | 22–48% | [75] |
C. necator PHB−4 | Mutant phaC | Plasmid-based overexpression | Fructose | 1.51 (c) SF | 75.0 | 41% | [76] |
Glucose-utilizing mutant of C. necator H16 | - | Rewiring TCA cycle through random mutagenesis | Glucose, Fructose, Gluconate | 5.52 SF, 4.59 SF, 7.27 SF | 48.0, 51.0, 58.6 | 38.3%, 18.9%, 10.4% | [82] |
C. necator H16 | - | Cofactor balancing through random mutagenesis | Waste frying oil | 7.6 SF | 87.9 | 55% | [90] |
C. necator H16 | tktA from E. coli | Cofactor balancing, plasmid-based expression | Gluconate | Approx. 3.4 (c) SF | 72.3 | Approx. 60% | [88] |
C. necator H16 | VHb from Vitreoscilla | Increase oxygen availability, plasmid-based expression | CO2 | 0.27 SF ** | 48.7 ** | 61% ** | [94] |
C. necator H16 | ∆ldh | Gene deletion, byproduct elimination | CO2 | 0.30 SF ** | 41.7 ** | 11% ** | [94] |
C. necator H16 | phaP1, phaP2, uspA, rpoN | Inducible plasmid-based overexpression | Fructose, CO2 | 0.78–1.26 SF * 0.26–0.29 SF ** | 30.2–47.2 *, 24.0–32.4 ** | 103.1% * 77.5% ** | [56] |
Polymer Type | Genetic Background | Target Genes/ Enzymes | Engineering Approach | Carbon Sources | PHA Titers (g/L) | PHA Content (%) | Monomer Fraction | Study |
---|---|---|---|---|---|---|---|---|
PHBV | Isoleucine-auxotrophic revertant C. necator H16 | Acetolactate synthase | Random mutagenesis, overexpression | Fructose, Gluconate, Acetate, Succinate, Lactate | - | 47.0 SF, 35.7 SF, 29.5 SF, 21.5 SF, 43.2 SF | 7%, 6%, 4%, 7%, 4% | [123] |
PHBV | Glucose-utilizing mutant of C. necator H16 | ∆prpC1C2, sbm-ygfD-ygfG from E.coli | Gene deletion, plasmid-based expression, methylmalonyl-CoA pathway introduction | Glucose | 90.76 F | 68.6 | 26% | [125] |
PHBV | C. necator H16∆prpC1C2 | bktB, alsS from B. subtilis, leuA from H. mediterranei | Gene deletion, plasmid-based expression, citramalate and branched-chain amino acid pathway introduction | Fructose, CO2 | 0.40 (c) SF *, 0.64 (c) SF *, 1.25 (c) SF ** | 31.0 *, 42.5 *, 54.5 ** | 84.7 *%, 64.9 *%, 24.1 **% | [129] |
PHBHHx | C. necator PHB−4 | PhaCAc | Plasmid-based overexpression, heterologous PhaC | Hexanoate, Octanoate | - | 72 SF, 96 SF | 28%, 15% | [151] |
PHBHHx | C. necator PHB−4 | PhaCAcNSDG | Site directed mutagenesis of heterologous PhaC, plasmid-based expression | Octanoate, Soybean oil | 2.96 (c) SF, 1.63 (c) SF | 87, 71 | 18.1%, 5.2% | [159] |
PHBHHx | C. necator H16; ∆phaC, ∆phaZ1Z2Z6, PtrcRBS-phaJ4b | PhaCAcNSDG-S389T mutant | Site-directed mutagenesis of heterologous PhaC, plasmid-based expression | Palm kernel oil | 14.1 SF | 83.7 | 14.9% | [160] |
PHBHHx | C. necator H16 | ∆phaC:: phaCAcNSDG-phaJAc, ∆phaA | Gene deletion, 3HHx through β-oxidation pathway | Soybean oil | 3.8 SF | 79 | 9.9% | [166] |
PHBHHx | C. necator H16 | ΔphaC:: phaCAcNSDG-phaJAc-phaJ4a, ∆phaA | Gene deletion, 3HHx through β-oxidation pathway | Soybean oil | 3.9 SF | 82 | 10.5% | [165] |
PHBHHx | C. necator H16 | ΔphaC:: phaCAcNSDG, ∆phaP1:: phaPAc-phaJAc- phaCAcNSDG | Heterologous enzyme variants, increase in gene copy number, 3HHx through β-oxidation pathway | Soybean oil | 5.0 SF | 79 | 17.2% | [167] |
PHBHHx | C. necator H16; ∆phaC:: phaCAcNSDG, ∆phaZ1Z2Z6 | ::PtrcRBS-phaJ4B | Promoter engineering, 3HHx through β-oxidation pathway | Palm kernel oil | 15.3 SF | 84.0 | 10.7% | [168] |
PHBHHx | C. necator H16 | ∆phaC:: phaC2Ra- phaJ1Pa, ∆phaB1-3 | Gene deletion, heterologous enzyme variants, 3HHx through β-oxidation pathway | Palm oil | 0.57 (c) SF | 40.4 | 22.44% | [154] |
PHBHHx | C. necator PHB−4 | PphaC1- phaCBP-M-CPF4-phaA-phaJ1Pa | Plasmid-based expression, heterologous enzyme variants, 3HHx through β-oxidation pathway | Palm oil, CPKO | 2.5 SF, 3.0 SF | 49.6, 62.6 | 11%, 14% | [169] |
PHBHHx | C. necator PHB−4 | PphaC1- phaCBP-M-CPF4-phaJSs | Plasmid-based expression, heterologous enzyme variants, 3HHx through β-oxidation pathway | Palm oil, CPKO | 2.7 SF, 3.5 SF | 53.5, 62.2 | 12%, 18% | [170] |
PHBHHx | C. necator H16; ΔphaC:: phaCAcNSDG-phaJAc-phaJ4a, ∆phaA | ∆fadB1 | Gene deletion, 3HHx through β-oxidation pathway | Soybean oil | 34.3 F | 65.7 | 15.7% | [171] |
PHBHHx | C. necator PHB−4 | phaCAc, phaJAc, ccrSc | 3HHx through ccr pathway, plasmid-based expression | Fructose | 0.49 (c) SF | 39 | 1.6% | [176] |
PHBHHx | C. necator H16; ΔphaC:: phaCAcNSDG, ∆phaA::bktB | ∆phaB1B3, PphaP1-ccrMe-phaJ4a-emdMm | Gene deletion, plasmid-based expression, 3HHx through ccr-emd pathway | Fructose | 0.59 SF | 41.1 | 37.7% | [175] |
PHBHHx | C. necator NSDG-GG, glucose-utilizing mutant and enhanced glycerol assimilation | ∆phaB1::had-crt2, PphaP1-ccrMe-phaJ4a-emdMm | Gene deletion, increased copy numbers of reverse β-oxidation genes, 3HHx through ccr-emd pathway | Glucose, Fructose, Glycerol | 2.1 SF, 2.1 SF, 0.5 SF | 69, 75, 40 | 26%, 24%, 17% | [177] |
P(3HB-co-LA) | Glucose-utilizing mutant of C. necator H16 | ∆phaCAB:: phaC1Ps6-19-pctCp, ldhA from E. coli | Gene deletion, heterologous enzyme variants, plasmid-based expression | Glucose | 0.14 SF | 33.9 | 37% | [189] |
P(3HB-co-3HP) | C. necator JMP134 | mcrCa, acsCa | Plasmid-based expression, 3HP through malonyl-CoA pathway | Fructose | 0.78 (c) SF | 31 | 2.1% | [195] |
P(3HB-co-3HP) | C. necator H16 | PctCp, acc ADBC, N-mcr, C-mcr | Plasmid-based expression, 3HP through malonyl-CoA pathway, fragmeted mcr | Soybean oil | 3.11 F | 51 | 32.25% | [197] |
P(3HB-co-3HP) | C. necator H16∆mmsA1-3 | ∆phaA, PphaC-BAPATCv-ydfGEc, Ptrp-pctCn-phaCCs | Gene deletion, plasmid-based expression, 3HP through exogenous β-alanine, heterologous enzyme variants | Gluconate and β-alanine | 1.6 F | 25.54 | 91.19% | [201] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hectors, W.; Delmulle, T.; Soetaert, W.K. Metabolic Engineering Strategies for Enhanced Polyhydroxyalkanoate (PHA) Production in Cupriavidus necator. Polymers 2025, 17, 2104. https://doi.org/10.3390/polym17152104
Hectors W, Delmulle T, Soetaert WK. Metabolic Engineering Strategies for Enhanced Polyhydroxyalkanoate (PHA) Production in Cupriavidus necator. Polymers. 2025; 17(15):2104. https://doi.org/10.3390/polym17152104
Chicago/Turabian StyleHectors, Wim, Tom Delmulle, and Wim K. Soetaert. 2025. "Metabolic Engineering Strategies for Enhanced Polyhydroxyalkanoate (PHA) Production in Cupriavidus necator" Polymers 17, no. 15: 2104. https://doi.org/10.3390/polym17152104
APA StyleHectors, W., Delmulle, T., & Soetaert, W. K. (2025). Metabolic Engineering Strategies for Enhanced Polyhydroxyalkanoate (PHA) Production in Cupriavidus necator. Polymers, 17(15), 2104. https://doi.org/10.3390/polym17152104