Wastewater Management in Swimming Pools: A Circular Economy Approach
Abstract
1. Introduction
- Outflow from the pool basin—this category encompasses wastewater that is discharged during the comprehensive drainage of the pool, which typically occurs once or several times annually, depending on the specific category of the pool; this category also includes the water that users splash onto, which subsequently enters the wastewater system through inlets that are placed on the pool deck.
- Filter washings—this type of wastewater is produced by the cleaning processes applied to the filter beds utilised in the swimming pool water treatment systems.
- Rainwater and meltwater—this category refers to water derived from the drainage of rooftops and impervious surfaces associated with the facility.
- Sanitary wastewater—generated from the usage of sanitary facilities, showers, changing rooms, staff quarters, and technical rooms.
- Technological sludge—produced through the sedimentation process and collected in designated sludge tanks.
2. Characteristics of the Facility
- A main lobby that serves as the representative entrance area.
- A swimming hall featuring four reinforced concrete pool basins:
- SP—a sports pool measuring 25.00 × 14.25 m, equipped with seven swimming lanes.
- RP—a training pool for swimming lessons with a water surface area of 75.00 m2 and dimensions of 10.00 × 7.50 m, and a children’s wading pool with water attractions, covering a surface area of 21.21 m2.
- WT—a whirlpool tube, accommodating up to 12 persons.
3. Materials and Methods
3.1. Quantitative Analysis of Wastewater Streams
3.1.1. Outflow from the Swimming Pool Basin
3.1.2. Filter Washings
3.1.3. Rainwater and Meltwater
- qmax—maximum unit rainfall intensity for a duration equal to the flow time in the channel, with a frequency of occurrence “C”, L/s·ha (frequency assumed C = 5 years)
- ψs—peak maximum coefficient of rainwater runoff (from the roof surface assumed ψs = 1.0)
- Fr—rainwater catchment area, ha
3.1.4. Sanitary Wastewater
- K—characteristic runoff, depending on the purpose of the building, K = 0.7 (-)
- DU—drainage unit (L/s)
3.1.5. Technological Sludge
3.2. Qualitative Analysis of Wastewater Samples—Laboratory Testing
3.2.1. Range of Analytical Determinations for the Outflow from the Swimming Pool Basin
3.2.2. Range of Analytical Determinations for the Filter Washings
3.2.3. Range of Analytical Determinations for the Rainwater and Meltwater
3.2.4. Range of Analytical Determinations for the Sanitary Wastewater
3.2.5. Range of Analytical Determinations for the Technological Sludge
4. Results
4.1. Quantitative Analysis of Wastewater Streams
4.1.1. Outflow from the Swimming Pool Basin
4.1.2. Filter Washings
4.1.3. Rainwater and Meltwater
4.1.4. Sanitary Wastewater
4.1.5. Technological Sludge
4.2. Qualitative Analysis of Wastewater Samples—Laboratory Tests
5. Discussion
5.1. Quantitative Analysis of Wastewater Streams
5.2. Qualitative Analysis of Wastewater Samples—Laboratory Tests
6. Conclusions
- Outflow from the swimming pool basin
- Filter washings
- Rainwater and meltwater
- Sanitary wastewater
- Technological Sludge
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nika, C.E.; Vasilaki, V.; Expósito, A.; Katsou, E. Water Cycle and Circular Economy: Developing a Circularity Assessment Framework for Complex Water Systems. Water Res. 2020, 187, 116423. [Google Scholar] [CrossRef] [PubMed]
- Smol, M.; Adam, C.; Preisner, M. Circular economy model framework in the European water and wastewater sector. J. Mater. Cycles Waste Manag. 2020, 22, 682–697. [Google Scholar] [CrossRef]
- Fernandes, E.; Cunha Marques, R. Review of Water Reuse from a Circular Economy Perspective. Water 2023, 15, 848. [Google Scholar] [CrossRef]
- Imbert, E.; Ladu, L.; Tani, A.; Morone, P. The transition towards a bio-based economy: A comparative study based on social network analysis. J. Environ. Manag. 2019, 230, 255–265. [Google Scholar] [CrossRef]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. 2020. Available online: http://data.europa.eu/eli/dir/2000/60/oj (accessed on 10 June 2025).
- Zawadzki, P.; Wiesner-Sękala, M. Advanced wastewater reclamation—A response of the municipal sector to climate change and water scarcity. Instal 2024, 12, 65–74. [Google Scholar] [CrossRef]
- Wolska, M.; Urbańska-Kozłowska, H. Assessing the Possibilities of Backwash Water Reuse Filters in the Water Treatment System—Case Analysis. Water 2023, 15, 2452. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Kielik, M. The State of Water and Sewage Management in Poland. In Quality of Water Resources in Poland; Springer: Cham, Switzerland, 2021; pp. 375–397. [Google Scholar] [CrossRef]
- Kubiak-Wójcicka, K.; Domszy, D.; Machula, S. Best Practices in Wastewater Management in Poland with Particular Emphasis on Swimming Pool Waters. In Cost-Efficient Wastewater Treatment Technologies: Engineered Systems; Springer: Cham, Switzerland, 2022; pp. 485–504. [Google Scholar] [CrossRef]
- Piazza, S.; Sambito, M.; Maglia, N.; Puoti, F.; Raimondi, A. Enhancing urban water resilience through stormwater reuse for toilet flushing. Sustain. Cities Soc. 2025, 119, 106074. [Google Scholar] [CrossRef]
- Directive EU, Directive (EU) 2024/3019 of the European Parliament and of the Council of 27 November 2024 Concerning Urban Wastewater Treatment. 2024. Available online: http://data.europa.eu/eli/dir/2024/3019/oj (accessed on 10 June 2025).
- United Nations Environment Programme. Guidelines for the Safe Use of Wastewater, Excreta and Greywater; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- United States Environmental Protection Agency (EPA). National Pollutant Discharge Elimination System (NPDES) Permit Program; EPA: Washington, DC, USA, 2025. [Google Scholar]
- Environment Protection Authority Victoria. Guidelines for Onsite Wastewater Management; EPA Publication 891.4; EPA Victoria: Melbourne, Australia, 2024. [Google Scholar]
- Doménech-Sánchez, A.; Laso, E.; Berrocal, C.I. Water loss in swimming pool filter backwashing processes in the Balearic Islands (Spain). Water Policy 2021, 23, 1314–1328. [Google Scholar] [CrossRef]
- Reißmann, F.G.; Schulze, E.; Albrecht, V. Application of a combined UF/RO system for the reuse of filter backwash water from treated swimming pool water. Desalination 2005, 178, 41–49. [Google Scholar] [CrossRef]
- Alhussaini, M.A.; Binger, Z.M.; Souza-Chaves, B.M.; Amusat, O.O.; Park, J.; Bartholomew, T.V.; Gunter, D.; Achilli, A. Analysis of backwash settings to maximize net water production in an engineering-scale ultrafiltration system for water reuse. J. Water Process Eng. 2023, 53, 103761. [Google Scholar] [CrossRef]
- Kaykhaii, S.; Herrmann, I.; Hedström, A.; Nordqvist, K.; Heidfors, I.; Viklander, M. Enhancing stormwater treatment through ultrafiltration: Impact of cleaning chemicals and backwash duration on membrane efficiency. Water Reuse 2023, 13, 634–646. [Google Scholar] [CrossRef]
- Muisa, N.; Nhapi, I.; Ruziwa, W.; Manyuchi, M.M. Utilization of alum sludge as adsorbent for phosphorus removal in municipal wastewater: A review. J. Water Process Eng. 2020, 35, 101187. [Google Scholar] [CrossRef]
- Żoczek, Ł.; Dudziak, M. Types and Valorization of Sludge Generated in Water Treatment Processes, Architecture, Civil Engineering. Environment 2022, 15, 115–121. [Google Scholar] [CrossRef]
- Łaskawiec, E. Quality Assessment of Sludge from Filter Backwash Water in Swimming Pool Facilities. Sustainability 2023, 15, 1811. [Google Scholar] [CrossRef]
- Bernegossi, A.C.; Freitas, B.L.S.; Castro, G.B.; Marques, J.P.; Trindade, L.F.; de Lima e Silva, M.R.; Felipe, M.C.; Ogura, A.P. A systematic review of the water treatment sludge toxicity to terrestrial and aquatic biota: State of the art and management challenges. J. Environ. Sci. Health 2022, 57 (Pt A), 282–297. [Google Scholar] [CrossRef]
- Piasecki, A. Water and Sewage Management Issues in Rural Poland. Water 2019, 11, 625. [Google Scholar] [CrossRef]
- Marinopoulos, I.S.; Katsifarakis, K.L. Optimization of Energy and Water Management of Swimming Pools. A Case Study in Thessaloniki, Greece. Procedia Environ. Sci. 2017, 38, 773–780. [Google Scholar] [CrossRef]
- Mika-Shalyha, A.; Wyczarska-Kokot, J.; Lempart-Rapacewicz, A. Water consumption rates in indoor swimming pools: Analysis of design assumptions in the context of green deal implementation. Desalination Water Treat. 2024, 320, 100874. [Google Scholar] [CrossRef]
- DIN 19643; Aufbereitung von Schwimm Und Badebeckenwasser. German Institute for Standardisation (Deutsches Institut für Normung): Berlin, Germany, 2023.
- MPWiK Wrocław. Guidelines for Managing Rainwater in the City of Wrocław; MPWiK Wrocław: Wrocław, Poland, 2019. [Google Scholar]
- Institute of Meteorology and Water Management National Research Institute. Available online: https://meteo.imgw.pl/ (accessed on 10 June 2025).
- PN-EN 12056-2:2002; Gravity Sewerage Systems Inside Buildings Part 2 Sanitary Sewage. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2002 (In Polish, Introduces EN 12056-2:2000). Available online: https://sklep.pkn.pl/pn-en-12056-2-2002p.html (accessed on 10 June 2025).
- PN-EN ISO 9308-1:2014-12; Water Quality—Enumeration of Escherichia Coli and Coliform Bacteria—Part 1: Membrane Filtration Method for Waters with Low Bacterial Background Flora. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2014 (In English, Introduces EN ISO 9308-1:2014). Available online: https://sklep.pkn.pl/pn-en-iso-9308-1-2014-12e.html (accessed on 10 June 2025).
- PN-EN ISO 16266:2009; Water Quality—Detection and Quantification of Pseudomonas Aeruginosa by Membrane Filtration Method. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2009 (In Polish, Introduces EN ISO 16266:2008). Available online: https://sklep.pkn.pl/pn-en-iso-16266-2009p.html (accessed on 10 June 2025).
- PN-EN ISO 6222:2004; Water Quality—Enumeration of Culturable Microorganisms—Colony Count by Inoculation in a Nutrient Agar Culture Medium. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2004 (In Polish, Introduces EN ISO 6222:1999). Available online: https://sklep.pkn.pl/pn-en-iso-6222-2004p.html (accessed on 10 June 2025).
- PB/BB/11/A:04.07.2011; Internal Laboratory Procedure. Scope of Accreditation of the Research Laboratory No. ab 213 (In Polish). Polish Centre for Accreditation (Polski Komitet Normalizacyjny): Warsaw, Poland, 2019. Available online: https://www.eurofins.pl/media/2851835/ab-213.pdf (accessed on 10 June 2025).
- PN-EN ISO 11731:2017-08; Water Quality—Detection and Enumeration of Legionella. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2017 (In English, Introduces EN ISO 11731:2017). Available online: https://sklep.pkn.pl/pn-en-iso-11731-2017-08e.html (accessed on 10 June 2025).
- PN-EN ISO 6579-1:2017-04; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2017 (In English, Introduces EN ISO 6579-1:2017). Available online: https://sklep.pkn.pl/pn-en-iso-6579-1-2017-04e.html (accessed on 10 June 2025).
- PB/BB/8/C:2014; Internal Laboratory Procedure. Scope of Accreditation of the Research Laboratory No. ab 213 (In Polish). Polish Centre for Accreditation (Polski Komitet Normalizacyjny): Warsaw, Poland, 2019. Available online: https://www.eurofins.pl/media/2851835/ab-213.pdf (accessed on 10 June 2025).
- PB-13, Edition 1, dated 07 May 2018; Internal Laboratory Procedure. Scope of Accreditation of the Research Laboratory No. ab 1319 (In Polish). Polish Centre for Accreditation (Polski Komitet Normalizacyjny): Warsaw, Poland, 2020. Available online: http://www.lodzkiecentrum.pl/pdf/AB%201319.pdf (accessed on 10 June 2025).
- PN-EN ISO 10523:2012; Water Quality—Determination of pH. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2012 (In English, Introduces EN ISO 10523:2012). Available online: https://sklep.pkn.pl/pn-en-iso-10523-2012e.html (accessed on 10 June 2025).
- PN-EN 27888:1999; Water Quality—Determination of Electrical Conductivity. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 1999 (In Polish, Introduces EN 27888:1993). Available online: https://sklep.pkn.pl/pn-en-iso-10523-2012e.html (accessed on 10 June 2025).
- PN-ISO 10304-1:2009; Water Quality—Determination of Dissolved Anions by Liquid Chromatography of Ions—Part 1: Determination of Bromide, Chloride, Fluoride, Nitrate, Nitrite, Phosphate and Sulfate. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2009 (In English, Introduces EN ISO 10304-1:2009). Available online: https://sklep.pkn.pl/pn-en-iso-10304-1-2009e.html (accessed on 10 June 2025).
- PN-EN ISO 7393-2:2018-04; Water Quality—Determination of free Chlorine and Total Chlorine—Part 2: Colorimetric Method Using N,N-Diethyl-1,4-Phenylenediamine, for Routine Control Purposes. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2018 (In English, Introduces EN ISO 7393-2:2018). Available online: https://sklep.pkn.pl/pn-en-iso-7393-2-2018-04e.html (accessed on 10 June 2025).
- PN-ISO 6060:2006; Water Quality—Determination of the Chemical Oxygen Demand. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2006 (In Polish, Introduces ISO 6060:1989). Available online: https://sklep.pkn.pl/pn-iso-6060-2006p.html (accessed on 10 June 2025).
- PN-EN 1899-1:2002; Water Quality—Determination of Biochemical Oxygen Demand After n Days (BODn)—Part 1: Dilution and Seeding Method with Allylthiourea Addition. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2002 (In Polish, Introduces EN 1899-1:1998). Available online: https://sklep.pkn.pl/pn-en-1899-1-2002e.html (accessed on 10 June 2025).
- PN-EN ISO 13395:2001; Water Quality—Determination of Nitrite Nitrogen, Nitrate Nitrogen and the Sum of Both by Flow Analysis (CFA and FIA) with Spectrometric Detection. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2001 (In Polish, Introduces EN ISO 13395:1996). Available online: https://sklep.pkn.pl/pn-en-iso-13395-2001p.html (accessed on 10 June 2025).
- PN-ISO 7150-1:2002; Water Quality—Determination of Ammonium—Part 1: Manual Spectrometric Method. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2002 (In Polish, Introduces ISO 7150-1:1984). Available online: https://sklep.pkn.pl/pn-iso-7150-1-2002p.html (accessed on 10 June 2025).
- PN-EN 12260:2003; Water Quality—Determination of Nitrogen—Determination of Bound Nitrogen After Combustion and Oxidation to Nitrogen Oxides—Chemiluminescence Method. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2003 (In English, Introduces ISO 7150-1:1984). Available online: https://sklep.pkn.pl/pn-en-12260-2004e.html (accessed on 10 June 2025).
- PN-EN ISO 6878:2006; Water Quality—Determination of Phosphorus—Ammonium Molybdate Spectrometric Method. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2006 (In Polish, Introduces EN ISO 6878:2004). Available online: https://sklep.pkn.pl/pn-en-iso-6878-2006p.html (accessed on 10 June 2025).
- PN-EN 1484:1999; Water Analysis—Guidelines for the Determination of Total Organic Carbon (TOC) and Dissolved Organic Carbon (DOC). Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 1999 (In Polish, Introduces EN 1484:1997). Available online: https://sklep.pkn.pl/pn-en-1484-1999p.html (accessed on 10 June 2025).
- PN-EN ISO 7027-1:2016-09; Water Quality—Determination of Turbidity—Part 1: Quantitative Methods. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2016 (In English, Introduces EN ISO 7027-1:2016). Available online: https://sklep.pkn.pl/pn-en-iso-7027-1-2016-09e.html (accessed on 10 June 2025).
- PN-EN 872:2007; Water Quality—Determination of Suspended Solids—Method by Filtration Through Glass-Fibre Filters. PKN: Warsaw, Poland; Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2007 (In Polish, Introduces EN 872:2005). Available online: https://sklep.pkn.pl/pn-en-872-2007p.html (accessed on 10 June 2025).
- PN-EN ISO 10304-1:2009; Water Quality—Determination of Dissolved Anions by Ion Chromatography—Part 1: Determination of Bromide, Chloride, Fluoride, Nitrate, Nitrite, Phosphate and Sulfate. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2009 (In English, Introduces EN ISO 10304-1:2009). Available online: https://sklep.pkn.pl/pn-en-iso-10304-1-2009e.html (accessed on 10 June 2025).
- PN-82/C-04566.02; Water and Wastewater—Determination of Sulphur and Its Compounds—Determination of Hydrogen Sulphide and Soluble Sulphides by the Colorimetric Method with Thiofluorescein and o-Hydroxymercuribenzoic Acid. Alfa” Standardization Publications (Wydawnictwa Normalizacyjne "Alfa"): Warsaw, Poland, 1982 (In Polish). Available online: https://katalog-bg.urk.edu.pl/bib/61401 (accessed on 10 June 2025).
- PN-EN ISO 11885:2009; Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2009 (In English, Introduces EN ISO 11885:2009). Available online: https://sklep.pkn.pl/pn-en-iso-11885-2009e.html (accessed on 10 June 2025).
- PN-ISO 7887:2012; Water Quality—Examination and Determination of Colour. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2012 (In English, Introduces EN ISO EN ISO 7887:2011). Available online: https://sklep.pkn.pl/pn-en-iso-7887-2012e.html (accessed on 10 June 2025).
- PN-EN ISO 11732:2007; Water Quality—Determination of Ammonium Nitrogen—Flow Analysis Method (CFA and FIA) with Spectrometric Detection. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2007 (In Polish, Introduces EN ISO 11732:2005). Available online: https://sklep.pkn.pl/pn-en-iso-11732-2007p.html (accessed on 10 June 2025).
- PN-ISO 6332:2001; Water Quality—Determination of Iron—Spectrometric Method Using 1,10-Phenanthroline. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 2001 (In Polish, Introduces ISO 6332:1988). Available online: https://sklep.pkn.pl/pn-iso-6332-2001p.html (accessed on 10 June 2025).
- PN-EN 25813:1997. Water Quality—Determination of Dissolved Oxygen—Iodometric Method. Polish Committee for Standardization (Polski Komitet Normalizacyjny): Warsaw, Poland, 1997 (In Polish, Introduces EN 25813:1992). Available online: https://sklep.pkn.pl/pn-en-25813-1997p.html (accessed on 10 June 2025).
- Notice of the Minister of Health of 10 May 2022 on the Announcement of the Consolidated Text of the Regulation of the Minister of Health on the Requirements to Be Met by Water at Swimming Pools (Journal of Laws 2022, Item 1230, In Polish). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20220001230 (accessed on 10 June 2025).
- Announcement of the Minister of Infrastructure and Construction Dated September 28, 2016, Regarding the Publication of the Consolidated Text of the Regulation of the Minister of Construction on the Method of Fulfilling the Obligations of Industrial Wastewater Suppliers and the Conditions for Discharging Wastewater into Sewage Systems (Journal of Laws 2016, Item 1757, In Polish). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20160001757 (accessed on 10 June 2025).
- Regulation of the Minister of the Environment Dated November 18, 2014, on the Conditions to Be Met When Discharging Wastewater into Waters or Soil, and on Substances Particularly Harmful to the Aquatic Environment (Journal of Laws 2014, Item 1800, In Polish). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20140001800 (accessed on 10 June 2025).
- Regulation of the Minister of Maritime Economy and Inland Navigation Dated July 12, 2019, on Substances Particularly Harmful to the Aquatic Environment and the Conditions to Be Met When Discharging Wastewater into Waters or Soil, as Well as When Discharging Rainwater or Meltwater into Waters or Water Devices (Journal of Laws 2019, Item 1311, In Polish). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190001311 (accessed on 10 June 2025).
- United States Environmental Protection Agency (EPA). Best Management Practices for Commercial and Institutional Facilities; EPA: Washington, DC, USA, 2023.
- Wyczarska-Kokot, J.; Lempart-Rapacewicz, A.; Dudziak, M. Analysis of Free and Combined Chlorine Concentrations in Swimming Pool Water and an Attempt to Determine a Reliable Water Sampling Point. Water 2020, 12, 311. [Google Scholar] [CrossRef]
- Peng, F.; Dong, X.; Wang, Y.; Lu, Y. Advances and research needs for disinfection byproducts control strategies in swimming pools. J. Hazard. Mater. 2023, 454, 131533. [Google Scholar] [CrossRef]
- Ratajczak, K.; Piotrowska, A. Disinfection By-Products in Swimming Pool Water and Possibilities of Limiting Their Impact on Health of Swimmers. Geomat. Environ. Eng. 2019, 13, 71–92. [Google Scholar] [CrossRef]
- Lempart, A.; Kudlek, E.; Dudziak, M. Nanofiltration treatment of swimming pool water in the aspect of the phenolic micropollutants elimination. Desalination Water Treat. 2018, 128, 306–313. [Google Scholar] [CrossRef]
- Włodyka-Bergier, A.; Bergier, T.A.; Stańkowska, E. The Role of Hygiene in a Sustainable Approach to Managing Pool Water Quality. Sustainability 2025, 17, 649. [Google Scholar] [CrossRef]
- Silva, F.; Antão-Geraldes, A.M.; Zavattieri, C.; Afonso, M.J.; Freire, F.; Albuquerque, A. Improving Water Efficiency in a Municipal Indoor Swimming-Pool Complex: A Case Study. Appl. Sci. 2021, 11, 10530. [Google Scholar] [CrossRef]
- Poćwiardowski, W. The potential of swimming pool rinsing water for irrigation of green areas: A case study. Environ. Sci. Pollut. Res. 2023, 30, 57174–57177. [Google Scholar] [CrossRef]
- Wyczarska-Kokot, J.; Lempart, A. The Reuse of Washings from Pool Filtration Plants After the use of Simple Purification Processes, Architecture. Civ. Eng. Environ. 2018, 11, 163–170. [Google Scholar] [CrossRef]
- Wyczarska-Kokot, J.; Lempart, A. The balance of water and wastewater for the selected swimming pool. Instal 2017, 3, 54–58. (In Polish) [Google Scholar]
- Gomez-Guillen, J.-J.; Arimany-Serrat, N.; Tapias Baqué, D.; Giménez, D. Water and Energy Sustainability of Swimming Pools: A Case Model on the Costa Brava, Catalonia. Water 2024, 16, 1158. [Google Scholar] [CrossRef]
- Lempart-Rapacewicz, A.; Zakharova, J.; Kudlek, E. Rainwater Quality Analysis for Its Potential Recovery: A Case Study on Its Usage for Swimming Pools in Poland. Sustainability 2023, 15, 15037. [Google Scholar] [CrossRef]
- Regulation of the Minister of Infrastructure Dated January 14, 2002, on the Specification of Average Water Consumption Standards (Journal of Laws 2002, No. 8, Item 70, in Polish). Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=wdu20020080070 (accessed on 10 June 2025).
- Liebersbach, J.; Żabnieńska-Góra, A.; Polarczyk, I.; Sayegh, M.A. Feasibility of Grey Water Heat Recovery in Indoor Swimming Pools. Energies 2021, 14, 4221. [Google Scholar] [CrossRef]
- Kluczka, J.; Zołotajkin, M.; Ciba, J.; Staroń, M. Assessment of aluminum bioavailability in alum sludge for agricultural utilization. Environ. Monit. Assess. 2017, 189, 422. [Google Scholar] [CrossRef] [PubMed]
- Abilleira, E.; Goñi-Irigoyen, F.; Aurrekoetxea, J.J.; Cortés, M.A.; Ayerdi, M.; Ibarluzea, J. Swimming pool water disinfection by-products profiles and association patterns. Heliyon 2023, 9, e13673. [Google Scholar] [CrossRef] [PubMed]
- Grabowski, T.; Jóźwiakowski, K.; Bochniak, A.; Stachyra, P.; Radliński, B. Assessment of Rainwater Quality Regarding its Use in The Roztocze National Park (Poland)—Case Study. Appl. Sci. 2023, 13, 6110. [Google Scholar] [CrossRef]
- Vidal, P.; Leiva, A.M.; Gómez, G.; Salgado, M.; Vidal, G. Water Quality of Rainwater Harvesting Systems and Acceptance of Their Reuse in Young Users: An Exploratory Approach. Resources 2024, 13, 159. [Google Scholar] [CrossRef]
- Studziński, W.; Poćwiardowski, W.; Osińska, W. Application of the Swimming Pool Backwash Water Recovery System with the Use of Filter Tubes. Molecules 2021, 26, 6620. [Google Scholar] [CrossRef]
Parameter (Unit) | I (SP) | II (RP) | III (WT) | IV (OP) |
---|---|---|---|---|
Basin area (m2) | 362.5 | 96.21 | 3.3 | 500.0 |
Basin volume (m3) | 580.0 | 73.5 | 2.6 | 575.0 |
Pool deck area (m2) | 571.75 | 1098.3 |
Parameter (Unit) | I (SP) | II (RP) | III (WT) | IV (OP) |
---|---|---|---|---|
Filter dimensions (mm) | Ø2000 | Ø2000 | Ø1600 | Ø2600 |
Number of filters (pcs) | 2 | 1 | 1 | 2 |
Filtration area * (m2) | 3.14 | 3.14 | 2.00 | 5.31 |
Total filtration area (m2) | 6.28 | 3.14 | 2.00 | 10.61 |
Parameter (Unit) | Value |
---|---|
Roof surface (m2) | 1675.2 |
Number of rainwater inlets (pcs) | 10 |
Number of emergency rainwater inlets (pcs) | 10 |
Roof waterproofing material | EPDM roofing membrane |
Parameter (Unit) | Flushing Tank 1 | Flushing Tank 2 |
---|---|---|
Dimensions (m) | 7.49 × 6.34 | 7.49 × 6.32 |
Area (m2) | 47.49 | 47.35 |
Active volume—max (m3) | 75.98 | 75.76 |
Sanitary Equipment | Quantity (pcs) | DU (L/s) | ∑DU (L/s) |
---|---|---|---|
Washbasin | 25 | 0.5 | 12.5 |
Urinal | 4 | 0.5 | 2 |
Sink | 6 | 0.8 | 4.8 |
Toilet | 15 | 2 | 30 |
Shower | 35 | 0.8 | 28 |
External shower | 16 | 0.8 | 12.8 |
Eyewash | 1 | 2 | 2 |
Floor gully DN50 | 24 | 0.8 | 19.2 |
Floor gully DN100 | 2 | 2 | 4 |
Parameter | Unit | Method | Measurement Uncertainty | Detection Limit (LOD) |
---|---|---|---|---|
Bacteriological parameters | ||||
Escherichia coli | CFU/100 mL | PN-EN ISO 9308-1:2014-12 [30] | ±30% (10–200 CFU/100 mL) or ±1–5 CFU for low counts | 1 CFU/100 mL |
Pseudomonas aeruginosa | CFU/100 mL | PN-EN ISO 16266:2009 [31] | ±30% (10–200 CFU/100 mL) or ±1–5 CFU for low counts | 1 CFU/100 mL |
Total number of microorganisms at 36 ± 2 °C after 48 h | CFU/1 mL | PN-EN ISO 6222:2004 [32] | ±0.1 log (≈±25%) | 1 CFU/mL |
Coagulase-positive Staphylococcus | CFU/100 mL | PB/BB/11/A:04.07.2011 [33] | ±30% (10–200 CFU/100 mL) or ±1–5 CFU for low counts | 1 CFU/100 mL |
Legionella sp. | CFU/100 mL | PN-EN ISO 11731:2017-08 [34] | ±0.2 log (≈±50%) for low counts | 1 CFU/100 mL |
Salmonella spp. | CFU/100 g w.m.s * | PN-EN ISO 6579-1:2017-04 [35] | qualitative (presence/absence) | 1 CFU/1000 mL |
Number of live eggs of intestinal parasites: Ascaris sp., Trichuris sp., Toxocara sp. | pcs/1 kg d.m.s ** | PB/BB/8/C:23.06.2014 [36] | ±1 egg | 1 egg/100 mL |
Physicochemical parameters | ||||
Redox potential (oxidation–reduction) at electrode Ag/AgCl 3.5 m KCl | mV | PB-13, Edition 1, dated 07 May 2018 [37] | ±5 mV | 1 mV |
Hydrogen ion concentration (pH) | - | PN-EN ISO 10523:2012 [38] | ±0.1 | 0.01 |
Conductivity | μS/cm | PN-EN 27888:1999 [39] | ±2% | 1 μS/cm |
Chlorides | mg Cl−/L | PN-ISO 10304-1:2009 [40] | ±5% | 0.5 mg/L |
Free chlorine | mg Cl2/L | PN-EN ISO 7393-2:2018-08 [41] | ±0.02 mg/L | 0.01 mg/L |
Combined chlorine | mg Cl2/L | PN-EN ISO 7393-2:2018-08 [41] | ±0.02 mg/L | 0.01 mg/L |
Chemical oxygen demand (COD) | mg O2/L | PN-ISO 6060:2006 [42] | ±5% | 3 mg/L |
Biological oxygen demand (BOD) | mg O2/L | PN-EN 1899-1:2002 [43] | ±5% | 2 mg/L |
Nitrate nitrogen | mg N-NO3/L | PN-EN ISO 13395:2001 [44] | ±5% | 0.1 mg/L |
Ammonium nitrogen | mg N-NH4/L | PN-ISO 7150-1:2002 [45] | ±5% | 0.02 mg/L |
Total nitrogen | mg Ntot./L | PN-EN 12260:2003 [46] | ±5% | 0.5 mg/L |
Total phosphorus | mg Ptot./L | PN-EN ISO 6878:2006 [47] | ±5% | 0.01 mg/L |
Total organic carbon (TOC) | mg C/L | PN-EN 1484:1998 [48] | ±5% | 0.5 mg/L |
Inorganic carbon (IC) | mg C/L | PN-EN 1484:1998 [48] | ±5% | 0.5 mg/L |
Total carbon (TC) | mg C/L | PN-EN 1484:1998 [48] | ±5% | 0.5 mg/L |
Turbidity | NTU | PN-EN ISO 7027-1:2016-09 [49] | ±0.1 NTU | 0.01 NTU |
Total suspended solids (TSS) | mg/L | PN-EN 872:2007 [50] | ±5% | 2 mg/L |
Sulphureous | mg SO4−2/L | PN-EN ISO 10304-1:2009 [51] | ±5% | 0.5 mg/L |
Sulphides | mg S/L | PN-82/C-04566.02 [52] | ±5% | 0.05 mg/L |
Aluminum | mg Al/L | PN-EN ISO 11885:2009 [53] | ±0.01 mg/L | 0.005 mg/L |
Color, wavelength 436 nm | - | PN-ISO 7887:2013 [54] | ±5% | 1 mg Pt/L |
Ammonium ion | mg NH+/L | PN-EN ISO 11732:2007 [55] | ±5% | 0.02 mg/L |
Iron | mg Fe/L | PN-ISO 6332:2001 [56] | ±0.02 mg/L | 0.005 mg/L |
Copper | mg Cu/L | PN-EN ISO 11885:2009 [53] | ±0.01 mg/L | 0.005 mg/L |
Zinc | mg Zn/L | PN-EN ISO 11885:2009 [53] | ±0.01 mg/L | 0.005 mg/L |
Lead | mg Pb/L | PN-EN ISO 11885:2009 [53] | ±0.005 mg/L | 0.001 mg/L |
Nickel | mg Ni/L | PN-EN ISO 11885:2009 [53] | ±0.005 mg/L | 0.001 mg/L |
Phenol (phenol index) | mg C6H5OH/L | PN-EN ISO 11885:2009 [53] | ±0.01 mg/L | 0.002 mg/L |
Oxidisability | mg O2/L | PN-EN 25813:2004 [57] | ±5% | 0.5 mg/L |
Parameter (Unit) | I (SP) | II (RP) | III (WT) | IV (OP) |
---|---|---|---|---|
Water splashing (m3/d) | 1.4 | 0.8 | 0.4 | 1.8 |
Water splashing (m3/year) | 511.0 | 182.5 | 146.0 | 657.0 |
Volume of water in a basin (m3) | 580.0 | 73.5 | 2.6 | 575.0 |
Total (m3/year) | 1091.0 | 329.5 | 177.2 | 1232.0 |
Parameter (Unit) | I (SP) | II (RP) | III (WT) | IV (OP) |
---|---|---|---|---|
Backwash water (m3) * | 25.12 | 12.56 | 8.00 | 42.44 |
Backwash water (m3/year) | 3014.4 | 1507.2 | 960.0 | 1697.6 |
Roof Surface | Runoff Coefficient | Reduced Surface | Quantity of Rainwater | Quantity of Rainwater |
---|---|---|---|---|
(m2) | (-) | (m2) | (L/s) | (m3/year) |
1675.2 | 1.0 | 1675.2 | 30.4 | 1172.6 |
Parameter (Unit) | Flushing Tank 1 | Flushing Tank 2 |
---|---|---|
Measured sludge height (m) | 0.5 | 0.45 |
Sludge volume (m3) * | 23.75 | 21.31 |
Sludge volume (m3/year) | 47.50 | 42.62 |
Parameter | Unit | Water from the Pool Basin (RP) | Limit Value Journal of Laws 2022, Item 1230 [58] | Filter Washings | Rainwater | Sanitary Wastewater | Technological Sludge | Limit Value Journal of Laws 2016, Item 1757 [59] | Limit Value Journal of Laws 2014 Item 1800 [60] | Limit Value Journal of Laws 2019, Item 1311 [61] |
---|---|---|---|---|---|---|---|---|---|---|
Bacteriological parameters | ||||||||||
Escherichia coli | CFU/100 mL | 0 | 0 | x | x | x | 0 | x | x | x |
Pseudomonas aeruginosa | CFU/100 mL | 0 | 0 | x | x | x | 0 | x | x | x |
Total number of microorganisms at 36 ± 2 °C after 48 h | CFU/1 mL | absence | 20—in circulation 100—in the basin | x | x | x | >300 | x | x | x |
Coagulase positive | CFU/100 mL | 0 | 0 | x | x | x | 0 | x | x | x |
Legionella sp. | CFU/100 mL | 0 | 0 | x | x | x | 0 | x | x | x |
The presence of Salmonella spp. | CFU/100 g w.m.s ** | x | x | x | x | not detected | x | x | x | x |
Number of live eggs of intestinal parasites: Ascaris sp., Trichuris sp., Toxocara sp. | pcs/1 kg d.m.s *** | x | x | x | x | 0 | x | x | x | x |
Physicochemical parameters | ||||||||||
Redox potential (oxidation–reduction) at electrode Ag/AgCl 3.5 m KCl | mV | 774.31 | 720–770 | 303.33 | 313 | 261.67 | 0.35 | x | x | x |
Hydrogen ion concentration (pH) | - | 7.13 | 6.5–7.6 | 7.14 | 7.19 | 6.98 | 7.14 | 6.5–9.5 | 6.5–9 | 6.5–12.5 |
Conductivity | μS/cm | 2280 | x | 1771 | 8297.6 | 1826.5 | 1427.5 | x | x | x |
Chlorides | mg Cl−/L | 450 | x | 361 | x | 794 | 367 | 1000 | 1000 | 1000 |
Free chlorine | mg Cl2/L | 0.38 | 0.3–2.0 | 0.07 | 0.01 | 0.01 | absent | 1 | 0.2 | 0.2 |
Combined chlorine | mg Cl2/L | 0.18 | 0.2—in circulation 0.3—in the basin | 0.52 | 0.02 | 0.02 | 0.33 | x | 0.4 | 0.4 |
Chemical oxygen demand (COD) | mg O2/L | x | x | 25.42 | 4.42 | 44.8 | 10,800 (supernatant water 3115) | 2000 | 125 | 125 |
Biological oxygen demand (BOD) | mg O2/L | x | x | 23.5 | 1 | 5.65 | 1400 (supernatant water 100) | 700 | 25 | 25 |
Nitrate nitrogen | mgN-NO3/L | 8.9 | 20 | x | x | x | 0.61 | x | x | x |
Ammonium nitrogen | mgN-NH4/L | x | x | x | x | x | 16.75 | x | x | x |
Total nitrogen | mg Ntot./L | x | x | 6.8 | 1.66 | 15.36 | 17.45 | x | 30 | 30 |
Total phosphorus | mg Ptot./L | x | x | 0.33 | 0.17 | 5.68 | 0.81 | 15 | 3 | 3 |
Total organic carbon (TOC) | mg C/L | 0.477 | x | 2.1 | 0.21 | 3.98 | 42.71 | x | 30 | 30 |
Inorganic carbon (IC) | mg C/L | 2.08 | x | 3.78 | 1 | 14.98 | 37.44 | x | x | x |
Total carbon (TC) | mg C/L | 2.557 | x | 5.87 | 1.21 | 18.96 | 80.15 | x | x | x |
Turbidity | NTU | 0.18 | 0.3—in circulation 0.5—in the basin | 11.87 (after coagulation 6.77) | 1.15 | 6.64 (after coagulation 4.34) | 179.55 (after 2 h sedimentation 40.15) | x | x | x |
Total suspended solids | mg/L | x | x | 62 (after coagulation 5.3) | x | 17.5 (after coagulation 4.0) | 1206.5 (44.00 *) | 400 | 35 | 35 |
Sulphureous | mg SO4−2/L | x | x | 303 | 58.8 | 262.33 | 165 | x | x | x |
Sulphides | mg S/L | x | x | x | x | x | absent | x | x | x |
Aluminum | mg Al/L | x | 0.2 | 0.07 | 0.01 | 0.09 | 0.09 | x | x | x |
Color, wavelength 436 nm | mgSO4−2/L | x | x | 3.61 | 0.28 | 2.17 | x | x | x | x |
Ammonium ion | mg S/L | 0.051 | x | 0.12 | 0.58 | 1.45 | x | x | x | x |
Iron | mg Fe/L | x | 0.2 | x | 11.33 | x | x | 4 | x | x |
Copper | mg Cu/L | x | x | x | <20 | x | x | 1 | 0.5 | 0.5 |
Zinc | mg Zn/L | x | x | x | 244.67 | x | x | 5 | 2 | 2 |
Lead | mg Pb/L | x | x | x | 92.33 | 0.5 | 0.79 | 1 | 0.5 | 0.5 |
Nickel | mg Ni/L | x | x | x | x | x | 0.6 | x | x | x |
Phenol (phenol index) | mgC6H5OH /L | x | x | x | x | x | 1.08 | x | x | x |
Oxidisation | mg O2/L | x | 4 | 1.79 | 3.6 | 5.89 | x | x | x | x |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mika, A.; Wyczarska-Kokot, J.; Lempart-Rapacewicz, A. Wastewater Management in Swimming Pools: A Circular Economy Approach. Appl. Sci. 2025, 15, 9609. https://doi.org/10.3390/app15179609
Mika A, Wyczarska-Kokot J, Lempart-Rapacewicz A. Wastewater Management in Swimming Pools: A Circular Economy Approach. Applied Sciences. 2025; 15(17):9609. https://doi.org/10.3390/app15179609
Chicago/Turabian StyleMika, Anna, Joanna Wyczarska-Kokot, and Anna Lempart-Rapacewicz. 2025. "Wastewater Management in Swimming Pools: A Circular Economy Approach" Applied Sciences 15, no. 17: 9609. https://doi.org/10.3390/app15179609
APA StyleMika, A., Wyczarska-Kokot, J., & Lempart-Rapacewicz, A. (2025). Wastewater Management in Swimming Pools: A Circular Economy Approach. Applied Sciences, 15(17), 9609. https://doi.org/10.3390/app15179609