Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (737)

Search Parameters:
Keywords = polluted streams

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 567 KB  
Article
Wastewater Management in Swimming Pools: A Circular Economy Approach
by Anna Mika, Joanna Wyczarska-Kokot and Anna Lempart-Rapacewicz
Appl. Sci. 2025, 15(17), 9609; https://doi.org/10.3390/app15179609 - 31 Aug 2025
Viewed by 236
Abstract
Water is a vital resource for sustaining life; however, it is increasingly at risk due to escalating demand and heightened pollution levels. Swimming pool facilities generate diverse wastewater streams whose management offers opportunities for water recovery within a circular economy framework. The quantitative [...] Read more.
Water is a vital resource for sustaining life; however, it is increasingly at risk due to escalating demand and heightened pollution levels. Swimming pool facilities generate diverse wastewater streams whose management offers opportunities for water recovery within a circular economy framework. The quantitative and qualitative analysis of research identifies five primary categories of wastewater: swimming pool basin outflow, filter washings, rainwater and meltwater, sanitary wastewater, and technological sludge, at a public swimming pool complex in Poland. Annual volumes were determined through direct measurements and calculations: pool basin outflow—2829.7 m3/year; filter washings—7179.2 m3/year; rainwater and meltwater—1172.6 m3/year; sanitary wastewater—5849.3 m3/year; and technological sludge—90.1 m3/year. Laboratory testing included physicochemical parameters (pH, redox potential, conductivity, COD, BOD, nutrients, heavy metals) and microbiological parameters (Escherichia coli, Pseudomonas aeruginosa, Legionella spp., Salmonella spp., Ascaris sp., Trichuris sp., Toxocara sp., Coagulase-positive Staphylococcus). The results showed that the filter washings, despite exceeding the limits for total suspended solids and combined chlorine, exhibited stable quality and significant volume, making them the most promising candidate for reuse after treatment. Rainwater quality was compromised by elevated heavy metal concentrations (Zn: 244.67 mg/L, Pb: 92.33 mg/L), while technological sludge exceeded the legal pollutant thresholds, classifying it as hazardous waste. The experimental conditions included year-round monitoring of operational flows, standardised backwash cycles every three days, and sampling under routine operational load. The findings support the development of targeted treatment systems that allow the recirculation of up to 7000 m3/year of water, thus reducing the demand for potable water and operational costs in swimming pool facilities. Full article
Show Figures

Figure 1

42 pages, 3191 KB  
Systematic Review
Hydrogen Production from Biowaste: A Systematic Review of Conversion Technologies, Environmental Impacts, and Future Perspectives
by Mamo Abawalo, Krzysztof Pikoń, Marcin Landrat and Waldemar Ścierski
Energies 2025, 18(17), 4520; https://doi.org/10.3390/en18174520 - 26 Aug 2025
Viewed by 684
Abstract
The escalating climate crisis and unsustainable waste management practices necessitate integrated approaches that simultaneously address energy security and environmental degradation. Hydrogen, with its high energy density and zero-carbon combustion, is a key vector for decarbonization; however, conventional production methods are fossil-dependent and carbon-intensive. [...] Read more.
The escalating climate crisis and unsustainable waste management practices necessitate integrated approaches that simultaneously address energy security and environmental degradation. Hydrogen, with its high energy density and zero-carbon combustion, is a key vector for decarbonization; however, conventional production methods are fossil-dependent and carbon-intensive. This systematic review explores biowaste-to-hydrogen (WtH) technologies as dual-purpose solutions, converting organic waste to clean hydrogen while reducing greenhouse gas emissions and landfill reliance. A comprehensive analysis of different conversion pathways, including thermochemical (gasification, pyrolysis, hydrothermal, and partial oxidation (POX)), biochemical (dark fermentation, photofermentation, and sequential fermentation), and electrochemical methods (MECs), is presented, assessing their hydrogen yields, feedstock compatibilities, environmental impacts, and technological readiness. Systematic literature review methods were employed using databases, such as Scopus and Web of Science, with strict inclusion criteria focused on recent peer-reviewed studies. This review highlights hydrothermal gasification and dark fermentation as particularly promising for wet biowaste streams, like food waste. Comparative environmental analyses reveal that bio-based hydrogen pathways offer significantly lower greenhouse gas emissions, energy use, and pollutant outputs than conventional methods. Future research directions emphasize process integration, catalyst development, and lifecycle assessment. The findings aim to inform technology selection, policymaking, and strategic investment in circular, low-carbon hydrogen production. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

21 pages, 3721 KB  
Article
Water Quality Evaluation and Countermeasures of Pollution in Wan’an Reservoir Using Fuzzy Comprehensive Evaluation Model
by Gaoqi Duan, Li Peng, Chunrong Wang and Qiongqiong Lu
Toxics 2025, 13(9), 712; https://doi.org/10.3390/toxics13090712 - 23 Aug 2025
Viewed by 439
Abstract
Water quality evaluation is a crucial component of water source management and pollution prevention, essential for achieving regional water safety and sustainable development. The spatial distribution and trends of major water pollutants in Wan’an Reservoir were analyzed. Subsequently, a fuzzy membership model was [...] Read more.
Water quality evaluation is a crucial component of water source management and pollution prevention, essential for achieving regional water safety and sustainable development. The spatial distribution and trends of major water pollutants in Wan’an Reservoir were analyzed. Subsequently, a fuzzy membership model was employed to develop a comprehensive water quality evaluation method. This approach assessed spatial variations in water quality across the upper, middle, and lower reaches of the reservoir, identifying key factors influencing water quality. The results indicate that water quality in Wan’an Reservoir, primarily characterized by total nitrogen, was poor. Notably, 50% of the sampling points in the main stream were identified as highly polluted, with the highest exceedance rate observed in the middle reaches of the tributaries. Sampling points classified as Class I were predominantly located in the upper reaches, where water quality benefitted from clean incoming water and minimal disturbance. In contrast, the lower reaches experienced more severe pollution due to the cumulative effects of domestic sewage, industrial wastewater, and agricultural runoff. These findings are crucial for developing effective water environmental protection strategies and promoting the sustainable utilization and protection of water resources. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Graphical abstract

38 pages, 3980 KB  
Review
Current State of Research on the Three-Dimensional Particle Electrode System for Treating Organic Pollutants from Wastewater Streams: Particle Electrode, Degradation Mechanism, and Synergy Effects
by Guene L. Razack, Jiayi Wang, Xian Zhao, Worou Chabi Noel, Hanjun Sun, Jiwei Pang, Jie Ding, Wenshuo Wang, Xiaoyin Yang, Chenhao Cui, Yani Zang, Yuqian Wang, Geng Luo, Nanqi Ren and Shanshan Yang
Water 2025, 17(16), 2490; https://doi.org/10.3390/w17162490 - 21 Aug 2025
Viewed by 564
Abstract
As the demand for effective wastewater treatment continues to rise, the application of three-dimensional (3D) electrochemical particle electrodes for the removal of organic compounds from industrial wastewater has emerged as a promising solution. This approach offers significant advantages, including high treatment efficiency, operational [...] Read more.
As the demand for effective wastewater treatment continues to rise, the application of three-dimensional (3D) electrochemical particle electrodes for the removal of organic compounds from industrial wastewater has emerged as a promising solution. This approach offers significant advantages, including high treatment efficiency, operational flexibility, high current efficiency, low energy consumption, and the ability to degrade non-biodegradable organic pollutants, ultimately mineralizing them. This review provides a comprehensive and systematic exploration of the research and development of particle electrodes for use in 3D electrochemical reactors in wastewater treatment. The pivotal role of particle electrodes in removing organic contaminants from wastewater was highlighted, with most materials used as particle electrodes characterized by a specific surface area and well-defined porous structure, both of which were thoroughly discussed. Through the synergistic mechanism of adsorption, the particle electrode aids in the breakdown of organic contaminants, demonstrating the 3D particle electrode’s effectiveness in facilitating multiple oxidation mechanisms for organic wastewater treatment. Furthermore, this review categorized various particle electrode types used in 3D electrochemical wastewater treatment based on their primary components or carriers and the presence or absence of catalysts. Finally, the current status and prospects for the development and enhancement of 3D electrode particles were presented. This review offers valuable insights into the application of the 3D electrode process for environmental water treatment. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Graphical abstract

22 pages, 4376 KB  
Article
Spatio-Temporal Heterogeneity-Oriented Graph Convolutional Network for Urban Traffic Flow Prediction
by Xuan Li, Muyang He, Dong Qin, Tianqing Zhou and Nan Jiang
Sensors 2025, 25(16), 5127; https://doi.org/10.3390/s25165127 - 18 Aug 2025
Viewed by 596
Abstract
In the realm of urban vehicular ad hoc networks (VANETs), cross-domain data has constituted a multifaceted amalgamation of information sources, which significantly enhances the accuracy and response speed of traffic prediction. However, the interplay between spatial and temporal heterogeneity will complicate the complexity [...] Read more.
In the realm of urban vehicular ad hoc networks (VANETs), cross-domain data has constituted a multifaceted amalgamation of information sources, which significantly enhances the accuracy and response speed of traffic prediction. However, the interplay between spatial and temporal heterogeneity will complicate the complexity of geographical locations or physical connections in the data normalization. Besides, the traffic pattern differences incurred by dynamic external factors also bring cumulative and sensitive impacts during the construction of the prediction model. In this work, we propose the spatio-temporal heterogeneity-oriented graph convolutional network (SHGCN) to tackle the above challenges. First, the SHGCN analytically employs spatial heterogeneity between urban streets rather than simple adjacency relationships to reveal the spatio-temporal correlations of traffic stream movement. Then, the air quality data is taken as external factors to identify the traffic forecasting trend at the street level. The hybrid model of the graph convolutional network (GCN) and gated recurrent unit (GRU) is designed to investigate cross-correlation characteristics. Finally, with the real-world urban datasets, experimental results demonstrate that the SHGCN achieves improvements, with the RMSE and MAE reductions ranging from 2.91% to 41.26% compared to baseline models. Ablation studies confirm that integrating air quality factors with traffic patterns enhances prediction performance at varying degrees, validating the method’s effectiveness in capturing the complex correlations among air pollutants, traffic flow dynamics, and road network topology. Full article
Show Figures

Figure 1

19 pages, 3264 KB  
Article
Urban Geochemical Contamination of Highland Peat Wetlands of Very High Ecological and First Nations Cultural Value
by Ian A. Wright, Holly Nettle, Uncle David King, Michael J. M. Franklin and Amy-Marie Gilpin
Water 2025, 17(16), 2385; https://doi.org/10.3390/w17162385 - 12 Aug 2025
Viewed by 693
Abstract
Temperate Highland Peat Swamps on Sandstone (THPSS) are wetlands in the Blue Mountains, south-eastern Australia. The wetlands have legislative protection as endangered ecological communities. They have long-standing cultural significance for Gundungurra Traditional Custodians. Previous studies document their degradation by urban development and [...] Read more.
Temperate Highland Peat Swamps on Sandstone (THPSS) are wetlands in the Blue Mountains, south-eastern Australia. The wetlands have legislative protection as endangered ecological communities. They have long-standing cultural significance for Gundungurra Traditional Custodians. Previous studies document their degradation by urban development and vulnerability to extreme weather. Water quality in our study was assessed at wetlands in protected areas and compared with others exposed to urban development. We derived water quality guidelines that are intended to help future water quality assessment at THPSS and, in particular, to detect any impact from urban development on these wetland systems. Water quality in urban swamps was consistent with the freshwater salinisation syndrome despite all the swamps having relatively low electrical conductance (<140 µS cm−1). Urban swamp water had salinity (mean 87.3 µS cm−1) three times that of non-urban swamps (mean 28 µS cm−1). The ionic composition of urban swamp water was dominated by calcium and bicarbonate, consistent with urban alkalisation syndrome. Our guidelines instead recommend limits for pH, salinity, turbidity, dissolved oxygen, and metals detected in greater concentrations that were found in urban swamps (iron, manganese, barium, and strontium). Our results support the theory that the dissolution of urban concrete materials is a degradation process that contributes to the impairment of urban swamp water quality. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

41 pages, 2516 KB  
Review
Emerging Contaminants: A Rising Threat to Urban Water and a Barrier to Achieving SDG-Aligned Planetary Protection
by Govindhasamay R. Varatharajan, Jean Claude Ndayishimiye and Pascaline Nyirabuhoro
Water 2025, 17(16), 2367; https://doi.org/10.3390/w17162367 - 9 Aug 2025
Viewed by 906
Abstract
Urban water, defined as water not used for agriculture or to support natural ecosystems, is increasingly impacted by anthropogenic pollution. Among the key concerns are emerging contaminants (ECs), a diverse group of largely unregulated chemical compounds that pose growing threats to both water [...] Read more.
Urban water, defined as water not used for agriculture or to support natural ecosystems, is increasingly impacted by anthropogenic pollution. Among the key concerns are emerging contaminants (ECs), a diverse group of largely unregulated chemical compounds that pose growing threats to both water and the life it supports. This review critically examines the challenges associated with the presence of ECs in urban water through two complementary approaches that together offer both scientific and policy-oriented insights. The first approach focuses on evaluating the difficulties in classifying, characterizing, detecting, monitoring, enforcing policies, and assessing the risks of ECs. The second approach focuses on assessing whether current efforts in research, public awareness, regulation, treatment, recycling, and international collaboration align with the United Nations Sustainable Development Goals (SDGs), particularly SDG 6 (clean water and sanitation), SDG 11 (sustainable cities and communities), and SDG 12 (responsible consumption and production). Current efforts to address the challenges posed by ECs and to achieve SDG targets remain insufficient, particularly in the areas of treatment and recycling. Globally, only 56% of household wastewater is treated safely, and industrial wastewater treatment in low-income countries remains severely lacking, with coverage under 30%. Globally, the effective management of ECs is hindered by outdated and inadequate treatment infrastructure, low recycling rates, and the technical complexity of handling multi-contaminant waste streams. In developing regions, these challenges are compounded by weak regulatory enforcement and limited public awareness. To effectively address ECs in urban water and fully meet the SDG targets, more integrated and globally coordinated efforts are necessary. Full article
Show Figures

Graphical abstract

22 pages, 2004 KB  
Article
Environmental Sustainability Assessment of a Filtration–Diafiltration Strategy for Recovering Savory Compounds from Mussel Cooking Water
by Erasmo Cadena, Jo Dewulf, David San Martin, Jone Ibarruri, Bruno Iñarra and Monica Gutierrez
Membranes 2025, 15(8), 242; https://doi.org/10.3390/membranes15080242 - 8 Aug 2025
Viewed by 416
Abstract
Global seafood production and consumption have increased in recent years, leading to a significant rise in side streams. Process waters are often disposed as wastewater, causing difficulties for industries in meeting the discharge standards. This is particularly relevant to the mussel processing industry, [...] Read more.
Global seafood production and consumption have increased in recent years, leading to a significant rise in side streams. Process waters are often disposed as wastewater, causing difficulties for industries in meeting the discharge standards. This is particularly relevant to the mussel processing industry, where one-third of the raw material ends up as high-organic content effluent. This study aims to optimize a nanofiltration–diafiltration (NF–DF) strategy to recover valuable savory compounds from mussel cooking water, to reduce the effluent organic pollution, and to evaluate its environmental sustainability using Life Cycle Assessment. Pilot trials lead to a configuration, combining a volumetric concentration factor of 10 in NF and 20 in DF, which achieved enhanced protein concentration (1.5-fold), amino acid concentration (5.2-fold), and COD removal (98.2%). The environmental assessment highlighted electricity consumption during NF and DF as the primary environmental hotspot, resulting in a carbon footprint of 0.12 kg CO2 eq. kg−1 of savory compounds and water use of 0.65 m3 deprived kg−1. Prospective scenarios projected that ongoing energy system transitions could significantly reduce climate change and acidification impacts by over 75% by 2050. The proposed NF–DF strategy enhances resource efficiency and sustainability in seafood processing by recovering high-value compounds and facilitating water reuse. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

28 pages, 1806 KB  
Systematic Review
Systemic Review and Meta-Analysis: The Application of AI-Powered Drone Technology with Computer Vision and Deep Learning Networks in Waste Management
by Tyrone Bright, Sarp Adali and Cristina Trois
Drones 2025, 9(8), 550; https://doi.org/10.3390/drones9080550 - 5 Aug 2025
Viewed by 639
Abstract
As the generation of Municipal Solid Waste (MSW) has exponentially increased, this poses a challenge for waste managers, such as municipalities, to effectively control waste streams. If waste streams are not managed correctly, they negatively contribute to climate change, marine plastic pollution and [...] Read more.
As the generation of Municipal Solid Waste (MSW) has exponentially increased, this poses a challenge for waste managers, such as municipalities, to effectively control waste streams. If waste streams are not managed correctly, they negatively contribute to climate change, marine plastic pollution and human health effects. Therefore, waste streams need to be identified, categorised and valorised to ensure that the most effective waste management strategy is employed. Research suggests that a more efficient process of identifying and categorising waste at the source can achieve this. Therefore, the aim of the paper is to identify the state of research of AI-powered drones in identifying and categorising waste. This paper will conduct a systematic review and meta-analysis on the application of drone technology integrated with image sensing technology and deep learning methods for waste management. Different systems are explored, and a quantitative meta-analysis of their performance metrics (such as the F1 score) is conducted to determine the best integration of technology. Therefore, the research proposes designing and developing a hybrid deep learning model with integrated architecture (YOLO-Transformer model) that can capture Multispectral imagery data from drones for waste stream identification, categorisation and potential valorisation for waste managers in small-scale environments. Full article
Show Figures

Figure 1

25 pages, 2973 KB  
Article
Application of a DPSIR-Based Causal Framework for Sustainable Urban Riparian Forests: Insights from Text Mining and a Case Study in Seoul
by Taeheon Choi, Sangin Park and Joonsoon Kim
Forests 2025, 16(8), 1276; https://doi.org/10.3390/f16081276 - 4 Aug 2025
Viewed by 482
Abstract
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and [...] Read more.
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and sentence classification to 1001 abstracts from previous studies, structured within the DPSIR (Driver–Pressure–State–Impact–Response) model. The analysis identified six dominant thematic clusters—water quality, ecosystem services, basin and land use management, climate-related stressors, anthropogenic impacts, and greenhouse gas emissions—which reflect the multifaceted concerns surrounding urban riparian forest research. These themes were synthesized into a structured causal model that illustrates how urbanization, land use, and pollution contribute to ecological degradation, while also suggesting potential restoration pathways. To validate its applicability, the framework was applied to four major urban streams in Seoul, where indicator-based analysis and correlation mapping revealed meaningful linkages among urban drivers, biodiversity, air quality, and civic engagement. Ultimately, by integrating large-scale text mining with causal inference modeling, this study offers a transferable approach to support adaptive planning and evidence-based decision-making under the uncertainties posed by climate change. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

17 pages, 3269 KB  
Article
Microwave-Assisted Degradation of Azo Dyes Using NiO Catalysts
by Celinia de Carvalho Chan, Lamiaa F. Alsalem, Mshaal Almalki, Irina Bozhinovska, James S. Hayward, Stephen S. N. Williams and Jonathan K. Bartley
Catalysts 2025, 15(8), 702; https://doi.org/10.3390/catal15080702 - 24 Jul 2025
Cited by 1 | Viewed by 621
Abstract
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low [...] Read more.
Catalysts are ubiquitous in manufacturing industries and gas phase pollutant abatement but are not widely used in wastewater treatment, as high temperatures and concentrated waste streams are needed to achieve the reaction degradation rates required. Heating water is energy intensive, and alternative, low temperature solutions have been investigated, collectively known as advanced oxidation processes. However, many of these advanced oxidation processes use expensive oxidants such as perchlorate, hydroxy radicals or ozone to react with contaminants, and therefore have high running costs. This study has investigated microwave catalysis as a low-energy, low-cost technology for water treatment using NiO catalysts that can be heated in the microwave field to drive the decomposition of azo-dye contaminants. Using this methodology for the microwave-assisted degradation of two azo dyes (azorubine and methyl orange), conversions of >95% were achieved in only 10 s with 100 W microwave power. Full article
Show Figures

Graphical abstract

17 pages, 796 KB  
Article
From Waste to Energy: Cooking Oil Recycling for Biodiesel in Barranquilla, Colombia
by Marylin Santander-Bossio, Jorge Silva-Ortega, Ruben Cantero-Rodelo, Prince Torres-Salazar, Juan Rivera-Alvarado, Christian Moreno-Rocha and Celene Milánes-Batista
Sustainability 2025, 17(14), 6560; https://doi.org/10.3390/su17146560 - 18 Jul 2025
Viewed by 893
Abstract
The environmental impact of first-generation biodiesel production, particularly deforestation and soil degradation caused by palm and soybean cultivation, has raised concerns about sustainability. In contrast, second-generation biodiesel utilizes waste as feedstock, offering a more sustainable alternative. Used cooking oil (UCO), a significant waste [...] Read more.
The environmental impact of first-generation biodiesel production, particularly deforestation and soil degradation caused by palm and soybean cultivation, has raised concerns about sustainability. In contrast, second-generation biodiesel utilizes waste as feedstock, offering a more sustainable alternative. Used cooking oil (UCO), a significant waste stream, represents a viable feedstock for biodiesel production, reducing pollution and mitigating economic, environmental, and social challenges. While Europe has demonstrated successful UCO waste management strategies, many regions lack efficient systems, leading to improper disposal that causes water eutrophication, soil degradation, and increased wastewater treatment costs. This study develops a comprehensive strategy for UCO management to optimize its energy potential in biodiesel production, using Barranquilla, Colombia, as a case study. Transesterification, identified as the most efficient conversion method, achieves conversion rates of up to 90%. A pilot project in the Barranquilla area estimates that 963,070.95 kg of UCO is generated annually, with the potential to produce 902,108.56 kg of biodiesel. These findings contribute to the advancement of circular economy principles, offering an adaptable framework for sustainable biofuel production in other regions. Full article
(This article belongs to the Special Issue Sustainable Strategies for Food Waste Utilization)
Show Figures

Figure 1

19 pages, 2481 KB  
Article
Assessment of Water Quality in the Tributaries of the Rega River (Northwestern Poland) as a Fish Habitat
by Małgorzata Bonisławska, Arkadiusz Nędzarek, Adam Tański, Agnieszka Tórz and Krzysztof Formicki
Appl. Sci. 2025, 15(14), 7846; https://doi.org/10.3390/app15147846 - 14 Jul 2025
Viewed by 522
Abstract
The effective assessment and improvement of water quality require analysis not only of the main river flowing into the sea but also of its tributaries, which may contribute to significant pollution. This study aimed to evaluate the physicochemical conditions of water in nine [...] Read more.
The effective assessment and improvement of water quality require analysis not only of the main river flowing into the sea but also of its tributaries, which may contribute to significant pollution. This study aimed to evaluate the physicochemical conditions of water in nine streams flowing into the Rega River between 2018 and 2022. It also sought to determine whether the water quality in these tributaries meets the standards defined by EU regulations for inland waters that serve as habitats for fish. The parameters analyzed included water temperature, dissolved oxygen (DO), pH, total suspended solids (TSSs), electrical conductivity (EC), alkalinity, total hardness (TH), biochemical oxygen demand (BOD5), nitrite nitrogen (NO2-N), ammonium nitrogen (NH4+-N), and total phosphorus (TP). The results indicated that most indicators met the requirements for waters suitable for salmonid species. Elevated concentrations of NO2-N observed across all sites were still within acceptable limits for cyprinid species. Among the parameters studied, TSSs was identified as the main factor that downgraded water quality over the study period. Principal component analysis (PCA) showed that the dominant variables influencing water chemistry were NH4+-N, NO2-N, TP, EC, and chloride (Cl), all of which are associated with anthropogenic sources. Full article
Show Figures

Figure 1

21 pages, 8512 KB  
Article
Geogenic and Anthropogenic Origins of Mercury and Other Potentially Toxic Elements in the Ponce Enriquez Artisanal and Small-Scale Gold Mining District, Southern Ecuador
by Silvia Fornasaro, Paolo Fulignati, Anna Gioncada, Daniel Garces and Maurizio Mulas
Minerals 2025, 15(7), 725; https://doi.org/10.3390/min15070725 - 11 Jul 2025
Viewed by 733
Abstract
Artisanal and small-scale gold mining (ASGM) poses significant environmental challenges globally, particularly due to mercury (Hg) use. As an example, in Ecuador, Hg use still persists, despite its official ban in 2015. This study investigated the geogenic and anthropogenic contributions of potentially toxic [...] Read more.
Artisanal and small-scale gold mining (ASGM) poses significant environmental challenges globally, particularly due to mercury (Hg) use. As an example, in Ecuador, Hg use still persists, despite its official ban in 2015. This study investigated the geogenic and anthropogenic contributions of potentially toxic elements (PTEs) in the Ponce Enriquez Mining District (PEMD), a region characterized by hydrothermally altered basaltic bedrock and Au-mineralized quartz veins. To assess local baseline values and identify PTE-bearing minerals, a comprehensive geochemical, mineralogical, and petrographic analysis was conducted on bedrock and mineralized veins. These findings reveal distinct origins for the studied PTEs, which include Hg, As, Cu, Ni, Cr, Co, Sb, Zn, and V. Specifically, Hg concentrations in stream sediments downstream (up to 50 ppm) far exceed natural bedrock levels (0.03–0.707 ppm), unequivocally indicating significant anthropogenic input from gold amalgamation. Furthermore, copper shows elevated concentration primarily linked to gold extraction. Conversely, other elements like As, Ni, Cr, Co, Sb, Zn, and V are primarily exhibited to be naturally abundant in basalts due to the presence of primary mafic minerals and to hydrothermal alterations, with elevated concentrations particularly seen in sulfides like pyrite and arsenopyrite. To distinguish natural geochemical anomalies from mining-related contamination, especially in volcanic terrains, this study utilizes Upper Continental Crust (UCC) normalization and local bedrock baselines. This multi-faceted approach effectively helped to differentiate basalt subgroups and assess natural concentrations, thereby avoiding misinterpretations of naturally elevated element concentrations as mining-related pollution. Crucially, this work establishes a robust local geochemical baseline for the PEMD area, providing a critical framework for accurate environmental risk assessments and sustainable mineral resource management, and informing national environmental quality standards and remediation efforts in Ecuador. It underscores the necessity of evaluating local geology, including inherent mineralization, when defining environmental baselines and understanding the fate of PTEs in mining-impacted environments. Full article
Show Figures

Figure 1

20 pages, 9084 KB  
Article
Geochemical Assessment of Potentially Toxic Elements in Urban Stream Sediments Draining into the Keban Dam Lake, Turkey
by Hatice Kara
Appl. Sci. 2025, 15(13), 7565; https://doi.org/10.3390/app15137565 - 5 Jul 2025
Viewed by 301
Abstract
The present study investigates the extent and spatial distribution of metal concentration in stream sediments that flow into Keban Dam Lake, Turkey. Sediment samples were analysed for trace and potentially toxic elements (PTEs), including V, Cr, Co, Ni, Cu, Zn, Pb, Tl, Th, [...] Read more.
The present study investigates the extent and spatial distribution of metal concentration in stream sediments that flow into Keban Dam Lake, Turkey. Sediment samples were analysed for trace and potentially toxic elements (PTEs), including V, Cr, Co, Ni, Cu, Zn, Pb, Tl, Th, and U. Enrichment Factor (EF), Contamination Factor (CF), Geo-accumulation Index (Igeo), and Pollution Load Index (PLI) were employed to assess contamination levels. Results reveal that Cr exhibited very high enrichment (EF = 15.95) in downstream urban samples, while Cu and Zn showed high enrichment in samples collected from the middle to lower reaches of the stream, probably indicating anthropogenic contributions. Most other elements, such as Pb, Tl, Th, and U, were within natural background levels. Sediment Quality Guidelines (SQGs) indicate that Cr, Ni, and Cu may pose potential ecological risks, especially in samples from urban-influenced and downstream areas where concentrations exceed the Probable Effect Levels (PEL; Cr: 160 mg/kg, Ni: 42.8 mg/kg, Cu: 108 mg/kg). Multivariate statistical analyses, including Pearson correlation and hierarchical clustering, reveal three distinct geochemical groupings. Among these, the most contaminated cluster—corresponding to midstream and downstream regions—is characterized by elevated Cu and Zn concentrations. Strong correlations among Cu–Zn, Ni–Cu, and Th–U suggest there is a combination of anthropogenic and lithogenic sources for most metals. While most sites showed low to moderate pollution, urban downstream locations exhibited significant metal accumulation, necessitating the region’s continued environmental monitoring and management strategies. Full article
(This article belongs to the Special Issue Ecotoxicology of Trace Elements on Ecosystems)
Show Figures

Figure 1

Back to TopTop