Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,020)

Search Parameters:
Keywords = pods

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2297 KiB  
Article
Comparative Effectiveness of Continuous Intra-Operative Suprascapular Nerve Block (CI-SSNB) with and Without Intravenous Patient-Controlled Analgesia (IV-PCA) on Acute Post-Arthroscopy Pain: A Retrospective Cohort Study
by Sung-yup Hong, Dong-woo Lee, Ji-hun Kim and Yoon-suk Hyun
J. Clin. Med. 2025, 14(16), 5809; https://doi.org/10.3390/jcm14165809 (registering DOI) - 16 Aug 2025
Abstract
Background/Objectives: Intravenous patient-controlled analgesia (IV-PCA) is commonly used for pain control following arthroscopic rotator cuff repair (ARCR), but its use is limited by adverse effects such as nausea and vomiting. The suprascapular nerve block (SSNB) has emerged as an effective regional analgesic alternative. [...] Read more.
Background/Objectives: Intravenous patient-controlled analgesia (IV-PCA) is commonly used for pain control following arthroscopic rotator cuff repair (ARCR), but its use is limited by adverse effects such as nausea and vomiting. The suprascapular nerve block (SSNB) has emerged as an effective regional analgesic alternative. This retrospective cohort study aimed to compare the analgesic efficacy and safety of continuous intra-operative suprascapular nerve block (CI-SSNB) alone versus CI-SSNB combined with fentanyl-based IV-PCA (CI-SSNB + IV-PCA). Methods: A total of 40 patients undergoing ARCR under general anesthesia with a single-shot interscalene block (ISB) were allocated to either CI-SSNB alone (n = 20) or CI-SSNB + IV-PCA (n = 20). Pain scores were assessed using a 0–10 visual analog scale from 0 to 72 h postoperatively at predetermined intervals, along with opioid consumption and adverse events. Results: At post-operative day 0 (POD 0, 10 p.m.), mean pain scores were 5.75 ± 2.59 in the CI-SSNB + IV-PCA group vs. 3.95 ± 3.00 in the CI-SSNB group (p = 0.050). The total number of rescue pethidine doses up to post-operative day 3 was 1.80 ± 2.02 vs. 0.95 ± 1.10, respectively (p = 0.108). However, adverse effects such as nausea and vomiting occurred only in the CI-SSNB + IV-PCA group. Conclusions: CI-SSNB provides comparable analgesia to CI-SSNB + IV-PCA, while avoiding IV-PCA-related side effects, suggesting that IV-PCA may not be necessary when CI-SSNB is employed for post-operative analgesia following ARCR. Full article
(This article belongs to the Section Orthopedics)
13 pages, 580 KiB  
Article
Glycated Hemoglobin as a Predictor of Postoperative Delirium in Diabetic Patients Undergoing Noncardiac Surgery: A Retrospective Study
by Mahir Bahceci, Ersel Gulec, Mediha Turktan, Zehra Hatipoglu and Dilek Ozcengiz
Medicina 2025, 61(8), 1474; https://doi.org/10.3390/medicina61081474 (registering DOI) - 16 Aug 2025
Abstract
Background and Objectives: Diabetes is a known risk factor for postoperative delirium (POD); however, the relationship between the markers of glycemic control and the occurrence of POD in noncardiac surgery is not established. We initiated this pilot study to determine any possible [...] Read more.
Background and Objectives: Diabetes is a known risk factor for postoperative delirium (POD); however, the relationship between the markers of glycemic control and the occurrence of POD in noncardiac surgery is not established. We initiated this pilot study to determine any possible associations between preoperative HbA1c levels and POD development; this will allow for larger, definitive studies to be designed and preliminary effect sizes to be established for future research. Materials and Methods: This retrospective pilot study included 78 patients with diabetes who underwent elective noncardiac surgery under general anesthesia between July 2020 and January 2021. We obtained the patients’ demographic data, medical history, surgical parameters, and preoperative HbA1c levels to determine the occurrence of POD (using CAM-ICU). Univariate and multivariate regression analyses were applied to check the leading associations for the development of POD. Results: POD was observed in seven patients (9.0%). The results of the preliminary multivariate analysis suggested that HbA1c may be associated with POD (OR, 2.96; 95% CI [1.34–6.52], p = 0.007); fasting blood glucose (OR, 1.04; 95% CI [1.01–1.07], p = 0.013); and duration of anesthesia (OR, 1.02; 95% CI [1.00–1.04], p = 0.019). The ROC analysis of HbA1c showed an optimal threshold of 7.4%, with a sensitivity of 91.5%, and a specificity of 85.7% in terms of predicting POD (AUC = 0.91, p < 0.001). Conclusions: Through this pilot study, we have provided evidence that leads to the assumption that preoperative HbA1c at, or above, 7.4% can result in an increased risk of delirium in diabetic patients who undergo noncardiac surgery. The findings of this study allow for the implementation of the proposed methodology and the collection of critical data necessary for the design of appropriately powered definitive trials. Full article
(This article belongs to the Section Intensive Care/ Anesthesiology)
18 pages, 5324 KiB  
Article
The Yunyao LEO Satellite Constellation: Occultation Results of the Neutral Atmosphere Using Multi-System Global Navigation Satellites
by Hengyi Yue, Naifeng Fu, Fenghui Li, Yan Cheng, Mengjie Wu, Peng Guo, Wenli Dong, Xiaogong Hu and Feixue Wang
Remote Sens. 2025, 17(16), 2851; https://doi.org/10.3390/rs17162851 (registering DOI) - 16 Aug 2025
Abstract
The Yunyao Aerospace Constellation Program is the core project being developed by Yunyao Aerospace Technology Co., Ltd., Tianjin, China. It aims to provide scientific data for weather forecasting, as well as research on the ionosphere and neutral atmosphere. It is expected to launch [...] Read more.
The Yunyao Aerospace Constellation Program is the core project being developed by Yunyao Aerospace Technology Co., Ltd., Tianjin, China. It aims to provide scientific data for weather forecasting, as well as research on the ionosphere and neutral atmosphere. It is expected to launch 90 high time resolution weather satellites. Currently, the Yunyao space constellation provides nearly 16,000 BDS, GPS, GLONASS, and Galileo multi-system occultation profile products on a daily basis. This study initially calculates the precise orbits of Yunyao LEO satellites independently using each GNSS constellation, allowing the derivation of the neutral atmospheric refractive index profile. The precision of the orbit product was evaluated by comparing carrier-phase residuals (ranging from 1.48 cm to 1.68 cm) and overlapping orbits. Specifically, for GPS-based POD, the average 3D overlap accuracy was 4.93 cm, while for BDS-based POD, the average 3D overlap accuracy was 5.18 cm. Simultaneously, the global distribution, the local time distribution, and penetration depth of the constellation were statistically analyzed. BDS demonstrates superior performance with 21,093 daily occultation profiles, significantly exceeding GPS and GLONASS by 15.9% and 121%, respectively. Its detection capability is evidenced by 79.75% of profiles penetrating below a 2 km altitude, outperforming both GPS (78.79%) and GLONASS (71.75%) during the 7-day analysis period (DOY 169–175, 2023). The refractive index profile product was also compared with the ECWMF ERA5 product. At 35 km, the standard deviation of atmospheric refractivity for BDS remains below 1%, while for GPS and GLONASS it is found at around 1.5%. BDS also outperforms GPS and GLONASS in terms of the standard deviation in the atmospheric refractive index. These results indicate that Yunyao satellites can provide high-quality occultation product services, like for weather forecasting. With the successful establishment of the global BDS-3 network, the space signal accuracy has been significantly enhanced, with BDS-3 achieving a Signal-in-Space Ranging Error (SISRE) of 0.4 m, outperforming GPS (0.6 m) and GLONASS (1.7 m). This enables superior full-link occultation products for BDS. Full article
Show Figures

Figure 1

12 pages, 2024 KiB  
Article
Reliability of Standardised High-Intensity Static Stretching on the Hamstrings over Multiple Visits
by Joseph Bryant, Darren J. Cooper, Derek M. Peters and Matthew D. Cook
Muscles 2025, 4(3), 33; https://doi.org/10.3390/muscles4030033 - 15 Aug 2025
Abstract
Static stretching (SS) is commonly used in athletic programs, and the intensity of SS has recently been examined for its effects on range of motion (ROM), strength and passive stiffness. However, the reliability of high-intensity SS across multiple testing sessions has not been [...] Read more.
Static stretching (SS) is commonly used in athletic programs, and the intensity of SS has recently been examined for its effects on range of motion (ROM), strength and passive stiffness. However, the reliability of high-intensity SS across multiple testing sessions has not been investigated. The purpose of this investigation was to examine the reliability of high-intensity SS of the hamstrings across five laboratory visits on ROM, strength, power and passive stiffness. Thirteen physically active males (age: 26 ± 4 years, height: 180 ± 8 cm, body mass: 81 ± 10 Kg) underwent five repeated measures of laboratory SS on an isokinetic dynamometer where point of discomfort (POD) was measured, followed by a 30 s stretch at 120% POD. Across the visits, the pooled intraclass correlation coefficient was good for knee extension ROM (0.82), knee flexion strength (0.81) and passive stiffness (0.81). The ROM achieved to determine the POD before the SS was not different for the five visits (p = 0.370). These findings suggest high-intensity SS to 120% POD on an isokinetic dynamometer is reliable across multiple testing sessions. It is not clear if high-intensity static stretching is also reliable within applied scenarios and warrants further investigation. Full article
Show Figures

Figure 1

21 pages, 546 KiB  
Article
Chemical and Sensory Characterization of Carob Spirits According to Different Distillation Systems
by Clara López-Colom, Julio Andazola, Carles Bargalló-Guinjoan, Juan José Rodríguez-Bencomo and Francisco López
Beverages 2025, 11(4), 119; https://doi.org/10.3390/beverages11040119 - 15 Aug 2025
Abstract
Carob is the legume of the carob tree (Ceratonia siliqua L.), which is cultivated in many parts of the Mediterranean area. It is mainly used as animal feed and in the formulations of human foods. Due to the high concentration of sugars [...] Read more.
Carob is the legume of the carob tree (Ceratonia siliqua L.), which is cultivated in many parts of the Mediterranean area. It is mainly used as animal feed and in the formulations of human foods. Due to the high concentration of sugars in carob pods, this fruit could be used as a raw material to produce distillates. In this study, the effect of the distillation system (Charantais alembic versus Charantais alembic with column) on the chemical and sensory characteristics, as well as on the ethanol yield of carob spirits, was analyzed. The ethanol recovery using Charantais alembic was 74.9%, and for Charantais alembic with column, it was 85.8%. Regarding the chemical composition, esters, furanic compounds, and alcohols were the most abundant compounds in the distillates. Principal component analysis was used to identify the different distillate fractions, first distillations, and residues. Nevertheless, the corresponding distillate fractions for both distillation systems were plotted near to each other due to the similar concentration of the volatile compounds. The spirits obtained from both distillation systems were not differentiated by organoleptic triangular and two-alternative forced-choice (2-AFC) tests according to the results of the semi-trained and professional panels. Both spirits were sensorial characterized as floral, fruity, and alcoholic. Full article
Show Figures

Graphical abstract

26 pages, 2062 KiB  
Article
Exogenous Melatonin Induces Salt Stress Tolerance in Cucumber by Promoting Plant Growth and Defense System
by Guangchao Yu, Zhipeng Wang, Ming Wei, Lian Jia, Yue Qu, Yingyi Jiang and Shihan Xiang
Life 2025, 15(8), 1294; https://doi.org/10.3390/life15081294 - 14 Aug 2025
Abstract
This study aims to investigate the regulatory effect of exogenous melatonin (MT) on the growth and development of cucumbers subjected to salt stress. Using the XinTaiMiCi material and indoor pot culture method, seven treatments were set up: control group (CK), T0 (salt treatment [...] Read more.
This study aims to investigate the regulatory effect of exogenous melatonin (MT) on the growth and development of cucumbers subjected to salt stress. Using the XinTaiMiCi material and indoor pot culture method, seven treatments were set up: control group (CK), T0 (salt treatment group, 150 mM S + 0 μM MT), T1 (150 mM S + 25 μM MT), T2 (150 mM S + 50 μM MT), T3 (150 mM S + 100 μM MT), T4 (150 mM S + 150 μM MT), and T5 (150 mM S + 200 μM MT). Changes in plant height, stem diameter, leaf area, relative chlorophyll content, antioxidant enzyme activity, reactive oxygen species content, and osmotic adjustment substance content in cucumber seeds and seedlings under different treatments were studied, and a correlation analysis of these indicators was conducted. Meanwhile, the expression of salt stress-related genes was detected in all seven treatment groups. The results showed that, compared to the CK, T0 significantly reduced the hypocotyl length, root length, hypocotyl diameter, root diameter, and fresh and dry weights of cucumber seeds; in the later stage of salt stress treatment, T0 significantly increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and malondialdehyde (MDA) and the content of soluble protein in seeds. Additionally, T0 significantly increased the plant height, root length, stem diameter, leaf area, and fresh and dry weights of cucumber seedlings per plant; in the later stage of salt stress treatment, T0 significantly increased the activities of SOD, POD, CAT, and MDA and the content of soluble protein and chlorophyll in leaves. Compared to T0, the application of 50 μmol·L−1 MT under salt stress significantly increased the plant height, stem diameter, root length, leaf area, and fresh and dry weights of cucumber seedlings per plant; significantly increased the activities of SOD, POD, and CAT; decreased the MDA activity; and significantly increased the content of soluble protein and chlorophyll. Under salt stress conditions, the exogenous application of low-concentration melatonin increased the expression levels of salt stress response genes (such as CsSOS, CsNHX, CsHSF, and CsDREB) in cucumber. The germination rate (GR), germination potential (GP), germination index (GI), plant height (PH), root length (RL), leaf area index (LAI), fresh weight (FW), dry weight (DW), soluble protein (SP), relative chlorophyll content (SPAD), POD, CAT, and SOD of cucumber seedlings exhibited significant positive correlations, whereas they were negatively correlated with MDA content. In conclusion, the application of 50 μM MT can effectively alleviate the oxidative and osmotic stress caused by a high-salt environment in cucumber, promote cucumber growth, and improve salt tolerance. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

25 pages, 9293 KiB  
Article
A Performance Evaluation and Statistical Analysis of IMERG Precipitation Products During Medicane Daniel (September 2023) in the Thessaly Plain, Greece
by Evangelos Leivadiotis and Aris Psilovikos
Water 2025, 17(16), 2401; https://doi.org/10.3390/w17162401 - 14 Aug 2025
Abstract
The precise estimation of precipitation is key to understanding and mitigating the effects of extreme weather conditions, especially in areas susceptible to Mediterranean cyclones. This work assesses the performance of the integrated multi-satellite retrievals for GPM (IMERG) precipitation products during the extreme Mediterranean [...] Read more.
The precise estimation of precipitation is key to understanding and mitigating the effects of extreme weather conditions, especially in areas susceptible to Mediterranean cyclones. This work assesses the performance of the integrated multi-satellite retrievals for GPM (IMERG) precipitation products during the extreme Mediterranean cyclone “Medicane Daniel” that affected the Thessaly Plain in Central Greece in early September 2023. Three IMERG versions (final run (FR), early run (ER), and late run (LR)) were inter-compared with gauge-based interpolated rainfall estimates using inverse distance weighting (IDW) and ordinary kriging techniques. Pixel-wise and categorical verification metrics, such as the probability of detection (POD), false alarm ratio (FAR), critical success index (CSI), and Peirce skill score (PSS), were calculated for rainfall thresholds between 50 mm and 400 mm. It was found that the IMERG final run agreed most with the ground observations, with a correlation coefficient (R) of 0.87, RMSE of 138.8 mm, and CSI up to 0.995 at the 100 mm threshold when the IDW interpolation was used. Kriging produced slightly better spatial accuracy overall, as indicated by a lower RMSE (14.5 mm) and higher correlation (R = 0.99). The results indicate the benefit of combining satellite precipitation data with ground-based observations through spatial interpolation for the enhanced monitoring of extreme weather events over complex terrain. Kriging is suggested when greater spatial reliability is needed, while IMERG-FR is found to be a reliable satellite product for quick response analysis during heavy precipitation events. The study emphasizes the importance of blending satellite precipitation estimates and ground observations via spatial interpolation methods, i.e., kriging and IDW, allowing for a more localized and precise validation of intense weather events. Full article
(This article belongs to the Special Issue Sustainable and Efficient Water Use in the Face of Climate Change)
Show Figures

Figure 1

21 pages, 4239 KiB  
Article
Melatonin-Producing Bacillus aerius EH2-5 Enhances Glycine max Plants Salinity Tolerance Through Physiological, Biochemical, and Molecular Modulation
by Eun-Hae Kwon, Suhaib Ahmad and In-Jung Lee
Int. J. Mol. Sci. 2025, 26(16), 7834; https://doi.org/10.3390/ijms26167834 - 13 Aug 2025
Viewed by 193
Abstract
Climate change has intensified extreme weather events and accelerated soil salinization, posing serious threats to crop yield and quality. Salinity stress, now affecting about 20% of irrigated lands, is expected to worsen due to rising temperatures and sea levels. At the same time, [...] Read more.
Climate change has intensified extreme weather events and accelerated soil salinization, posing serious threats to crop yield and quality. Salinity stress, now affecting about 20% of irrigated lands, is expected to worsen due to rising temperatures and sea levels. At the same time, the global population is projected to exceed 9 billion by 2050, demanding a 70% increase in food production (UN, 2019; FAO). Agriculture, responsible for 34% of global greenhouse gas emissions, urgently needs sustainable solutions. Microbial inoculants, known as “plant probiotics,” offer a promising eco-friendly alternative by enhancing crop resilience and reducing environmental impact. In this study, we evaluated the plant growth-promoting (PGP) traits and melatonin-producing capacity of Bacillus aerius EH2-5. To assess its efficacy under salt stress, soybean seedlings at the VC stage were inoculated with EH2-5 and subsequently subjected to salinity stress using 150 mM and 100 mM NaCl treatments. Plant growth parameters, the expression levels of salinity-related genes, and the activities of antioxidant enzymes were measured to determine the microbe’s role in promoting plant growth and mitigating salt-induced oxidative stress. Here, our study shows that the melatonin-synthesizing Bacillus aerius EH2-5 (7.48 ng/mL at 24 h after inoculation in Trp spiked LB media) significantly improved host plant (Glycine max L.) growth, biomass, and photosynthesis and reduced oxidative stress during salinity stress conditions than the non-inculcated control. Whole genome sequencing of Bacillus aerius EH2-5 identified key plant growth-promoting and salinity stress-related genes, including znuA, znuB, znuC, and zur (zinc uptake); ptsN, aspA, and nrgB (nitrogen metabolism); and phoH and pstS (phosphate transport). Genes involved in tryptophan biosynthesis and transport, such as trpA, trpB, trpP, and tspO, along with siderophore-related genes yusV, yfhA, and yfiY, were also detected. The presence of multiple stress-responsive genes, including dnaK, dps, treA, cspB, srkA, and copZ, suggests EH2-5′s genomic potential to enhance plant tolerance to salinity and other abiotic stresses. Inoculation with Bacillus aerius EH2-5 significantly enhanced soybean growth and reduced salt-induced damage, as evidenced by increased shoot biomass (29%, 41%), leaf numbers (12% and 13%), and chlorophyll content (40%, 21%) under 100 mM and 150 mM NaCl compared to non-inoculated plants. These results indicate EH2-5′s strong potential as a plant growth-promoting and salinity stress-alleviating rhizobacterium. The EH2-5 symbiosis significantly enhanced a key ABA biosynthesis enzyme-related gene NCED3, dehydration responsive transcription factors DREB2A and NAC29 salinity stresses (100 mM and 150 mM). Moreover, the reduced expression of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) by 16%, 29%, and 24%, respectively, and decreased levels of malondialdehyde (MDA) and hydroxy peroxidase (H2O2) by 12% and 23% were observed under 100 mM NaCl compared to non-inoculated plants. This study demonstrated that Bacillus aerius EH2-5, a melatonin-producing strain, not only functions effectively as a biofertilizer but also alleviates plant stress in a manner comparable to the application of exogenous melatonin. These findings highlight the potential of utilizing melatonin-producing microbes as a viable alternative to chemical treatments. Therefore, further research should focus on enhancing the melatonin biosynthetic capacity of EH2-5, improving its colonization efficiency in plants, and developing synergistic microbial consortia (SynComs) with melatonin-producing capabilities. Such efforts will contribute to the development and field application of EH2-5 as a promising plant biostimulant for sustainable agriculture. Full article
(This article belongs to the Special Issue Genetics and Novel Techniques for Soybean Pivotal Characters)
Show Figures

Figure 1

16 pages, 2255 KiB  
Article
Exploring the Functional Potential of the Xyrophytic Greek Carob (Ceratonia siliqua, L.) Cold Aqueous and Hydroethanolic Extracts
by Katerina Pyrovolou, Panagiota-Kyriaki Revelou, Maria Trapali, Irini F. Strati, Spyros J. Konteles, Petros A. Tarantilis and Anthimia Batrinou
Appl. Sci. 2025, 15(16), 8909; https://doi.org/10.3390/app15168909 - 13 Aug 2025
Viewed by 209
Abstract
The present study investigates the antimicrobial, antioxidant, and in vitro antidiabetic potential of cold infusions prepared from different parts of the Greek carob tree (Ceratonia siliqua L.), which is a xerophytic species. Carob samples, including green and ripe pods and leaves, were [...] Read more.
The present study investigates the antimicrobial, antioxidant, and in vitro antidiabetic potential of cold infusions prepared from different parts of the Greek carob tree (Ceratonia siliqua L.), which is a xerophytic species. Carob samples, including green and ripe pods and leaves, were collected from an urban area of Attica, Greece, and extracted using food-grade solvents (water and a water–ethanol mixture, 90:10, v/v). The extracts were evaluated for antibacterial activity against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 6538 using automated turbidometry. In addition, total phenolic content and antioxidant and antiradical activities were determined via spectrophotometry; the phenolic profile was analyzed using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-QToF-MS), and α-amylase inhibitory activity was assessed through an in vitro assay. All extracts exhibited statistically significant (p < 0.05) bacteriostatic effects, with green pods and leaves showing the highest activity. Ripe pods demonstrated the most potent α-amylase inhibition (up to 96.43%), especially when extracted with water–ethanol mixture (90:10, v/v). Liquid chromatography coupled with tandem quadrupole/time-of-flight mass spectrometry (LC-QToF-MS) analysis revealed a rich phenolic profile across all samples. While carob leaves showed no α-amylase inhibition, their phenolic profile suggests other potential health-related bioactivities. These findings support the development of carob-based functional food products and highlight the nutritional and pharmaceutical potential of this resilient Mediterranean crop. Full article
Show Figures

Figure 1

25 pages, 11706 KiB  
Article
Optimization of Sparse Sensor Layouts and Data-Driven Reconstruction Methods for Steady-State and Transient Thermal Field Inverse Problems
by Qingyang Yuan, Peijun Yao, Wenjun Zhao and Bo Zhang
Sensors 2025, 25(16), 4984; https://doi.org/10.3390/s25164984 - 12 Aug 2025
Viewed by 202
Abstract
This paper investigates the inverse reconstruction of temperature fields under both steady-state and transient heat conduction scenarios. The central contribution lies in the structured development and validation of the Gappy Clustering-based Proper Orthogonal Decomposition (Gappy C-POD) method—an approach that, despite its conceptual origin [...] Read more.
This paper investigates the inverse reconstruction of temperature fields under both steady-state and transient heat conduction scenarios. The central contribution lies in the structured development and validation of the Gappy Clustering-based Proper Orthogonal Decomposition (Gappy C-POD) method—an approach that, despite its conceptual origin alongside the clustering-based dimensionality reduction method guided by POD structures (C-POD), had previously lacked an explicit algorithmic framework or experimental validation. To this end, the study constructs a comprehensive solution framework that integrates sparse sensor layout optimization with data-driven field reconstruction techniques. Numerical models incorporating multiple internal heat sources and heterogeneous boundary conditions are solved using the finite difference method. Multiple sensor layout strategies—including random selection, S-OPT, the Correlation Coefficient Filtering Method (CCFM), and uniform sampling—are evaluated in conjunction with database generation techniques such as Latin Hypercube sampling, Sobol sequences, and maximum–minimum distance sampling. The experimental results demonstrate that both Gappy POD and Gappy C-POD exhibit strong robustness in low-modal scenarios (1–5 modes), with Gappy C-POD—when combined with the CCFM and maximum distance sampling—achieving the best reconstruction stability. In contrast, while POD-MLP and POD-RBF perform well at higher modal numbers (>10), they show increased sensitivity to sensor configuration and sample size. This research not only introduces the first complete implementation of the Gappy C-POD methodology but also provides a systematic evaluation of reconstruction performance across diverse sensor placement strategies and reconstruction algorithms. The results offer novel methodological insights into the integration of data-driven modeling and sensor network design for solving inverse temperature field problems in complex thermal environments. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

13 pages, 974 KiB  
Article
Mechanism of H2S in Inhibiting the Senescence and Browning of Fresh-Cut Potatoes
by Zixu Lu, Nannan Liu, Wanjie Li, Lisheng Guan, Gaifang Yao, Hua Zhang and Kangdi Hu
Int. J. Mol. Sci. 2025, 26(16), 7785; https://doi.org/10.3390/ijms26167785 - 12 Aug 2025
Viewed by 181
Abstract
The market for fresh-cut fruits and vegetables is gradually expanding and is popular among consumers, but fresh-cut fruits and vegetables are highly susceptible to browning, causing a decrease in their quality and nutrition. Although anti-browning reagents and cryopreservation methods are often used for [...] Read more.
The market for fresh-cut fruits and vegetables is gradually expanding and is popular among consumers, but fresh-cut fruits and vegetables are highly susceptible to browning, causing a decrease in their quality and nutrition. Although anti-browning reagents and cryopreservation methods are often used for fresh-cut fruits and vegetables, the effects are not satisfactory. In this paper, hydrogen sulfide (H2S) donor NaHS solution was used for fumigation of fresh-cut potatoes to explore the mechanism of H2S signaling on the browning of fresh-cut potatoes at the biochemical level. Fresh-cut potatoes were fumigated with H2S and it was found that H2S treatment maintained better color compared with the browning of water control. Then, total phenolic content, reactive oxygen species-related metabolites hydrogen peroxide (H2O2) and superoxide anion (·O2), along with malondialdehyde (MDA), the activities of antioxidant enzymes, and the browning-related enzymes polyphenol oxidase (PPO), catalase (CAT), peroxidase (POD), and phenylalanine amine lyase (PAL) were determined. The results of both principal component analysis (PCA) and correlation analyses consistently indicated that CAT activity showed a strong positive correlation with the browning degree of fresh-cut potatoes. The data indicated that H2S reduced the degree of browning, increased the total phenolic content, inhibited the accumulation of reactive oxygen species (ROS) content, inhibited POD, PPO, and PAL activities, and increased CAT activity. Full article
(This article belongs to the Special Issue Signaling and Stress Adaptation in Plants)
Show Figures

Figure 1

21 pages, 3115 KiB  
Article
Inhibitory Effect of Bacillus velezensis dhm2 on Fusarium oxysporum f. sp. cucumerinum and Synergistic Activity of Crude Lipopeptide Extract with Chemical Fungicides
by Xinyu He, Haiming Duan, Xingyu Liu, Zhuangzhuang Li, Li Yu, Cheng Zhou, Wenjie Lu and Haibing Yu
Agriculture 2025, 15(16), 1730; https://doi.org/10.3390/agriculture15161730 - 12 Aug 2025
Viewed by 192
Abstract
Fusarium oxysporum f. sp. cucumerium, a resilient saprophytic fungus, poses a significant risk to cucumber crops. The research investigated the suppressive impact of Bacillus velezensis dhm2 on this pathogen and the synergistic performance of its crude lipopeptide extract with synthetic fungicides. Strain [...] Read more.
Fusarium oxysporum f. sp. cucumerium, a resilient saprophytic fungus, poses a significant risk to cucumber crops. The research investigated the suppressive impact of Bacillus velezensis dhm2 on this pathogen and the synergistic performance of its crude lipopeptide extract with synthetic fungicides. Strain dhm2 inhibited the pathogen by 52.27% in confrontation culture. Its fermentation supernatant showed peak activity at 4 h bacterial age and 60 h fermentation duration, while the crude lipopeptide extract had an EC50 of 9.99 g L−1. Among the six chemical fungicides, prochloraz exhibited the highest toxicity, with an EC50 value of 0.03 μg mL−1. In all mixed combinations of the crude lipopeptide extract and chemical fungicides, there existed synergistic mixing ratios, particularly with difenoconazole (volume ratio 7:3, synergistic ratio 5.88) and propiconazole (7:3, 3.41), as confirmed by Wadley tests. Pot experiments revealed that the combined use of the crude lipopeptide extract and difenoconazole controlled cucumber Fusarium wilt by 80.95%. The mixture showed the highest SOD (315.76 U g−1 FW min−1), POD (281.63 U g−1 FW min−1), and CAT (23.39 U g−1 FW min−1), with increases over single treatments. This study provides an eco-friendly strategy for managing cucumber wilt, advocating reduced fungicide use via synergistic formulations. Full article
Show Figures

Figure 1

17 pages, 2396 KiB  
Article
Feasibility of Using Biomarkers for Assessing Heavy-Metal Contamination in Soil: A Meta-Analysis
by Yangbeijia Liu, Zixuan Li, Liyu Li, Sisi Zhao, Wendi Zhao and Yinghua Shu
Agriculture 2025, 15(16), 1728; https://doi.org/10.3390/agriculture15161728 - 11 Aug 2025
Viewed by 238
Abstract
Soil contamination by heavy metals represents a critical environmental challenge, demanding reliable assessment methods. While biotoxicity assays are widely employed, the selection of sensitive biomarkers for heavy-metal contamination remains poorly defined. This study systematically assessed the sensitivity of biological indicators by analyzing 17 [...] Read more.
Soil contamination by heavy metals represents a critical environmental challenge, demanding reliable assessment methods. While biotoxicity assays are widely employed, the selection of sensitive biomarkers for heavy-metal contamination remains poorly defined. This study systematically assessed the sensitivity of biological indicators by analyzing 17 peer-reviewed studies (2003–2024) from various databases. The results revealed significant changes in the physiological and biochemical indicators of soil organisms exposed to heavy metals. Specifically, compared to control groups, the experimental groups showed 180%, 150%, and 145% catalase (CAT), peroxidase (POD), and malondialdehyde (MDA) concentrations, respectively. Meta-regression analysis indicated that biomarker responses are shaped by metal type, concentration, exposure duration, soil organism species, and soil variables. Cadmium exposure significantly increased CAT activity (+2.26), SOD activity (+3.46), POD activity (+3.44), and MDA content (+2.80). While CAT activity exhibited significant publication bias, POD and MDA remain promising biomarkers, with applicability varying across species and environmental conditions. This study presents a decision framework for biomarker selection based on metal speciation and soil properties, aiming to standardize ecological risk assessments and strengthen regulatory monitoring of heavy-metal impacts on soil health. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

21 pages, 1426 KiB  
Article
Effects of a Novel Waterlogging-Tolerant Growth-Promoting Pelletizing Agent on the Growth of Brassica napus
by Lingyu Li, Gang Xiao, Hao Jin, Yue Wang, Chunfeng Xie and Zhenqian Zhang
Horticulturae 2025, 11(8), 946; https://doi.org/10.3390/horticulturae11080946 - 11 Aug 2025
Viewed by 261
Abstract
The Yangtze River Basin serves as the primary rapeseed-producing region in China, accounting for over 80% of the national output, yet it is severely impacted by waterlogging, resulting in yield reductions of 17–42.4%. This study investigated the effects of pelleting treatments on growth [...] Read more.
The Yangtze River Basin serves as the primary rapeseed-producing region in China, accounting for over 80% of the national output, yet it is severely impacted by waterlogging, resulting in yield reductions of 17–42.4%. This study investigated the effects of pelleting treatments on growth and waterlogging resistance in Brassica napus varieties Xiangzayou 787 and Fanmingyoutai. Conventional pelleting agents were augmented with waterlogging resistance agents, surfactants, and amino acids as growth-promoting reagents. The results demonstrated that melatonin at 5.0×105 mol/L significantly enhanced rapeseed growth and stress resistance. Specifically, for Xiangzayou 787, root fresh weight increased by 16.9% and stem diameter by 30.6%; for Fanmingyoutai, stem diameter increased by 16.9% and leaf length by 12.3%. The freezing injury index decreased by 90.9% for Xiangzayou 787 and 50% for Fanmingyoutai. The waterlogging injury index was reduced by 43.5% for Xiangzayou 787 and 30.4% for Fanmingyoutai, with stem diameter increasing by 30.6% and 16.5% in the respective varieties. The disease index decreased by 63.2% for Xiangzayou 787 (incidence reduced to 20.5%) and up to 57.1% for Fanmingyoutai (incidence reduced to 23.3%). Under this treatment, soluble protein content in Fanmingyoutai reached 20.37%, representing a 20.37% increase relative to the control. Peroxidase (POD) and superoxide dismutase (SOD) activities exceeded control levels, exhibiting an initial rise followed by a decline; malondialdehyde (MDA) content gradually increased; catalase (CAT) activity and soluble protein content showed an initial increase then decrease. The increase in relative electrical conductivity was reduced by 20.8% for Xiangzayou 787 and 17.3% for Fanmingyoutai. Yield per plant increased by 10.2% for Xiangzayou 787 and 35.6% for Fanmingyoutai. The newly developed pelleting formulation integrates waterlogging resistance agents, surfactants, and amino acids, unlike traditional agents, and proves effective for both hybrid and conventional rapeseed varieties. It enhances waterlogging resistance, promotes growth, improves disease resistance, and elevates seed quality while being cost-effective and simple for production and field application. This approach significantly boosts yield and supports productivity enhancement in southern rice fields, thereby improving rapeseed output and oil supply. Full article
(This article belongs to the Section Biotic and Abiotic Stress)
Show Figures

Figure 1

15 pages, 6204 KiB  
Article
Transient Overexpression of VvMYBPA1 in Grape Berries Enhances Susceptibility to Botrytis cinerea Through ROS Homeostasis Modulation
by Lihong Hao, Yuxin Zhang, Zeying Ge, Xinru Meng, Yu Sun and Huilan Yi
Plants 2025, 14(16), 2469; https://doi.org/10.3390/plants14162469 - 9 Aug 2025
Viewed by 241
Abstract
Gray mold disease, caused by Botrytis cinerea, severely impacts grape production worldwide. Although proanthocyanidins (PAs) contribute to fungal pathogen resistance, their role in grape defense against B. cinerea remains unclear. Here, we demonstrate that VvMYBPA1, a key transcriptional regulator of PA biosynthesis, [...] Read more.
Gray mold disease, caused by Botrytis cinerea, severely impacts grape production worldwide. Although proanthocyanidins (PAs) contribute to fungal pathogen resistance, their role in grape defense against B. cinerea remains unclear. Here, we demonstrate that VvMYBPA1, a key transcriptional regulator of PA biosynthesis, negatively modulates B. cinerea resistance in grape berries. While infection suppressed endogenous VvMYBPA1, its agroinfiltration-mediated transient overexpression in berries elevated susceptibility, paralleling reduced β-1,3-glucanase (BGL) and polyphenol oxidase (PPO) activities. Additionally, VvMYBPA1 overexpression elevated VvRBOHs’ expression and reduced peroxidase (POD) activity, resulting in excessive hydrogen peroxide (H2O2) accumulation and more cell death. Our results reveal that VvMYBPA1 negatively regulates B. cinerea resistance by disrupting antioxidant enzyme activity and ROS homeostasis, providing new insights into the interplay between PA biosynthesis and fungal defense mechanisms. Full article
Show Figures

Figure 1

Back to TopTop