From Waste to Energy: Cooking Oil Recycling for Biodiesel in Barranquilla, Colombia
Abstract
1. Introduction
2. Production of Biodiesel Based on Used Cooking Oil
2.1. Waste Management: Framework
2.2. Production of Second-Generation Biodiesel: A Literature Review
- (1)
- Verification of the input parameters of the UCO;
- (2)
- Checking the acid number of the UCO—if it is higher than 1%, prior esterification is recommended;
- (3)
- Once the UCO is within the parameters, it is introduced into the reactor,
- (4)
- Alcohol is added in ratios of 12: 1, 9:1, or 6:1;
- (5)
- The reaction catalyst is incorporated, such as potassium hydroxide (KOH) and sodium hydroxide (NaOH), among others, recommending sodium hydroxide (NaOH) at 1% W/W, and an oil–alcohol ratio of 12:1;
- (6)
- The alcohol and catalyst are premixed;
- (7)
- The reaction temperature must be lower than the alcohol evaporation temperature to avoid losses—in the case of methanol (65 °C), the reaction is carried out at 60 °C and typical pressures of 20 Psi;
- (8)
- The optimum reaction time should be determined by experimentation;
- (9)
- The mixture should be stirred continuously during the reaction;
- (10)
- The reaction mixture is transferred to a settling tank to separate the glycerol phases;
- (11)
- The biodiesel phase is washed with distilled water at a ratio of one third of the water to one part biodiesel—the mixture is stirred and allowed to separate by decanting until the pH of the water approaches neutral;
- (12)
- The biodiesel is dried by heating it at approximately 110 °C to evaporate the remaining water;
- (13)
- Quality tests are performed to certify compliance with biodiesel specifications.
2.3. Analysis of the Efficiency and Quality of Biodiesel Generated from Cooking Oil Waste
3. Materials and Methods
4. Results from the Implemented Strategy for Guaranteed Management of Cooking Oil Waste for Energy Use in Biodiesel Production
4.1. Phase 1: The Strategy Framework
4.2. Phase 2: Process Based on UCO
4.2.1. Step 1: UCO Management Logistics
4.2.2. Step 2: UCO Quality Analysis
4.2.3. Step 3: Clean Points for UCO Disposal
4.2.4. Step 4: UCO Storage
4.2.5. Step 5: Commercialization of UCO
4.3. Phase 3: Governance Around UCO Recycling
4.3.1. Regulatory Mechanisms
4.3.2. Incentives
4.3.3. Research and Training
4.3.4. International Cooperation
4.3.5. Social Communication
5. Study Case
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodríguez-Flórez, J.S. Estudio de Factibilidad para el Aprovechamiento de ACUs en la Ciudad de Bogotá. Master’s Dissertation, National University of Colombia, Bogotá, Colombia, 2020. [Google Scholar]
- Eremeeva, A.M.; Ilyushin, Y.V. Automation of the Control System for Drying Grain Crops of the Technological Process for Obtaining Biodiesel Fuels. Sci. Rep. 2023, 13, 14956. [Google Scholar] [CrossRef] [PubMed]
- Dey, P.; Ray, S.; Newar, A. Defining a Waste Vegetable Oil-Biodiesel Based Diesel Substitute Blend Fuel by Response Surface Optimization of Density and Calorific Value. Fuel 2021, 283, 118978. [Google Scholar] [CrossRef]
- Hosseinzadeh-Bandbafha, H.; Nizami, A.-S.; Kalogirou, S.A.; Gupta, V.K.; Park, Y.-K.; Fallahi, A.; Sulaiman, A.; Ranjbari, M.; Rahnama, H.; Aghbashlo, M.; et al. Environmental Life Cycle Assessment of Biodiesel Production from Waste Cooking Oil: A Systematic Review. Renew. Sustain. Energy Rev. 2022, 161, 112411. [Google Scholar] [CrossRef]
- Nutongkaew, P.; Waewsak, J.; Riansut, W.; Kongruang, C.; Gagnon, Y. The Potential of Palm Oil Production as a Pathway to Energy Security in Thailand. Sustain. Energy Technol. Assess. 2019, 35, 189–203. [Google Scholar] [CrossRef]
- Lombardi, L.; Mendecka, B.; Carnevale, E. Comparative Life Cycle Assessment of Alternative Strategies for Energy Recovery from Used Cooking Oil. J. Environ. Manag. 2018, 216, 235–245. [Google Scholar] [CrossRef]
- ISO 660:2020; Animal and Vegetable Fats and Oils—Determination of Acid Value and Acidity. ISO: Geneva, Switzerland, 2020; pp. 1–12.
- ISO 3961:2024; Animal and Vegetable Fats and Oils—Determination of Iodine Value. ISO: Geneva, Switzerland, 2024; pp. 1–11.
- ASTM D6751-20a; Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels. ASTM International: West Conshohocken, PA, USA, 2020; pp. 1–33.
- ISO 3657:2023; Animal and Vegetable Fats and Oils—Determination of Saponification Value. ISO: Geneva, Switzerland, 2023; pp. 1–10.
- ISO 6883:2017; Animal and Vegetable Fats and Oils—Determination of Conventional Mass per Volume (Litre Weight in Air). ISO: Geneva, Switzerland, 2017; pp. 1–11.
- Garcia-Muentes, S.A.; Lafargue-Pérez, F.; Labrada-Vázquez, B.; Díaz-Velázquez, M.; Sánchez del Campo-Lafita, A.E. Physicochemical Properties of Oil and Biodiesel Produced from Jatropha curcas L. in the Province of Manabí, Ecuador. Rev. Cuba. Quim. 2018, 30, 142–158. [Google Scholar]
- Prieto-Guerrero, M.E.; Robalino-Zambrano, D.A.; Sarduy-Pereira, L.B.; Villavicencio-Montoya, J.F.; Diéguez Santana, K. Evaluación de Estrategias de Gestión de Aceites de Cocina Usados. Caso de Estudio Puyo, Amazonia Ecuatoriana. Rev. EIA 2022, 19, 3813. [Google Scholar] [CrossRef]
- Cisneros-Lopez, M.; García-Salzar, J.; Mora-Flores, J.; Martinez-Damian, M.; García-Sanchez, R.; Valdez-Lazalde, J.; Portillo-Vásquez, M. Economic Evaluation with Real Options: Second Generation Bioethanol Biorefinery in Veracruz, México. Agric. Soc. Desarrollo 2020, 17, 397–413. [Google Scholar] [CrossRef]
- Ministerio de Ambiente y Desarrollo Sostenible. Resolución 0316 de 2018. Disposiciones Relacionadas con la Gestión de los Aceites de Cocina Usados; Ministerio de Ambiente y Desarrollo Sostenible: Bogotá, Colombia, 2018; pp. 1–8.
- Gobierno de la República de Colombia Estrategia Nacional de Economía Circular. Cierre de Ciclos de Materiales, Innovación Tecnológica, Colaboración y Nuevos Modelos de Negocio Estrategia Nacional de Economía Circular Contenido; Gobierno de la República de Colombia Estrategia Nacional de Economía Circular: Bogotá, Colombia, 2019. [Google Scholar]
- Gobierno de la República de Colombia. Ley 1333 de 2009. Procedimiento Sancionatorio Ambiental y otras disposiciones; Departamento Administrativo de la Función Pública: Bogotá, Colombia, 2009; pp. 1–23. [Google Scholar]
- Barranquilla Verde; Alcadlía de Barranquilla. Resolución 0393 de 2017. Regulaciones para la Generación, Recolección, Tratamiento, Aprovecamiento y/o Transporte Adecuado del Aceite Vegetal Usado en el Distrito de Barranquilla; Barranquilla Verde; Alcadlía de Barranquilla: Barranquilla, Colombia, 2017; pp. 1–15. [Google Scholar]
- Jiménez Rojano, D.A.; Mejía Castro, L.V.; Márquez Santiago, J.A. Characterization of the Generation and Disposal of Used Cooking Oil (UCO) of Large Producers over an Urban Sector; Universidad del Norte: Barranquilla, Colombia, 2019. [Google Scholar]
- United Nations. The 17 Goals. Available online: https://sdgs.un.org/goals (accessed on 25 November 2024).
- Banco de Desarrollo de América Latina. Economía Circular e Innovación Tecnológica en Residuos Sólidos. Oportunidades en América Latina, 1st ed.; Corporación Andina de Fomento: Buenos Aires, Argentina, 2018; ISBN 978-980-422-092-0. [Google Scholar]
- Ochoa-Miranda, M. Gestión Integral de Residuos. Análisis Normativo y Herramientas para su Implementación; 1st ed.; Universidad del Rosario: Bogotá, Colombia, 2016. [Google Scholar]
- Tapanwong, M.; Punsuvon, V. Production of Ethyl Ester Biodiesel from Used Cooking Oil with Ethanol and Its Quick Glycerol-Biodiesel Layer Separation Using Pure Glycerol. Int. J. GEOMATE 2019, 17, 109–114. [Google Scholar] [CrossRef]
- Bousba, D.; Sobhi, C.; Zouaoui, E.; Rouibah, K.; Boublia, A.; Ferkous, H.; Haddad, A.; Gouasmia, A.; Avramova, I.; Mohammed, Z.; et al. Efficient Biodiesel Production from Recycled Cooking Oil Using a NaOH/CoFe2O4 Magnetic Nano-Catalyst: Synthesis, Characterization, and Process Enhancement for Sustainability. Energy Convers. Manag. 2024, 300, 118021. [Google Scholar] [CrossRef]
- Cheikh, F.Z.B.; Zobeidi, A.; Belkhalfa, H.; Douadi, A.; Nacer, S.N.; Ghernaout, D.; Elboughdiri, N. Transforming Waste Cooking Oil into Environmentally Friendly Biodiesel: A Comparative Analysis of Three Transesterification Methods. Int. J. Oil Gas Coal Technol. 2023, 34, 413–427. [Google Scholar] [CrossRef]
- Omidkar, A.; Xu, H.; Li, Z.; Haddadian, K.; Song, H. Techno-Economic and Life Cycle Assessment of Renewable Diesel Production via Methane-Assisted Catalytic Waste Cooking Oil Upgrading. J. Clean. Prod. 2023, 414, 137512. [Google Scholar] [CrossRef]
- Garg, N.K.; Pal, A. Microwave-based Transesterification of Waste Cooking Oil using Waste Aluminium Foil (NaOH/γ-Al2O3) as Catalyst. Indian J. Eng. Mater. Sci. 2023, 30, 249–255. [Google Scholar] [CrossRef]
- Jain, S.; Kumar, N.; Singh, V.P.; Mishra, S.; Sharma, N.K.; Bajaj, M.; Khan, T.M.Y. Transesterification of Algae Oil and Little Amount of Waste Cooking Oil Blend at Low Temperature in the Presence of NaOH. Energies 2023, 16, 1293. [Google Scholar] [CrossRef]
- Darwin; Harahap, R.A.M.; Pratama, A.; Thifal, M.; Fayed, M.A.A. Enhanced Biodiesel Production from Waste Cooking Oils Catalysed by Sodium Hydroxide Supported on Heterogeneous Co-Catalyst of Bentonite Clay. Res. Agric. Eng. 2023, 69, 124–131. [Google Scholar] [CrossRef]
- Torres, Y.D.; Gullo, P.; Herrera, H.H.; Torres del Toro, M.; Guerra, M.A.Á.; Ortega, J.I.S.; Speerforck, A. Statistical Analysis of Design Variables in a Chiller Plant and Their Influence on Energy Consumption and Life Cycle Cost. Sustainability 2022, 14, 10175. [Google Scholar] [CrossRef]
- Nada, S.S.; Hawash, S.I.; Zahran, M.A.; Ahmed, E.M. Preparation of Poly (AAc/AAm)/NaOH Hydrogel as a Catalyst for Electrolysis Production of Biodiesel from Waste Cooking Oil. Egypt. J. Chem. 2022, 65, 919–931. [Google Scholar] [CrossRef]
- Abusweireh, R.S.; Rajamohan, N.; Vasseghian, Y. Enhanced Production of Biodiesel Using Nanomaterials: A Detailed Review on the Mechanism and Influencing Factors. Fuel 2022, 319, 123862. [Google Scholar] [CrossRef]
- da Silva, C.A.; dos Santos, R.N.; Oliveira, G.G.; de Souza Ferreira, T.P.; de Souza, N.L.G.D.; Soares, A.S.; de Melo, J.F.; Colares, C.J.G.; de Souza, U.J.B.; de Araújo-Filho, R.N.; et al. Biodiesel and Bioplastic Production from Waste-Cooking-Oil Transesterification: An Environmentally Friendly Approach. Energies 2022, 15, 1073. [Google Scholar] [CrossRef]
- Yusof, I.; Tajuddin, N.A.; Samad, W.Z.; Hamzah, N. Effect of Sodium Hydroxide on a Bentonite Support as Catalyst for Transesterification of Waste Cooking Oil into Biodiesel. Malays. J. Chem. 2022, 24, 177–183. [Google Scholar]
- Suzihaque, M.U.H.; Syazwina, N.; Alwi, H.; Ibrahim, U.K.; Abdullah, S.; Haron, N. A Sustainability Study of the Processing of Kitchen Waste as a Potential Source of Biofuel: Biodiesel Production from Waste Cooking Oil (WCO). Mater. Today Proc. 2022, 63 (Suppl. S1), S484–S489. [Google Scholar] [CrossRef]
- Vera-Rozo, J.R.; Riesco-Avila, J.M.; Elizalde-Blanca, F.; Cano-Andrade, S. Optimization of the Real Conversion Efficiency of Waste Cooking Oil to Fame. Therm. Sci. 2022, 26, 653–665. [Google Scholar] [CrossRef]
- Helmi, M.; Hemmati, A. Synthesis of magnetically solid base catalyst of NaOH/Chitosan-Fe3O4 for biodiesel production from waste cooking oil: Optimization, kinetics and thermodynamic studies. Energy Convers. Manag. 2021, 248, 114807. [Google Scholar] [CrossRef]
- Abukhadra, M.R.; Othman, S.I.; Allam, A.A.; Elfayoumi, H. Insight into the Catalytic Properties Zeolitized Kaolinite/Diatomite Geopolymer as an Environmental Catalyst for the Sustainable Conversion of Spent Cooking Oil into Biodiesel; Optimization and Kinetics. Sustain. Chem. Pharm. 2021, 22, 100473. [Google Scholar] [CrossRef]
- Wongjaikham, W.; Wongsawaeng, D.; Ratnitsai, V.; Kamjam, M.; Ngaosuwan, K.; Kiatkittipong, W.; Hosemann, P.; Assabumrungrat, S. Low-Cost Alternative Biodiesel Production Apparatus Based on Household Food Blender for Continuous Biodiesel Production for Small Communities. Sci. Rep. 2021, 11, 13827. [Google Scholar] [CrossRef]
- Hamed, H.H.; Mohammed, A.E.; Habeeb, O.A.; Ali, O.M.; Aljaf, O.H.S.; Abdulqader, M.A. Biodiesel Production from Waste Cooking Oil Using Homogeneous Catalyst. Egypt. J. Chem. 2021, 64, 2827–2832. [Google Scholar] [CrossRef]
- Abdullah, R.F.; Rashid, U.; Ibrahim, M.L.; Hazmi, B.; Alharthi, F.A.; Nehdi, I.A. Bifunctional Nano-Catalyst Produced from Palm Kernel Shell via Hydrothermal-Assisted Carbonization for Biodiesel Production from Waste Cooking Oil. Renew. Sustain. Energy Rev. 2021, 137, 110638. [Google Scholar] [CrossRef]
- Guo, M.; Jiang, W.; Chen, C.; Qu, S.; Lu, J.; Yi, W.; Ding, J. Process Optimization of Biodiesel Production from Waste Cooking Oil by Esterification of Free Fatty Acids Using La3+/ZnO-TiO2 Photocatalyst. Energy Convers. Manag. 2021, 229, 113745. [Google Scholar] [CrossRef]
- Mercy Nisha Pauline, J.; Sivaramakrishnan, R.; Pugazhendhi, A.; Anbarasan, T.; Achary, A. Transesterification Kinetics of Waste Cooking Oil and Its Diesel Engine Performance. Fuel 2021, 285, 119108. [Google Scholar] [CrossRef]
- Hsiao, M.-C.; Liao, P.-H.; Lan, N.V.; Hou, S.-S. Enhancement of Biodiesel Production from High-Acid-Value Waste Cooking Oil via a Microwave Reactor Using a Homogeneous Alkaline Catalyst. Energies 2021, 14, 437. [Google Scholar] [CrossRef]
- Shazwani, S.S.; Noraini, H.; Nazrizawati, A.T. Conversion of Waste Cooking Oil to Biodiesel Catalysed by ZnAl Layered Double Hydroxide. ASM Sci. J. 2021, 16, 1–8. [Google Scholar] [CrossRef]
- Brito, G.M.; Chicon, M.B.; Coelho, E.R.C.; Faria, D.N.; Freitas, J.C.C. Eco-Green Biodiesel Production from Domestic Waste Cooking Oil by Transesterification Using LiOH into Basic Catalysts Mixtures. J. Renew. Sustain. Energy 2020, 12, 043101. [Google Scholar] [CrossRef]
- Abdollahi Asl, M.; Tahvildari, K.; Bigdeli, T. Eco-Friendly Synthesis of Biodiesel from WCO by Using Electrolysis Technique with Graphite Electrodes. Fuel 2020, 270, 117582. [Google Scholar] [CrossRef]
- Chinglenthoiba, C.; Das, A.; Vandana, S. Enhanced Biodiesel Production from Waste Cooking Palm Oil, with NaOH-Loaded Calcined Fish Bones as the Catalyst. Environ. Sci. Pollut. Res. 2020, 27, 15925–15930. [Google Scholar] [CrossRef]
- Khedri, B.; Mostafaei, M.; Safieddin Ardebili, S.M. Flow-Mode Synthesis of Biodiesel under Simultaneous Microwave–Magnetic Irradiation. Chin. J. Chem. Eng. 2019, 27, 2551–2559. [Google Scholar] [CrossRef]
- Bunushree, B.; Ravichandra, B.; Rangabhashiyam, S.; Jayabalan, R.; Balasubramanian, P. Qualitative Analysis of Biodiesel Produced by Alkali Catalyzed Transesterification of Waste Cooking Oil Using Different Alcohols. Indian J. Chem. Technol. 2019, 26, 330–336. [Google Scholar]
- Rafati, A.; Tahvildari, K.; Nozari, M. Production of Biodiesel by Electrolysis Method from Waste Cooking Oil Using Heterogeneous MgO-NaOH Nano Catalyst. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 1062–1074. [Google Scholar] [CrossRef]
- Bargole, S.; George, S.; Kumar Saharan, V. Improved Rate of Transesterification Reaction in Biodiesel Synthesis Using Hydrodynamic Cavitating Devices of High Throat Perimeter to Flow Area Ratios. Chem. Eng. Process. Process Intensif. 2019, 139, 1–13. [Google Scholar] [CrossRef]
- García-Martín, J.F.; Alés-Álvarez, F.J.; López-Barrera, M.D.C.; Martín-Domínguez, I.; Álvarez-Mateos, P. Cetane Number Prediction of Waste Cooking Oil-Derived Biodiesel Prior to Transesterification Reaction Using near Infrared Spectroscopy. Fuel 2019, 240, 10–15. [Google Scholar] [CrossRef]
- Dimian, A.C.; Kiss, A.A. Eco-Efficient Processes for Biodiesel Production from Waste Lipids. J. Clean. Prod. 2019, 239, 118073. [Google Scholar] [CrossRef]
- Jeyakumar, N.; Narayanasamy, B.; Balasubramaniam, V. Optimization of Used Cooking Oil Methyl Ester Production Using Response Surface Methodology. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 2313–2325. [Google Scholar] [CrossRef]
- ASTM D 1298-99; Standard Test Method for Density, Relative Density (Specific Gravity), or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method. ASTM International: West Conshohocken, PA, USA, 1999; pp. 1–8.
- ASTM D 664; Standard Test Method for Acid Number of Petroleum Products by Potentiometric Titration. ASTM International: West Conshohocken, PA, USA, 2011; pp. 1–15.
- ASTM D 445-09; Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids. ASTM International: West Conshohocken, PA, USA, 2009; pp. 1–11.
- ASTM D 93; Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester. ASTM International: West Conshohocken, PA, USA, 2020; pp. 1–13.
- ASTM D 6890; Standard Test Method for Determination of Ignition Delay and Derived Cetane Number (DCN) of Diesel Fuel Oils by Combustion in a Constant Volume Chamber. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D 4951; Standard Test Method for Determination of Additive Elements in Lubricating Oils by Inductively Coupled Plasma Atomic Emission Spectrometry. ASTM International: West Conshohocken, PA, USA, 2019; pp. 1–8.
- UNE-EN 14110; Fat and Oil Derivatives–Fatty Acid Methyl Esters (FAME)–Determination of Methanol Content. AENOR: Madrid, Spain, 2003.
- ASTM D 6584; Standard Test Method for Determination of Total Acid Number of Biodiesel (B100) and Biodiesel Blends by Potentiometric Titration. ASTM International: West Conshohocken, PA, USA, 2007; pp. 1–9.
- Reategui-Romero, W.; Salas-Barrera, F.J. Estudio Del Proceso de Transesterificación Para La Obtención de Biodiesel a Partir Del Aceite de Palma En Un Reactor Por Lotes. Prod. + Limpia 2013, 8, 119–134. [Google Scholar]
- ASTM D 6751:2020; Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels. ASTM International: West Conshohocken, PA, USA, 2020; pp. 1–11.
- ISO 3960:2010; Determination of Peroxide Value. ISO: Geneva, Switzerland, 2010; pp. 1–10.
- República de Colombia. Ley 2099 de 2021. Disposiciones para la Transición Energética, la Dinamización del Mercado Energético, la Reactivación Económica del País y se Dictan Otras Disposiciones. 2021, pp. 1–11. Available online: https://russellbedford.com.co/disposiciones-para-la-transicion-energetica-dinamizacion-de-mercado-energetico-la-reactivacion-economica-y-otras (accessed on 19 May 2025).
- Rojas-Ramírez, H.A. Caracterización de La Logística de Recolección, Tratamiento y Exportación de Aceite de Cocina Usado En Colombia. Thesis to obtain the title of National and International Commercial Logistics Management Specialist, University of Bogota Jorge Tadeo Lozano, Bogotá, Colombia, 2021. [Google Scholar]
Ref | Paper Title | Year | Reaction Performance |
---|---|---|---|
[24] | Efficient biodiesel production from recycled cooking oil using a NaOH/CoFe2O4 magnetic nano-catalyst: synthesis, characterization, and process enhancement for sustainability | 2024 | 98.71% |
[25] | Transforming waste cooking oil into environmentally friendly biodiesel: a comparative analysis of three transesterification methods | 2023 | 94.4% |
[26] | Techno-economic and life cycle assessment of renewable diesel production via methane-assisted catalytic waste cooking oil upgrading | 2023 | 90% |
[27] | Microwave-based Transesterification of Waste Cooking Oil using Waste Aluminium Foil (NaOH/γ-Al2O3) as Catalyst | 2023 | 98% |
[28] | Transesterification of Algae Oil and Little Amount of Waste Cooking Oil Blend at Low Temperature in the Presence of NaOH | 2023 | 92% |
[29] | Enhanced biodiesel production from waste cooking oils catalysed by sodium hydroxide supported on heterogeneous co-catalyst of bentonite clay | 2023 | 90% |
[30] | Statistical optimization of biodiesel synthesis from waste cooking oil using NaOH/bentonite impregnated catalyst | 2022 | 91.2% |
[31] | Preparation of Poly (AAc/AAm)/NaOH Hydrogel as a Catalyst for Electrolysis Production of Biodiesel from Waste Cooking Oil | 2022 | 92.8% |
[32] | Enhanced production of biodiesel using nanomaterials: A detailed review on the mechanism and influencing factors | 2022 | 99% |
[33] | Biodiesel and Bioplastic Production from Waste-Cooking-Oil Transesterification: An Environmentally Friendly Approach | 2022 | 83.3% |
[34] | Effect of Sodium Hydroxide on a Bentonite Support as Catalyst for Transesterification of Waste Cooking Oil into Biodiesel | 2022 | 95% |
[35] | A sustainability study of the processing of kitchen waste as a potential source of biofuel: Biodiesel production from waste cooking oil (WCO) | 2022 | 91.45% 93.37% 92.14% |
[36] | Optimization of the real conversion efficiency of waste cooking oil to fame | 2022 | 95% |
[37] | Synthesis of magnetically solid base catalyst of NaOH/Chitosan-Fe3O4 for biodiesel production from waste cooking oil: Optimization, kinetics and thermodynamic studies | 2021 | 92% |
[38] | Insight into the catalytic properties zeolitized kaolinite/diatomite geopolymer as an environmental catalyst for the sustainable conversion of spent cooking oil into biodiesel; optimization and kinetics | 2021 | 98.1% |
[39] | Low-cost alternative biodiesel production apparatus based on household food blender for continuous biodiesel production for small communities | 2021 | 96.57% |
[40] | Biodiesel production from waste cooking oil using homogeneous catalyst | 2021 | 97.76% |
[41] | Bifunctional nano-catalyst produced from palm kernel shell via hydrothermal-assisted carbonization for biodiesel production from waste cooking oil | 2021 | 94.51% |
[42] | Process optimization of biodiesel production from waste cooking oil by esterification of free fatty acids using La3+/ZnO-TiO2 photocatalyst | 2021 | 96.14% |
[43] | Transesterification kinetics of waste cooking oil and its diesel engine performance | 2021 | 90% |
[44] | Enhancement of biodiesel production from high-acid-value waste cooking oil via a microwave reactor using a homogeneous alkaline catalyst | 2021 | 98.2% |
[45] | Conversion of Waste Cooking Oil to Biodiesel Catalysed by ZnAl Layered Double Hydroxide | 2021 | 92% |
[46] | Eco-green biodiesel production from domestic waste cooking oil by transesterification using LiOH into basic catalysts mixtures | 2020 | 90% |
[47] | Eco-friendly synthesis of biodiesel from WCO by using electrolysis technique with graphite electrodes | 2020 | 98% |
[48] | Enhanced biodiesel production from waste cooking palm oil, with NaOH-loaded Calcined fish bones as the catalyst | 2020 | 98% |
[49] | Flow-mode synthesis of biodiesel under simultaneous microwave–magnetic irradiation | 2019 | 96.2% |
[50] | Qualitative analysis of biodiesel produced by alkali catalyzed transesterification of waste cooking oil using different alcohols | 2019 | 90% |
[51] | Production of biodiesel by electrolysis method from waste cooking oil using heterogeneous MgO-NaOH nano catalyst | 2019 | 98% |
[52] | Improved rate of transesterification reaction in biodiesel synthesis using hydrodynamic cavitating devices of high throat perimeter to flow area ratios | 2019 | 99% |
[53] | Cetane number prediction of waste cooking oil-derived biodiesel prior to transesterification reaction using near infrared spectroscopy | 2019 | 80% |
[23] | Production of ethyl ester biodiesel from UCO with ethanol and its quick glycerol-biodiesel layer separation using pure glycerol | 2019 | 100% |
[54] | Eco-efficient processes for biodiesel production from waste lipids | 2019 | 99% |
[55] | Optimization of UCO methyl ester production using response surface methodology | 2019 | 91.75% |
Parameter | Units | Standard | Value | Reference |
---|---|---|---|---|
Density at 15 °C | kg/m3 | ASTM D 1298-99 | 870–890 | [56] |
Iodine value | mg I2/g | ISO 3961-2024 | N/A | [8] |
Acid number | mg KOH/g | ASTM D 664 | Maximum 0.8 | [57] |
Kinematic viscosity at 40 °C | mm2/s | ASTM D 445-09 | 1.9–6.0 | [58] |
Flash point | °C | ASTM D 93 | Minimum 130 | [59] |
Cetane number | Cetanos | ASTM D 6890 | Minimum 47 | [60] |
Phosphorus Content | mg/kg | ASTM D 4951 | Maximum 10 | [61] |
Methanol content | % weight | UNE-EN 14110 | Maximum 0.2 | [62] |
Free glycerin | % weight | ASTM D 6584 | Maximum 0.02 | [63] |
General Framework | General Objective | Specific Objective |
---|---|---|
Circular economy National Circular Economy Strategy UCO UCO Generator UCO Manager Second generation biodiesel UCO regulations | Design a strategy for the management of cooking oil waste to produce biodiesel, promoting actions that contribute to the economy | Carry out a diagnosis of the recycling of UCO based on the city of Barranquilla. |
Describe the techniques for using UCO to produce biodiesel | ||
Generate lines of action reflecting the governance around UCO recycling |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santander-Bossio, M.; Silva-Ortega, J.; Cantero-Rodelo, R.; Torres-Salazar, P.; Rivera-Alvarado, J.; Moreno-Rocha, C.; Milánes-Batista, C. From Waste to Energy: Cooking Oil Recycling for Biodiesel in Barranquilla, Colombia. Sustainability 2025, 17, 6560. https://doi.org/10.3390/su17146560
Santander-Bossio M, Silva-Ortega J, Cantero-Rodelo R, Torres-Salazar P, Rivera-Alvarado J, Moreno-Rocha C, Milánes-Batista C. From Waste to Energy: Cooking Oil Recycling for Biodiesel in Barranquilla, Colombia. Sustainability. 2025; 17(14):6560. https://doi.org/10.3390/su17146560
Chicago/Turabian StyleSantander-Bossio, Marylin, Jorge Silva-Ortega, Ruben Cantero-Rodelo, Prince Torres-Salazar, Juan Rivera-Alvarado, Christian Moreno-Rocha, and Celene Milánes-Batista. 2025. "From Waste to Energy: Cooking Oil Recycling for Biodiesel in Barranquilla, Colombia" Sustainability 17, no. 14: 6560. https://doi.org/10.3390/su17146560
APA StyleSantander-Bossio, M., Silva-Ortega, J., Cantero-Rodelo, R., Torres-Salazar, P., Rivera-Alvarado, J., Moreno-Rocha, C., & Milánes-Batista, C. (2025). From Waste to Energy: Cooking Oil Recycling for Biodiesel in Barranquilla, Colombia. Sustainability, 17(14), 6560. https://doi.org/10.3390/su17146560