Mycoplasma Biofilms: Characteristics and Control Strategies
Abstract
1. Biological Characteristics of Mycoplasma
2. Biofilms
2.1. Formation and Structure of Biofilms
2.2. Methods for the Identification of the Biofilm
2.2.1. Staining Methods
2.2.2. Imaging Assays
2.2.3. Genetic Testing
3. Correlation Between Biofilm and Resistance of Mycoplasma
4. Correlation Between Biofilm and Virulence
5. Strategies for Biofilm Control
5.1. Physical Methods
5.2. Biological Formulations
5.3. Natural Medicines
5.4. Gene Engineering
6. Opportunities and Challenges
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Young, L.; Sung, J.; Stacey, G.; Masters, J.R. Detection of Mycoplasma in cell cultures. Nat. Protoc. 2010, 5, 929–934. [Google Scholar] [CrossRef]
- Harwick, H.J.; Kalmanson, G.M.; Guze, L.B. Human Diseases Associated with Mycoplasmas—With an Appendix on Simple Culture Techniques. Calif. Med. 1972, 116, 1–7. [Google Scholar]
- Gautier-Bouchardon, A.V. Antimicrobial Resistance in Mycoplasma spp. Microbiol. Spectr. 2018, 6, 10.1128. [Google Scholar] [CrossRef] [PubMed]
- Shepard, M.C.; Calvy, G.L. The Role of Mycoplasma (Pleuropneumonia-like Organisms) in Human Disease. N. Engl. J. Med. 1965, 272, 848–851. [Google Scholar] [CrossRef]
- Goodnight, W.H.; Soper, D.E. Pneumonia in pregnancy. Crit. Care Med. 2005, 33, S390–S397. [Google Scholar] [CrossRef]
- Waites, K.B.; Talkington, D.F. Mycoplasma pneumoniae and its role as a human pathogen. Clin. Microbiol. Rev. 2004, 17, 697–728. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Williams, D.J.; Arnold, S.R.; Ampofo, K.; Bramley, A.M.; Reed, C.; Stockmann, C.; Anderson, E.J.; Grijalva, C.G.; Self, W.H.; et al. Community-Acquired pneumonia requiring hospitalization among U.S. children. N. Engl. J. Med. 2015, 372, 835–845. [Google Scholar] [CrossRef]
- Caswell, J.L.; Archambault, M. Mycoplasma bovis pneumonia in cattle. Anim. Health Res. Rev. 2007, 8, 161–186. [Google Scholar] [CrossRef]
- Buscho, R.O.; Saxtan, D.; Shultz, P.S.; Finch, E.; Mufson, M.A. Infections with viruses and Mycoplasma pneumoniae during exacerbations of chronic bronchitis. J. Infect. Dis. 1978, 137, 377–383. [Google Scholar] [CrossRef]
- Phuah, C.-L.; Javid, B.; Aliyu, S.H.; Lever, A.M.L. A case of Mycoplasma hominis septic arthritis postpartum. J. Infect. 2007, 55, e135–e137. [Google Scholar] [CrossRef]
- Johnson, S.; Sidebottom, D.; Bruckner, F.; Collins, D. Identification of Mycoplasma fermentans in synovial fluid samples from arthritis patients with inflammatory disease. J. Clin. Microbiol. 2000, 38, 90–93. [Google Scholar] [CrossRef]
- Morrow, C.J.; Bradbury, J.M.; Gentle, M.J.; Thorp, B.H. The development of lameness and bone deformity in the broiler following experimental infection with Mycoplasma gallisepticum or Mycoplasma synoviae. Avian Pathol. 1997, 26, 169–187. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, B. Mycoplasma-Induced Rash and Mucositis. N. Engl. J. Med. 2023, 389, 1601. [Google Scholar] [CrossRef]
- Li, T.; Lee, N. Mycoplasma pneumoniae—Associated Mucositis. N. Engl. J. Med. 2018, 379, 1262. [Google Scholar] [CrossRef]
- Shurin, P.A.; Alpert, S.; Rosner, B.; Driscoll, S.G.; Lee, Y.-H.; McCormack, W.M.; Santamarina, B.A.G.; Kass, E.H. Chorioamnionitis and Colonization of the Newborn Infant with Genital Mycoplasmas. N. Engl. J. Med. 1975, 293, 5–8. [Google Scholar] [CrossRef]
- Lis, R.; Rowhani-Rahbar, A.; Manhart, L.E. Mycoplasma genitalium infection and female reproductive tract disease: A meta-analysis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2015, 61, 418–426. [Google Scholar] [CrossRef]
- Mavedzenge, S.N.; Weiss, H.A. Association of Mycoplasma genitalium and HIV infection: A systematic review and meta-analysis. AIDS 2009, 23, 611–620. [Google Scholar] [CrossRef]
- Huang, C.; Zhu, H.L.; Xu, K.R.; Wang, S.Y.; Fan, L.Q.; Zhu, W.B. Mycoplasma and ureaplasma infection and male infertility: A systematic review and meta-analysis. Andrology 2015, 3, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Feberwee, A.; de Wit, J.J.; Landman, W.J.M. Induction of eggshell apex abnormalities by Mycoplasma synoviae: Field and experimental studies. Avian Pathol. 2009, 38, 77–85. [Google Scholar] [CrossRef] [PubMed]
- Medjo, B.; Atanaskovic-Markovic, M.; Radic, S.; Nikolic, D.; Lukac, M.; Djukic, S. Mycoplasma pneumoniae as a causative agent of community-acquired pneumonia in children: Clinical features and laboratory diagnosis. Ital. J. Pediatr. 2014, 40, 104. [Google Scholar] [CrossRef] [PubMed]
- Wood, G.E.; Bradshaw, C.S.; Manhart, L.E. Update in Epidemiology and Management of Mycoplasma genitalium Infections. Infect. Dis. Clin. N. Am. 2023, 37, 311–333. [Google Scholar] [CrossRef]
- Maes, D.; Segales, J.; Meyns, T.; Sibila, M.; Pieters, M.; Haesebrouck, F. Control of Mycoplasma hyopneumoniae infections in pigs. Vet. Microbiol. 2008, 126, 297–309. [Google Scholar] [CrossRef]
- Pieters, M.G.; Maes, D. Mycoplasmosis. In Diseases of Swine; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 863–883. [Google Scholar]
- Feberwee, A.; de Wit, S.; Dijkman, R. Clinical expression, epidemiology, and monitoring of Mycoplasma gallisepticum and Mycoplasma synoviae: An update. Avian Pathol. 2022, 51, 2–18. [Google Scholar] [CrossRef]
- Filloux, A.; Vallet, I. Biofilm: Set-up and organization of a bacterial community. Med. Sci. M/S 2003, 19, 77–83. [Google Scholar]
- Raymond, B.B.A.; Jenkins, C.; Turnbull, L.; Whitchurch, C.B.; Djordjevic, S.P. Extracellular DNA release from the genome-reduced pathogen Mycoplasma hyopneumoniae is essential for biofilm formation on abiotic surfaces. Sci. Rep. 2018, 8, 10373. [Google Scholar] [CrossRef]
- Awadh, A.A.; Kelly, A.F.; Forster-Wilkins, G.; Wertheim, D.; Giddens, R.; Gould, S.W.; Fielder, M.D. Visualisation and biovolume quantification in the characterisation of biofilm formation in Mycoplasma fermentans. Sci. Rep. 2021, 11, 11259. [Google Scholar] [CrossRef] [PubMed]
- Karygianni, L.; Ren, Z.; Koo, H.; Thurnheer, T. Biofilm Matrixome: Extracellular Components in Structured Microbial Communities. Trends Microbiol. 2020, 28, 668–681. [Google Scholar] [CrossRef]
- Daubenspeck, J.M.; Totten, A.H.; Needham, J.; Feng, M.; Balish, M.F.; Atkinson, T.P.; Dybvig, K. Mycoplasma genitalium Biofilms Contain Poly-GlcNAc and Contribute to Antibiotic Resistance. Front. Microbiol. 2020, 11, 585524. [Google Scholar] [CrossRef] [PubMed]
- Simmons, W.L.; Dybvig, K. Biofilms protect Mycoplasma pulmonis cells from lytic effects of complement and gramicidin. Infect. Immun. 2007, 75, 3696–3699. [Google Scholar] [CrossRef]
- Mcauliffe, L.; Ellis, R.J.; Miles, K.; Aylinget, R.D.; Nicholas, R.A.J. Biofilm formation by mycoplasma species and its role in environmental persistence and survival. Microbiology 2006, 152 Pt 4, 913–922. [Google Scholar] [CrossRef] [PubMed]
- Bekő, K.; Nagy, E.Z.; Grózner, D.; Kreizinger, Z.; Gyuranecz, M. Biofilm formation and its impact on environmental survival and antibiotic resistance of Mycoplasma anserisalpingitidis strains. Acta Vet. Hung. 2022; epub ahead of print. [Google Scholar]
- Zhu, X.; Dordet-Frisoni, E.; Gillard, L.; Ba, A.; Hygonenq, M.-C.; Sagné, E.; Nouvel, L.X.; Maillard, R.; Assié, S.; Guo, A.; et al. Extracellular DNA: A Nutritional Trigger of Mycoplasma bovis Cytotoxicity. Front. Microbiol. 2019, 10, 2753. [Google Scholar] [CrossRef] [PubMed]
- Shaw, B.M.; Daubenspeck, J.M.; Simmons, W.L.; Dybvig, K. EPS-I Polysaccharide Protects Mycoplasma pulmonis from Phagocytosis. FEMS Microbiol. Lett. 2013, 338, 155–160. [Google Scholar] [CrossRef][Green Version]
- Bolland, J.R.; Simmons, W.L.; Daubenspeck, J.M.; Dybvig, K. Mycoplasma polysaccharide protects against complement. Microbiology 2012, 158 Pt 7, 1867–1873. [Google Scholar] [CrossRef]
- Dai, P.; Deng, X.; Liu, P.; Li, L.; Luo, D.; Liao, Y.; Zeng, Y. Mycoplasma genitalium Protein of Adhesion Promotes the Early Proliferation of Human Urothelial Cells by Interacting with RPL35. Pathogens 2021, 10, 1449. [Google Scholar] [CrossRef]
- Hu, Z.; Li, H.; Zhao, Y.; Wang, G.; Shang, Y.; Chen, Y.; Wang, S.; Tian, M.; Qi, J.; Yu, S. NADH oxidase of Mycoplasma synoviae is a potential diagnostic antigen, plasminogen/fibronectin binding protein and a putative adhesin. BMC Vet. Res. 2022, 18, 455. [Google Scholar] [CrossRef]
- Rinaudi, L.; Fujishige, N.A.; Hirsch, A.M.; Banchio, E.; Zorreguieta, A.; Giordano, W. Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res. Microbiol. 2006, 157, 867–875. [Google Scholar] [CrossRef]
- Nickel, J.C.; Costerton, J.W.; Mclean, R.J.; Olson, M. Bacterial biofilms: Influence on the pathogenesis, diagnosis and treatment of urinary tract infections. J. Antimicrob. Chemother. 1994, 33 (Suppl. A), 31–41. [Google Scholar] [CrossRef]
- Ádám, A.; Pál, Z.; Terhes, G.; Szűcs, M.; Gabay, I.D.; Urbán, E. Culture- and PCR-based detection of BV associated microbiological profile of the removed IUDs and correlation with the time period of IUD in place and the presence of the symptoms of genital tract infection. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 40. [Google Scholar] [CrossRef]
- Kornspan, J.D.; Tarshis, M.; Rottem, S. Adhesion and biofilm formation of Mycoplasma pneumoniae on an abiotic surface. Arch. Microbiol. 2011, 193, 833–836. [Google Scholar] [CrossRef] [PubMed]
- Simmons, W.L.; Daubenspeck, J.M.; Osborne, J.D.; Balish, M.F.; Waites, K.B.; Dybvig, K. Type 1 and type 2 strains of Mycoplasma pneumoniae form different biofilms. Microbiology 2013, 159 Pt 4, 737–747. [Google Scholar] [CrossRef] [PubMed]
- García-Castillo, M.; Morosini, M.I.; Gálvez, M.; Baquero, F.; del Campo, R.; Meseguer, M.-A. Differences in biofilm development and antibiotic susceptibility among clinical Ureaplasma urealyticum and Ureaplasma parvum isolates. J. Antimicrob. Chemother. 2008, 62, 1027–1030. [Google Scholar] [CrossRef]
- Romero, R.; Schaudinn, C.; Kusanovic, J.P.; Gorur, A.; Gotsch, F.; Webster, P.; Nhan-Chang, C.-L.; Erez, O.; Kim, C.J.; Espinozae, J.; et al. Detection of a microbial biofilm in intraamniotic infection. Am. J. Obstet. Gynecol. 2008, 198, e1–e5. [Google Scholar] [CrossRef] [PubMed]
- Henrich, B.; Schmitt, M.; Bergmann, N.; Zanger, K.; Kubitz, R.; Häussinger, D.; Pfeffer, K. Mycoplasma salivarium detected in a microbial community with Candida glabrata in the biofilm of an occluded biliary stent. J. Med. Microbiol. 2010, 59 Pt 2, 239–241. [Google Scholar] [CrossRef][Green Version]
- Kang, T.; Zhou, M.; Yan, X.; Zanger, K.; Kubitz, R.; Häussinger, D.; Pfeffer, K. Biofilm formation and correlations with drug resistance in Mycoplasma synoviae. Vet. Microbiol. 2023, 283, 109777. [Google Scholar] [CrossRef]
- Chen, H.; Yu, S.; Hu, M.; Han, X.; Chen, D.; Qiu, X.; Ding, C. Identification of biofilm formation by Mycoplasma gallisepticum. Vet. Microbiol. 2012, 161, 96–103. [Google Scholar] [CrossRef]
- Sokoli, A.; Groebel, K.; Hoelzle, K.; Amselgruber, W.M.; Mateos, J.M.; Schneider, M.K.J.; Ziegler, U.; Felder, K.M.; Hoelzle, L.E. Mycoplasma suis infection results endothelial cell damage and activation: New insight into the cell tropism and pathogenicity of hemotrophic mycoplasma. Vet. Res. 2013, 44, 6. [Google Scholar] [CrossRef]
- Simmons, W.L.; Dybvig, K. Mycoplasma biofilms ex vivo and in vivo. FEMS Microbiol. Lett. 2009, 295, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Catania, S.; Bottinelli, M.; Fincato, A.; Tondo, A.; Matucci, A.; Nai, G.; Righetti, V.; Abbate, F.; Ramírez, A.S.; Gobbo, F.; et al. Pathogenic avian mycoplasmas show phenotypic differences in their biofilm forming ability compared to non-pathogenic species in vitro. Biofilm 2024, 7, 100190. [Google Scholar] [CrossRef]
- Chen, S.; Hao, H.; Yan, X.; Liu, Y.; Chu, Y. Genome-Wide Analysis of Mycoplasma dispar Provides Insights into Putative Virulence Factors and Phylogenetic Relationships. G3 2019, 9, 317–325. [Google Scholar] [CrossRef]
- Simmons, W.L.; Bolland, J.R.; Daubenspeck, J.M.; Dybvig, K. A stochastic mechanism for biofilm formation by Mycoplasma pulmonis. J. Bacteriol. 2007, 189, 1905–1913. [Google Scholar] [CrossRef] [PubMed]
- O’loughlin, C.T.; Miller, L.C.; Siryaporn, A.; Bassler, B.L. A quorum-sensing inhibitor blocks pseudomonas aeruginosa virulence and biofilm formation. Proc. Natl. Acad. Sci. USA 2013, 110, 17981–17986. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Payne, G.F.; Bentley, W.E. Quorum sensing communication: Molecularly connecting cells, their neighbors, and even devices. Annu. Rev. Chem. Biomol. Eng. 2020, 11, 447–468. [Google Scholar] [CrossRef]
- Fatoba, A.J.; Okpeku, M.; Adeleke, M.A. Subtractive genomics approach for identification of novel therapeutic drug targets in mycoplasma genitalium. Pathogens 2021, 10, 921. [Google Scholar] [CrossRef]
- Nishi, K.; Gondaira, S.; Hirano, Y.; Ohashi, M.; Sato, A.; Matsuda, K.; Iwasaki, T.; Kanda, T.; Uemura, R.; Higuchi, H. Biofilm characterisation of Mycoplasma bovis co-cultured with Trueperella pyogenes. Vet. Res. 2025, 56, 22. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C.; Wingender, J.; Szewzyk, U.; Steinberg, P.; Rice, S.A.; Kjelleberg, S. Biofilms: An emergent form of bacterial life. Nat. Rev. Microbiol. 2016, 14, 563–575. [Google Scholar] [CrossRef]
- Perchikov, R.; Cheliukanov, M.; Plekhanova, Y.; Tarasov, S.; Kharkova, A.; Butusov, D.; Arlyapov, V.; Nakamura, H.; Reshetilov, A. Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices. Biosensors 2024, 14, 302. [Google Scholar] [CrossRef]
- Tuson, H.H.; Weibel, D.B. Bacteria–surface interactions. Soft Matter 2013, 9, 4368–4380. [Google Scholar] [CrossRef]
- Simmons, W.L.; Dybvig, K. Catalase Enhances Growth and Biofilm Production of Mycoplasma pneumoniae. Curr. Microbiol. 2015, 71, 190–194. [Google Scholar] [CrossRef][Green Version]
- Bély, M.; Makovitzky, J. Sensitivity and specificity of Congo red staining according to Romhányi. Comparison with Puchtler’s or Bennhold’s methods. Acta Histochem. 2006, 108, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Pantanella, F.; Valenti, P.; Natalizi, T.; Passeri, D.; Berlutti, F. Analytical techniques to study microbial biofilm on abiotic surfaces: Pros and cons of the main techniques currently in use. Ann. Di Ig. Med. Prev. E Di Comunita 2013, 25, 31–42. [Google Scholar]
- Wallace, P.K.; Arey, B.; Mahaffee, W.F. Subsurface examination of a foliar biofilm using scanning electron- and focused-ion-beam microscopy. Micron 2011, 42, 579–585. [Google Scholar] [CrossRef] [PubMed]
- Neu, T.R.; Lawrence, J.R. Investigation of microbial biofilm structure by laser scanning microscopy. Adv. Biochem. Eng./Biotechnol. 2014, 146, 1–51. [Google Scholar] [PubMed]
- Tassew, D.D.; Mechesso, A.F.; Park, N.H.; Song, J.-B.; Shur, J.-W.; Park, S.-C. Biofilm formation and determination of minimum biofilm eradication concentration of antibiotics in Mycoplasma hyopneumoniae. J. Vet. Med. Sci. 2017, 79, 1716–1720. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, L.; Yang, F.; Li, J.; Guo, L.; Guo, Y.; He, S. Drug sensitivity and genome-wide analysis of two strains of Mycoplasma gallisepticum with different biofilm intensity. Front. Microbiol. 2023, 14, 1196747. [Google Scholar] [CrossRef] [PubMed]
- Fisunov, G.Y.; Pobeguts, O.V.; Ladygina, V.G.; Zubov, A.I.; Galyamina, M.A.; Kovalchuk, S.I.; Ziganshin, R.K.; DEvsyutina, V.; Matyushkina, D.S.; Butenko, I.O.; et al. Thymidine utilisation pathway is a novel phenotypic switch of Mycoplasma hominis. J. Med. Microbiol. 2022, 71, 001468. [Google Scholar] [CrossRef]
- Wang, Y.; Yi, L.; Zhang, F.; Qiu, X.; Tan, L.; Yu, S.; Cheng, X.; Ding, C. Identification of genes involved in Mycoplasma gallisepticum biofilm formation using mini-Tn4001-SGM transposon mutagenesis. Vet. Microbiol. 2017, 198, 17–22. [Google Scholar] [CrossRef]
- Niu, J.; Yan, M.; Xu, J.; Xu, Y.; Chang, Z.; Sizhu, S. The Resistance Mechanism of Mycoplasma bovis from Yaks in Tibet to Fluoroquinolones and Aminoglycosides. Front. Vet. Sci. 2022, 9, 840981. [Google Scholar] [CrossRef]
- Nagy, E.Z.; Kovács, Á.B.; Wehmann, E.; Bekő, K.; Földi, D.; Bányai, K.; Kreizinger, Z.; Gyuranecz, M. Phenotypic and genetic insights into efflux pump mechanism in Mycoplasma anserisalpingitidis. Front. Microbiol. 2023, 14, 1216893. [Google Scholar] [CrossRef]
- Feng, M.; Schaff, A.C.; Balish, M.F. Mycoplasma pneumoniae biofilms grown in vitro: Traits associated with persistence and cytotoxicity. Microbiology 2020, 166, 629–640. [Google Scholar] [CrossRef]
- Feng, C.; Huang, Y.; Yu, Y.; Duan, G.; Dai, Y.; Dongs, K.; Li, Q. Effects on quinolone resistance due to the biofilm formation activity in Ureaplasma urealyticum. Turk. J. Med. Sci. 2015, 45, 55–59. [Google Scholar] [CrossRef]
- Wang, X.; He, L.; Wu, Z.; Zhong, Q.; Zeng, J.; Yang, W. Analysis of Biofilm Drug Susceptibility of Ureaplasma urealyticum Clinical Isolates. Chin. J. Antibiot. 2019, 44, 856–859. (In Chinese) [Google Scholar]
- Pandelidis, K.; Mccarthy, A.; Chesko, K.L.; Viscardi, R.M. Role of biofilm formation in Ureaplasma antibiotic susceptibility and development of bronchopulmonary dysplasia in preterm neonates. Pediatr. Infect. Dis. J. 2013, 32, 394–398. [Google Scholar] [CrossRef]
- Thieme, L.; Hartung, A.; Tramm, K.; Klinger-Strobel, M.; Jandt, K.D.; Makarewicz, O.; Pletz, M.W. MBEC Versus MBIC: The Lack of Differentiation between Biofilm Reducing and Inhibitory Effects as a Current Problem in Biofilm Methodology. Biol. Proced. Online 2019, 21, 18. [Google Scholar] [CrossRef]
- Chen, Y.; Wu, Y.; Qin, L.; Zhu, C.; You, X. Infection strategies of mycoplasmas: Unraveling the panoply of virulence factors. Virulence 2021, 12, 788–817. [Google Scholar] [CrossRef]
- Perez, K.; Mullen, N.; Canter, J.A.; Ley, D.H.; May, M. Phenotypic diversity in an emerging mycoplasmal disease. Microb. Pathog. 2020, 138, 103798. [Google Scholar] [CrossRef]
- Wu, Y.; Yu, Y.; Hua, L.; Wei, Y.; Gan, Y.; Chenia, H.Y.; Wang, Y.; Xie, X.; Wang, J.; Liu, M.; et al. Genotyping and biofilm formation of Mycoplasma hyopneumoniae and their association with virulence. Vet. Res. 2022, 53, 95. [Google Scholar] [CrossRef]
- Valdivieso-Garcia, A.; Rosendal, S.; Serebrin, S. Adherence of Mycoplasma mycoides Subspecies mycoides to Cultured Endothelial Cells. Zentralblatt Für Bakteriol. 1989, 272, 210–215. [Google Scholar] [CrossRef]
- Krishnan, M.; Kannan, T.R.; Baseman, J.B. Mycoplasma pneumoniae CARDS Toxin Is Internalized via Clathrin-Mediated Endocytosis. PLoS ONE 2013, 8, e62706. [Google Scholar] [CrossRef]
- Bose, S.; Segovia, J.A.; Somarajan, S.R.; Chang, T.-H.; Kannan, T.R.; Baseman, J.B. ADP-Ribosylation of NLRP3 by Mycoplasma pneumoniae CARDS Toxin Regulates Inflammasome Activity. mBio 2014, 5, e02186. [Google Scholar] [CrossRef] [PubMed]
- Kannan, T.R.; Musatovova, O.; Balasubramanian, S.; Cagle, M.; Jordan, J.L.; Krunkosky, T.M.; Davis, A.; Hardy, R.D.; Baseman, J.B. Mycoplasma pneumoniae Community Acquired Respiratory Distress Syndrome toxin expression reveals growth phase and infection-dependent regulation. Mol. Microbiol. 2010, 76, 1127–1141. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, W.; Wu, Z.; Lu, C. Reduced virulence is an important characteristic of biofilm infection of Streptococcus suis. FEMS Microbiol. Lett. 2011, 316, 36–43. [Google Scholar] [CrossRef]
- Costerton, J.W.; Stewart, P.S.; Greenberg, E.P. Bacterial biofilms: A common cause of persistent infections. Science 1999, 284, 1318–1322. [Google Scholar] [CrossRef]
- Eterpi, M.; Mcdonnell, G.; Thomas, V. Decontamination efficacy against Mycoplasma. Lett. Appl. Microbiol. 2011, 52, 150–155. [Google Scholar] [CrossRef]
- Macià, M.D.; Del Pozo, J.L.; Díez-Aguilar, M.; Guinea, J. Microbiological diagnosis of biofilm-related infections. Enfermedades Infecc. Y Microbiol. Clin. 2018, 36, 375–381. [Google Scholar] [CrossRef]
- Król, J.E.; Ehrlich, G.D. Using SMART Magnetic Fluids and Gels for Prevention and Destruction of Bacterial Biofilms. Microorganisms 2023, 11, 1515. [Google Scholar] [CrossRef]
- Maes, S.; Vackier, T.; Nguyen Huu, S.; Heyndrickx, M.; Steenackers, H.; Sampers, I.; Raes, K.; Verplaetse, A.; De Reu, K. Occurrence and characterisation of biofilms in drinking water systems of broiler houses. BMC Microbiol. 2019, 19, 77. [Google Scholar] [CrossRef]
- Yin, W.; Xu, S.; Wang, Y.; Zhang, Y.; Chou, S.H.; Galperin, M.Y.; He, J. Ways to control harmful biofilms: Prevention, inhibition, and eradication. Crit. Rev. Microbiol. 2021, 47, 57–78. [Google Scholar] [CrossRef]
- Mishra, R.; Panda, A.K.; de Mandal, S.; Shakeel, M.; Bisht, S.S.; Khan, J. Natural Anti-biofilm Agents: Strategies to Control Biofilm-Forming Pathogens. Front. Microbiol. 2020, 11, 566325. [Google Scholar] [CrossRef]
- Hayashi, K.; Misawa, T.; Goto, C.; Demizu, Y.; Hara-Kudo, Y.; Kikuchi, Y. The effects of magainin 2-derived and rationally designed antimicrobial peptides on Mycoplasma pneumoniae. PLoS ONE 2022, 17, e0261893. [Google Scholar] [CrossRef]
- Yadav, M.K.; Park, S.W.; Chae, S.W.; Song, J.J. Sinefungin, a natural nucleoside analogue of S-adenosylmethionine, inhibits Streptococcus pneumoniae biofilm growth. BioMed Res. Int. 2014, 2014, 156987. [Google Scholar] [CrossRef]
- Li, T.; Chen, C.; Yu, L.; Ding, W.; Ding, N.; Li, S.; Zhu, C.S. S-Adenosylmethionine Synthetase Is Involved in Biofilm Formation of Mycoplasma pneumoniae. Chin. J. Zoonotic Dis. 2021, 37, 404–409. (In Chinese) [Google Scholar]
- Yong, Y.Y.; Dykes, G.A.; Choo, W.S. Biofilm formation by staphylococci in health-related environments and recent reports on their control using natural compounds. Crit. Rev. Microbiol. 2019, 45, 201–222. [Google Scholar] [CrossRef]
- Hong-Geller, E.; Micheva-Viteva, S. Small molecule screens to identify inhibitors of infectious disease. In Drug Discovery; IntechOpen: London, UK, 2013. [Google Scholar]
- Helmy, Y.A.; Kathayat, D.; Ghanem, M.; Jung, K.; Closs, G., Jr.; Deblais, L.; Srivastava, V.; El-Gazzar, M.; Rajashekara, G. Identification and characterization of novel small molecule inhibitors to control Mycoplasma gallisepticum infection in chickens. Vet. Microbiol. 2020, 247, 108799. [Google Scholar] [CrossRef]
- Stewart, P.S. Antimicrobial tolerance in biofilms. Microbiol. Spectr. 2015, 3, 10.1128. [Google Scholar] [CrossRef]
- Kathayat, D.; Helmy, Y.A.; Deblais, L.; Rajashekara, G. Novel small molecules affecting cell membrane as potential therapeutics for avian pathogenic Escherichia coli. Sci. Rep. 2018, 8, 15329. [Google Scholar] [CrossRef]
- Hemeg, H.A. Combatting persisted and biofilm antimicrobial resistant bacterial by using nanoparticles. Z. Fur Naturforschung. C J. Biosci. 2022, 77, 365–378. [Google Scholar] [CrossRef]
- Udayagiri, H.; Sana, S.S.; Dogiparthi, L.K.; Vadde, R.; Varma, R.S.; Koduru, J.R.; Ghodake, G.S.; Somala, A.R.; Boya, V.K.N.; Kim, S.C.; et al. Phytochemical fabrication of ZnO nanoparticles and their antibacterial and anti-biofilm activity. Sci. Rep. 2024, 14, 19714. [Google Scholar] [CrossRef]
- Yao, H.; Fan, Y.; Emre, E.S.T.; Li, N.; Ge, M.; Wang, J.; Wei, J. Alginate-modified ZnO anti-planktonic and anti-biofilm nanoparticles for infected wound healing. Int. J. Biol. Macromol. 2024, 280, 135739. [Google Scholar] [CrossRef]
- Awad, N.F.S.; Hashem, Y.M.; Elshater, N.S.; Khalifa, E.; Hamed, R.I.; Nossieur, H.H.; Abd-Allah, E.M.; Elazab, S.T.; Nassan, M.A.; El-Hamid, M.I.A. Therapeutic potentials of aivlosin and/or zinc oxide nanoparticles against mycoplasma gallisepticum and/or ornithobacterium rhinotracheale with a special reference to the effect of zinc oxide nanoparticles on aivlosin tissue residues: An in vivo approach. Poult. Sci. 2022, 101, 101884. [Google Scholar] [CrossRef]
- Chen, L.; Chen, J.; Ramesh, T.; Seshadri, V.D.; Zhu, L. Zinc oxide nanoparticles from corydalis yanhusuo attenuated the mycoplasmal pneumonia in mice through inhibiting the MAPKs signaling pathway. Microb. Pathog. 2020, 147, 104270. [Google Scholar] [CrossRef]
- Yu, L.; Lu, M.; Zhang, W.; Alarfaj, A.A.; Hirad, A.H.; Zhang, H. Ameliorative effect of albizia chinensis synthesized ZnO-NPs on mycoplasma pneumoniae infected pneumonia mice model. Microb. Pathog. 2020, 141, 103960. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Huang, X.; Shi, W.; Zhang, R.; Chen, M.; Huang, H.; Wu, L. Insights on the Multifunctional Activities of Magnolol. BioMed Res. Int. 2019, 2019, 1847130. [Google Scholar] [CrossRef]
- Hu, Q.; Zhang, T.; Zhang, W.; Lu, Q.; Guo, Y.; Cao, X.; Shao, H.; Zhai, X.; Luo, Q. Mechanistic insights of magnolol antimicrobial activity against Mycoplasma using untargeted metabolomic analyses. Front. Cell. Infect. Microbiol. 2023, 13, 1325347. [Google Scholar] [CrossRef]
- Bankova, V.S.; de Castro, S.L.; Marcucci, M.C. Propolis: Recent advances in chemistry and plant origin. Apidologie 2000, 31, 3–15. [Google Scholar] [CrossRef]
- Dumitru, C.D.; Neacșu, I.A.; Oprea, O.C.; Motelica, L.; Voicu Balasea, B.; Ilie, C.-I.; Marinescu, F.; Ripszky, A.; Pituru, S.-M.; Andronescu, E. Biomaterials based on bee products and their effectiveness in soft tissue regeneration. Materials 2025, 18, 2689. [Google Scholar] [CrossRef]
- González-Ochoa, G.; Balderrama-Carmona, A.P.; Erro-Carvajal, J.A.; Erro-Carvajal, J.A.; Soñanez-Organis, J.G.; Zamora-Álvarez, L.A.; Umsza Guez, M.A. Antiviral activity of brazilian propolis from stingless bees against rotavirus. Microorganisms 2025, 13, 1424. [Google Scholar] [CrossRef]
- da Paz, M.M.; Sette, K.M.; Dos Santos, R.E.; Barbosa e Vasconcelos, A.L.; da Costa, D.C.F.; Amaral, A.C.F.; Rodrigues, I.A.; Pereira Rangel, L. Brazilian stingless bee geopropolis exhibit antioxidant properties and anticancer potential against hepatocellular carcinoma cells. Antioxidants 2025, 14, 141. [Google Scholar] [CrossRef]
- Peršurić, Ž.; Pavelić, S.K. Bioactives from bee products and accompanying extracellular vesicles as novel bioactive components for wound healing. Molecules 2021, 26, 3770. [Google Scholar] [CrossRef]
- Miguel, M.G.; Figueiredo, A.C. Propolis and geopropolis volatiles. In Bee Products—Chemical and Biological Properties; Alvarez-Suarez, J.M., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 113–136. [Google Scholar]
- Svetikiene, D.; Zamokas, G.; Jokubaite, M.; Marksa, M.; Ivanauskas, L.; Babickaite, L.; Ramanauskiene, K. The comparative study of the antioxidant and antibacterial effects of propolis extracts in veterinary medicine. Vet. Sci. 2024, 11, 375. [Google Scholar] [CrossRef]
- Portal, A.S.; Schiquet, S.; Amaral, P.B.; Krepsky, L.M.; Curban, L.; Rebelo, R.A.; Rau, M.; Althoff, S.L.; Guedes, A.; de Cordova, C.M.M. Composition, antibiofilm, and antibacterial potential of volatile oils from geopropolis of different stingless bees’ species. Chem. Biodivers. 2023, 20, e202300592. [Google Scholar] [CrossRef]
- Roudashti, S.; Zeighami, H.; Mirshahabi, H.; Bahari, S.; Soltani, A.; Haghi, F. Synergistic activity of sub-inhibitory concentrations of curcumin with ceftazidime and ciprofloxacin against Pseudomonas aeruginosa quorum sensing related genes and virulence traits. World J. Microbiol. Biotechnol. 2017, 33, 50. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Z.; Cui, J.; He, Z.; Bahari, S.; Soltani, A.; Haghi, F. Synergistic Effects from Combination of Cryptotanshinone and Fosfomycin Against Fosfomycin-Susceptible and Fosfomycin-Resistant Staphylococcus aureus. Infect. Drug Resist. 2020, 13, 2837–2844. [Google Scholar] [CrossRef] [PubMed]
- Maglennon, G.A.; Cook, B.S.; Deeney, A.S.; Bossé, J.T.; Peters, S.E.; Langford, P.R.; Maskell, D.J.; Tucker, A.W.; Wren, B.W.; Rycroft, A.N.; et al. Transposon mutagenesis in Mycoplasma hyopneumoniae using a novel mariner-based system for generating random mutations. Vet. Res. 2013, 44, 124. [Google Scholar] [CrossRef] [PubMed]
- Piñero-Lambea, C.; Garcia-Ramallo, E.; Martinez, S.; Delgado, J.; Serrano, L.; Lluch-Senar, M. Mycoplasma pneumoniae Genome Editing Based on Oligo Recombineering and Cas9-Mediated Counterselection. ACS Synth. Biol. 2020, 9, 1693–1704. [Google Scholar] [CrossRef]
- Rideau, F.; Le Roy, C.; Sagné, E.; Renaudin, H.; Pereyre, S.; Henrich, B.; Dordet-Frisoni, E.; Citti, C.; Lartigue, C.; Bébéar, C. Random transposon insertion in the Mycoplasma hominis minimal genome. Sci. Rep. 2019, 9, 13554. [Google Scholar] [CrossRef]
- Tseng, C.W.; Kanci, A.; Citti, C.; Rosengarten, R.; Chiu, C.J.; Chen, Z.H.; Geary, S.J.; Browning, G.F.; Markham, P.F. MalF is essential for persistence of Mycoplasma gallisepticum in vivo. Microbiology 2013, 159 Pt 7, 1459–1470. [Google Scholar] [CrossRef]
- Mazzolini, R.; Rodríguez-Arce, I.; Fernández-Barat, L.; Piñero-Lambea, C.; Garrido, V.; Rebollada-Merino, A.; Motos, A.; Torres, A.; Grilló, M.J.; Serrano, L.; et al. Engineered live bacteria suppress Pseudomonas aeruginosa infection in mouse lung and dissolve endotracheal-tube biofilms. Nat. Biotechnol. 2023, 41, 1089–1098. [Google Scholar] [CrossRef]
- Garrido, V.; Piñero-Lambea, C.; Rodriguez-Arce, I.; Paetzold, B.; Ferrar, T.; Weber, M.; Garcia-Ramallo, E.; Gallo, C.; Collantes, M.; Peñuelas, I.; et al. Engineering a genome-reduced bacterium to eliminate Staphylococcus aureus biofilms in vivo. Mol. Syst. Biol. 2021, 17, e10145. [Google Scholar] [CrossRef]
- Alshammari, M.; Ahmad, A.; Alkhulaifi, M.; Al Farraj, D.; Alsudir, S.; Alarawi, M.; Takashi, G.; Alyamani, E. Reduction of biofilm formation of Escherichia coli by targeting quorum sensing and adhesion genes using the CRISPR/Cas9-HDR approach, and its clinical application on urinary catheter. J. Infect. Public Health 2023, 16, 1174–1183. [Google Scholar] [CrossRef]
- Jamal, M.; Ahmad, W.; Andleeb, S.; Jalil, F.; Imran, M.; Nawaz, M.A.; Hussain, T.; Ali, M.; Rafiq, M.; Kamil, M.A. Bacterial biofilm and associated infections. J. Chin. Med. Assoc. JCMA 2018, 81, 7–11. [Google Scholar] [CrossRef]
- Pekmezovic, M.; Mogavero, S.; Naglik, J.R.; Hube, B. Host-Pathogen Interactions during Female Genital Tract Infections. Trends Microbiol. 2019, 27, 982–996. [Google Scholar] [CrossRef]
- Swidsinski, A.; Dörffel, Y.; Loening-Baucke, V.; Schilling, J.; Mendling, W. Response of Gardnerella vaginalis biofilm to 5 days of moxifloxacin treatment. FEMS Immunol. Med. Microbiol. 2011, 61, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Sauer, K.; Stoodley, P.; Goeres, D.M.; Hall-Stoodley, L.; Burmølle, M.; Stewart, P.S.; Bjarnsholt, T. The biofilm life cycle: Expanding the conceptual model of biofilm formation. Nat. Rev. Microbiol. 2022, 20, 608–620. [Google Scholar] [CrossRef]
- Alhede, M.; Kragh, K.N.; Qvortrup, K.; Allesen-Holm, M.; van Gennip, M.; Christensen, L.D.; Jensen, P.Ø.; Nielsen, A.K.; Parsek, M.; Wozniak, D.; et al. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm. PLoS ONE 2011, 6, e27943. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Burgess, A.C.; Cuellar, R.R.; Schwab, N.R.; Balish, M.F. Modelling persistent Mycoplasma pneumoniae biofilm infections in a submerged BEAS-2B bronchial epithelial tissue culture model. J. Med. Microbiol. 2021, 70, 1–10. [Google Scholar] [CrossRef]
- Di Domenico, E.G.; Oliva, A.; Guembe, M. Biofilm-Related Infections in Healthcare: Moving towards New Horizons. Microorganisms 2024, 12, 784. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Lu, D.; Li, M.; Wang, Y. Gene editing tools for mycoplasmas: References and future directions for efficient genome manipulation. Front. Microbiol. 2023, 14, 1191812. [Google Scholar] [CrossRef]
Composition | Functions | References |
---|---|---|
eDNA | Structural component of Mycoplasma biofilms, especially those formed on inanimate surfaces (such as glass) where eDNA is concentrated in the basal layer and functions as an attachment surface to enable microcolony formation and can be used as a nutrient source by some species. For example, when M. bovis is co-cultured with bovine lung cells, eDNA, as a limiting nutrient, can significantly promote its growth and induce a toxic response to bovine lung cells. If eDNA is insufficient, the growth of M. bovis will be limited. | [26,33] |
Exopolysaccharides | Multiple functions, including structural support, antibiotic tolerance, and immune evasion. For example, the biofilm of M. genitalium contains poly-GlcNAc and promotes antibiotic resistance. The dense polymeric network of poly-GlcNAc can act as a physical barrier, impeding the diffusion of antibiotics into the biofilm. Antibiotics with larger molecular sizes or hydrophilic properties may find it particularly difficult to penetrate this barrier. | [29,34,35] |
Protein | Acts as both an adhesion factor and enhances survival and drug resistance. For example, the length of the Vsa protein produced by M. pulmonis regulates the ability of mycoplasma to form biofilms by affecting the physical and chemical properties of the cell surface. The truncated part of the Vsa protein mainly occurs in the tandem repeat region at the C-terminus. This structural change directly affects the cell’s sensitivity to complement and its ability to form biofilms. Cells with short Vsa proteins can form biofilms but are sensitive to complement, while cells with long Vsa proteins are resistant to complement but usually cannot form biofilms. | [30,36,37] |
Lipid | GC-MS (gas chromatography–mass spectrometry) studies have preliminary evidence for the presence of lipids in M. genitalium biofilms, but this was not further explored. | [29] |
H2O | The largest component in EPS that can maintain moisture in the biofilm and protect cells from desiccation. | [31] |
Type | Species | Verified Formation Sites |
---|---|---|
Human-derived | Mycoplasma pneumoniae | abiotic surfaces of either glass or polystyrene [41,42] |
Ureaplasma urealyticum | abiotic surface [43] | |
Ureaplasma parvum | abiotic surface [43] | |
Mycoplasma hominis | amniotic fluid sludge [44] | |
Mycoplasma genitalium | polystyrene [29] | |
Mycoplasma salivarium | an occluded biliary [45] | |
Animal-derived | Mycoplasma synoviae | abiotic surface [46] |
Mycoplasma gallisepticum | polystyrene [47] | |
Mycoplasma anserisalpingitidis | abiotic surface [32] | |
Mycoplasma hyopneumoniae | abiotic surface [26] | |
Mycoplasma suis | aortic vessel [48] | |
Mycoplasma bovis | abiotic surface [31] | |
Mycoplasma putrefaciens | abiotic surface [31] | |
Mycoplasma yeatsii | abiotic surface [31] | |
Mycoplasma agalactiae | abiotic surface [31] | |
Mycoplasma cotewii | abiotic surface [31] | |
Mycoplasma pulmonis | mouse tracheal epithelium [49] | |
Mycoplasma meleagridis | abiotic surface [50] | |
Mycoplasma dispar | abiotic surface [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Deng, B.; Li, W.; Qi, J.; Li, Y.; Wang, X.; Li, M.; Yang, H.; Zhang, N. Mycoplasma Biofilms: Characteristics and Control Strategies. Microorganisms 2025, 13, 1850. https://doi.org/10.3390/microorganisms13081850
Liang J, Deng B, Li W, Qi J, Li Y, Wang X, Li M, Yang H, Zhang N. Mycoplasma Biofilms: Characteristics and Control Strategies. Microorganisms. 2025; 13(8):1850. https://doi.org/10.3390/microorganisms13081850
Chicago/Turabian StyleLiang, Jingyi, Baoyi Deng, Weihuo Li, Jingjing Qi, Yangshuo Li, Xueyan Wang, Ming Li, Hong Yang, and Nan Zhang. 2025. "Mycoplasma Biofilms: Characteristics and Control Strategies" Microorganisms 13, no. 8: 1850. https://doi.org/10.3390/microorganisms13081850
APA StyleLiang, J., Deng, B., Li, W., Qi, J., Li, Y., Wang, X., Li, M., Yang, H., & Zhang, N. (2025). Mycoplasma Biofilms: Characteristics and Control Strategies. Microorganisms, 13(8), 1850. https://doi.org/10.3390/microorganisms13081850