Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = pneumatic flexible coupling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7897 KiB  
Article
Dynamics Modeling and Analysis of a Vertical Landing Mechanism for Reusable Launch Vehicle
by Haiquan Li, Wenzhe Xu, Yun Zhao, Anzhu Hong, Mingjie Han, Haibo Ji and Chaoyang Sun
Aerospace 2025, 12(4), 280; https://doi.org/10.3390/aerospace12040280 - 27 Mar 2025
Viewed by 651
Abstract
In this work, a vertical landing mechanism of a reusable launch vehicle (RLV) is investigated using a flexible–rigid coupled dynamics model. The presented model takes into account the four-legged landing mechanism and the main body cabin. Flexibilities of the main components in the [...] Read more.
In this work, a vertical landing mechanism of a reusable launch vehicle (RLV) is investigated using a flexible–rigid coupled dynamics model. The presented model takes into account the four-legged landing mechanism and the main body cabin. Flexibilities of the main components in the vertical landing mechanism are considered. The hydro-pneumatic spring force and thrust aftereffect caused by the sequential deactivation of the engine are introduced separately. Several simulation cases are selected to analyze the loads acting on the landing mechanism and the dynamics behavior of the whole RLV system. Simulation results show that considering flexibility in the landing mechanism is critical for dynamics analysis under various initial conditions. The adopted RLV design is capable of achieving stable landings under specified initial velocity and attitude conditions, demonstrating its feasibility for engineering applications. Moreover, the hydro-pneumatic spring plays a crucial role in absorbing the impact of the initial landing leg, ensuring a smoother landing experience and minimizing potential damage to the vehicle. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

23 pages, 11844 KiB  
Article
Modeling and Compensation of Stiffness-Dependent Hysteresis Coupling Behavior for Parallel Pneumatic Artificial Muscle-Driven Soft Manipulator
by Ying Zhang, Huiming Qi, Qiang Cheng, Zhi Li and Lina Hao
Appl. Sci. 2024, 14(22), 10240; https://doi.org/10.3390/app142210240 - 7 Nov 2024
Viewed by 1071
Abstract
The parallel driving soft manipulator with multiple extensors and contractile pneumatic artificial muscles (PAMs) is able to operate continuously and has varying stiffness, achieving smooth movements and a fundamental trade-off between flexibility and stiffness. Owing to the hysteresis of PAMs and actuator couplings, [...] Read more.
The parallel driving soft manipulator with multiple extensors and contractile pneumatic artificial muscles (PAMs) is able to operate continuously and has varying stiffness, achieving smooth movements and a fundamental trade-off between flexibility and stiffness. Owing to the hysteresis of PAMs and actuator couplings, the manipulator outputs display coupled hysteresis behaviors with stiffness dependence, causing significant positioning errors. For precise positioning control, this paper takes the lead in proposing a comprehensive model aimed at accurately predicting the coupled hysteresis behavior with the stiffness dependence of the soft manipulator. The model consists of an inherent hysteresis submodule, an actuator coupling submodule, and a stiffness-dependent submodule in series. The asymmetrical hysteresis nonlinearity of the PAM is established by the generalized Prandtl–Ishlinskii model in the inherent hysteresis submodule. The serial actuator coupling submodule is dedicated to modeling the actuator couplings, and the stiffness-dependent submodule is implemented with a fuzzy neural network to characterize the stiffness dependence and other system nonlinearities. In addition, an inverse compensator on the basis of the proposed model is conducted. Experiments demonstrate that this model possesses high accuracy and good generalization, and its compensator is effective in decoupling and mitigating hysteresis coupling of the manipulator. The proposed model and control methods significantly improve the positioning accuracy of the pneumatic soft manipulator. Full article
Show Figures

Figure 1

25 pages, 20721 KiB  
Article
Experimental Verification of a Compressor Drive Simulation Model to Minimize Dangerous Vibrations
by Marek Moravič, Daniela Marasová, Peter Kaššay, Maksymilian Ozdoba, František Lopot and Piotr Bortnowski
Appl. Sci. 2024, 14(22), 10164; https://doi.org/10.3390/app142210164 - 6 Nov 2024
Cited by 1 | Viewed by 961
Abstract
The article highlights the importance of analytical computational models of torsionally oscillating systems and their simulation for estimating the lowest resonance frequencies. It also identifies the pitfalls of the application of these models in terms of the accuracy of their outputs. The aim [...] Read more.
The article highlights the importance of analytical computational models of torsionally oscillating systems and their simulation for estimating the lowest resonance frequencies. It also identifies the pitfalls of the application of these models in terms of the accuracy of their outputs. The aim of the paper is to control the dangerous vibration of a mechanical system actuator using a pneumatic elastic coupling using different approaches such as analytical calculations, experimental measurement results, and simulation models. Based on the known mechanical properties of the laboratory system, its dynamic model in the form of a twelve-mass chain torsionally oscillating mechanical system is developed. Subsequently, the model is reduced to a two-mass system using the method of partial frequencies according to Rivin. The total load torque of the piston compressor under fault-free and fault conditions is simulated to obtain the amplitudes and phases of the harmonic components of the dynamic torque. After calculating the natural frequency and the natural shape of the oscillation, the Campbell diagram is processed to determine the critical revolutions. There is a pneumatic flexible coupling between the rotating masses, which changes the dynamic torsional stiffness. The dynamic torque curves transmitted by the coupling are compared with different dynamic torsional stiffnesses during steady-state operation and one cylinder failure. The monitored values are the position of the critical revolutions, the natural frequency, the natural shape of the oscillation, and the RMS of the dynamic load torque. The experimental model is verified by the simulation model. The accuracy of the developed simulation model with the experimental data are apparently very good (even more than 99% of the critical revolutions value obtained by calculation); however, it depends on the dynamic stiffness of the coupling. In this study, a detailed, comprehensive approach combining analytical procedures with simulation models is presented. Experimental data are verified with simulation results, which show a good agreement in the case of 700 kPa coupling pressure. The inaccuracy of some of the experiments (at 300 and 500 kPa pressures) is due to the interaction of the coupling’s apparent stiffness and the level of the damped vibration energy in the coupling, which is manifested by its different heating. Based on further experiments, a solution to these problems will be proposed by introducing this phenomenon effectively into the simulation model. Full article
Show Figures

Figure 1

20 pages, 11106 KiB  
Article
Analysis of Robot–Environment Interaction Modes in Anguilliform Locomotion of a New Soft Eel Robot
by Mostafa Sayahkarajy and Hartmut Witte
Actuators 2024, 13(10), 406; https://doi.org/10.3390/act13100406 - 7 Oct 2024
Cited by 3 | Viewed by 1618
Abstract
Bio-inspired robots with elongated anatomy, like eels, are studied to discover anguilliform swimming principles and improve the robots’ locomotion accordingly. Soft continuum robots replicate animal–environment physics better than noncompliant, rigid, multi-body eel robots. In this study, a slender soft robot was designed and [...] Read more.
Bio-inspired robots with elongated anatomy, like eels, are studied to discover anguilliform swimming principles and improve the robots’ locomotion accordingly. Soft continuum robots replicate animal–environment physics better than noncompliant, rigid, multi-body eel robots. In this study, a slender soft robot was designed and tested in an actual swimming experiment in a still-water tank. The robot employs soft pneumatic muscles laterally connected to a flexible backbone and activated with a rhythmic input. The position of seven markers mounted on the robot’s backbone was recorded using QualiSys® Tracking Manager (QTM) 1.6.0.1. The system was modeled as a fully coupled fluid–solid interaction (FSI) system using COMSOL Multiphysics® 6.1. Further data postprocessing and analysis were conducted, proposing a new mode decomposition algorithm using simulation data. Experiments show the success of swimming with a velocity of 28 mm/s and at a frequency of 0.9 Hz. The mode analysis allowed the modeling and explanation of the fluctuation. Results disclose the presence of traveling waves related to anguilliform waves obtained by the superposition of two main modes. The similarities of the results with natural anguilliform locomotion are discussed. It is concluded that soft robot undulation is ruled by dynamic modes induced by robot–environment interaction. Full article
(This article belongs to the Special Issue Bio-Inspired Soft Robotics)
Show Figures

Figure 1

16 pages, 6037 KiB  
Article
Improved Multi-Body Dynamic Simulation of Landing Gear Drop Test Incorporating Structural Flexibility and Bearing Contact
by Wenbin Liu and Youshan Wang
Aerospace 2024, 11(7), 543; https://doi.org/10.3390/aerospace11070543 - 2 Jul 2024
Cited by 2 | Viewed by 4032
Abstract
The investigation of multi-body dynamics (MBD) modeling for landing gear drop tests is a hot topic in the realm of landing gear design. The current results were primarily focused on the multi-rigid body simulation or a simple multi-flexible body simulation, with little regard [...] Read more.
The investigation of multi-body dynamics (MBD) modeling for landing gear drop tests is a hot topic in the realm of landing gear design. The current results were primarily focused on the multi-rigid body simulation or a simple multi-flexible body simulation, with little regard for the correctness of longitudinal loads and their experimental confirmation, particularly wheel–axle loads. Based on a genuine oleo-pneumatic landing gear drop test of a large civil aircraft, enhanced multi-body dynamics simulation research is carried out, considering the structural flexibility and bearing support by adopting flexible multi-bodies modeling and rigid-flex coupling contacts. When compared to the test data, which purposefully measured the longitudinal wheel–axle loads, the simulation results show that the loads, shock absorber compression, and shock absorber inner pressures are all within good agreement. Furthermore, the influence of structural stiffness and bearing contact was investigated by adjusting the model settings to confirm their importance. Full article
(This article belongs to the Special Issue Landing System Design in Aerospace)
Show Figures

Figure 1

20 pages, 9439 KiB  
Article
Novel Design of Variable Stiffness Pneumatic Flexible Shaft Coupling: Determining the Mathematical-Physical Model and Potential Benefits
by Peter Kaššay, Robert Grega, Matej Urbanský, Jozef Krajňák, Matúš Kačír and Lucia Žuľová
Machines 2024, 12(1), 28; https://doi.org/10.3390/machines12010028 - 31 Dec 2023
Cited by 3 | Viewed by 2495
Abstract
Presently, mechanical system vibroisolation is becoming increasingly important. One of the new approaches is semi-active vibroisolation using elements capable of changing a selected mechanical property. These include, among others, pneumatic flexible shaft couplings capable of changing torsional stiffness during operation. The main goal [...] Read more.
Presently, mechanical system vibroisolation is becoming increasingly important. One of the new approaches is semi-active vibroisolation using elements capable of changing a selected mechanical property. These include, among others, pneumatic flexible shaft couplings capable of changing torsional stiffness during operation. The main goal of the article is to examine the potential advantages of a newly patented pneumatic coupling over a current type with the same pneumatic element arrangement. For comparison, parameters determinable from static load characteristics were selected. These parameters are maximum twist angle and torque, average torsional stiffness, and the percentage of torque transmitted by the bellows rubber shell. In all cases, the new coupling had better properties. Since the prototype of the new coupling has not yet been produced, its parameters were determined from its mathematical-physical model. The article contains a full procedure to obtain the static load characteristic of a new coupling type, beginning with the determination of air bellows force/height and volume/height characteristics, then optimum sizes of coupling with regards to the operating range of elements, the dependency of element height on the coupling’s twist angle, and finally the computation of the static load characteristic considering isothermal gas compression. The presented procedure can be applied to any pneumatic bellows where the force/height characteristics of different pressures are given. Full article
(This article belongs to the Special Issue Research on Rotor Dynamics and Vibration Control)
Show Figures

Figure 1

22 pages, 4289 KiB  
Article
A Method for Precise Tracking Control of Pneumatic Artificial-Muscle-Driven Exoskeletal Robot
by Gaoke Ma, Hongyun Jia, Jichun Xiao and Lina Hao
Appl. Sci. 2023, 13(21), 12038; https://doi.org/10.3390/app132112038 - 4 Nov 2023
Cited by 3 | Viewed by 1537
Abstract
Exoskeletal robots are of critical importance in the domain of mechanical boosting. The pneumatic artificial muscle (PAM) is commonly used as a flexible actuator in exoskeletal robots designed for upper limbs due to its high power-to-weight ratio, conformability, and safety. This study establishes [...] Read more.
Exoskeletal robots are of critical importance in the domain of mechanical boosting. The pneumatic artificial muscle (PAM) is commonly used as a flexible actuator in exoskeletal robots designed for upper limbs due to its high power-to-weight ratio, conformability, and safety. This study establishes a new model based on the existing model to improve its control precision by implementing elastic and frictional forces and empirical coefficients, battling against the time-variant hysteresis that PAM’s output force exhibits. In the meantime, a BP neural network is employed in reverse modeling, followed by the adoption of the least-square-based particle swarm optimization algorithm in order to determine the optimized parameter values. PAM provides the Upper Limb Exoskeletal Robot with appropriate auxiliary power, which can be adjusted to accommodate variations in posture change during the lifting process. PAM is also capable of handling variable loads based on the principle of torque balance, constructing a control system according to the inverse dynamics of exoskeletal robots accompanied by an inverse model of PAM’s output force, and finally, rendering tracking control of the elbow angle during the auxiliary process possible. Finally, the tracking error results are calculated and shown; the maximum angular error in the tracking process is 0.0175 rad, MAE value is 0.0038 rad, RMSE value is 0.0048 rad, and IEAT value is 4.6426 rad. This control method is able to improve the precision of tracking control of the elbow angle of the upper limb–exoskeleton coupled system during the process of lifting goods. Full article
Show Figures

Figure 1

23 pages, 10973 KiB  
Article
Bioinspired Rigid–Flexible Coupled Adaptive Compliant Motion Control of Robot Gecko for Space Stations
by Xiangli Pei, Shuhao Liu, Anmin Wei, Ruizhuo Shi and Zhendong Dai
Biomimetics 2023, 8(5), 415; https://doi.org/10.3390/biomimetics8050415 - 6 Sep 2023
Cited by 8 | Viewed by 2666
Abstract
This paper presents a study on bioinspired rigid-flexible coupling adaptive compliant motion control of a robot gecko with hybrid actuation for space stations. The biomimetic robot gecko is made of a rigid trunk, four motor-driven active legs with dual-degree-of-freedom shoulder joints, and four [...] Read more.
This paper presents a study on bioinspired rigid-flexible coupling adaptive compliant motion control of a robot gecko with hybrid actuation for space stations. The biomimetic robot gecko is made of a rigid trunk, four motor-driven active legs with dual-degree-of-freedom shoulder joints, and four pneumatic flexible pleated active attachment–detachment feet. The adaptive impedance model consists of four input parameters: the inertia coefficient, stiffness coefficient, damping coefficient, and segmented expected plantar force. The robot gecko is equipped with four force sensors mounted on its four feet, from which the normal force of each foot can be sensed in real-time. Based on the sensor signal, the variable stiffness characteristics of the feet in different states are analyzed. Furthermore, an adaptive active compliance control strategy with whole-body rigidity–flexibility-force feedback coupling is proposed for the robot gecko. Four sets of experiments are presented, including open-loop motion control, static anti-interference experiment, segmented variable stiffness experiment, and adaptative compliant motion control, both in a microgravity environment. The experiment results indicated that the presented control strategy worked well and the robot gecko demonstrates the capability of stable attachment and compliant detachment, thereby normal impact and microgravity instability are avoided. It achieves position tracking and force tracking while exhibiting strong robustness for external disturbances. Full article
(This article belongs to the Special Issue Biology for Robotics and Robotics for Biology)
Show Figures

Figure 1

23 pages, 9667 KiB  
Article
Analysis of Rigid-Flexible Coupling Characteristics of Pneumatic Modular Soft Joints with Variable Stiffness
by Siyuan Liu, Yuhang Bian, Chao Ai, Hongmei Sun, Yijie Deng, Zilong Chen, Xiaorui Chen and Jingtao Zhang
Machines 2023, 11(7), 714; https://doi.org/10.3390/machines11070714 - 5 Jul 2023
Viewed by 2015
Abstract
This paper proposes a new pneumatic modular joint to address the problem of balancing compliance and load-bearing capacity for soft robots. The joint possesses characteristics that allow for omnidirectional deformation and dynamically adjustable stiffness. In this study, mathematical models were established to describe [...] Read more.
This paper proposes a new pneumatic modular joint to address the problem of balancing compliance and load-bearing capacity for soft robots. The joint possesses characteristics that allow for omnidirectional deformation and dynamically adjustable stiffness. In this study, mathematical models were established to describe the deformation and stiffness variability of the joint. Corresponding relationships between gas pressure and deformation and magnetic field strength and module stiffness were derived through numerical analysis. Finite element simulations were conducted to investigate the changes in pressure and deformation under different stiffness conditions and the changes in magnetic field strength and joint stiffness under various deformation states. Finally, experimental validation was performed to verify the theoretical calculations and simulation results, demonstrating excellent coupling characteristics between stiffness and compliance for the proposed joint. Full article
(This article belongs to the Special Issue Advanced Control of Electro-Hydraulic Systems in Industrial Area)
Show Figures

Figure 1

7 pages, 4157 KiB  
Communication
Dielectric Elastomer Cooperative Microactuator Systems—DECMAS
by Stefan Seelecke, Julian Neu, Sipontina Croce, Jonas Hubertus, Günter Schultes and Gianluca Rizzello
Actuators 2023, 12(4), 141; https://doi.org/10.3390/act12040141 - 27 Mar 2023
Cited by 1 | Viewed by 2218
Abstract
This paper presents results of the first phase of “Dielectric Elastomer Cooperative Microactuator Systems” (DECMAS), a project within the German Research Foundation Priority Program 2206, “Cooperative Multistable Multistage Microactuator Systems” (KOMMMA). The goal is the development of a soft cooperative microactuator system combining [...] Read more.
This paper presents results of the first phase of “Dielectric Elastomer Cooperative Microactuator Systems” (DECMAS), a project within the German Research Foundation Priority Program 2206, “Cooperative Multistable Multistage Microactuator Systems” (KOMMMA). The goal is the development of a soft cooperative microactuator system combining high flexibility with large-stroke/high-frequency actuation and self-sensing capabilities. The softness is due to a completely polymer-based approach using dielectric elastomer membrane structures and a specific silicone bias system designed to achieve large strokes. The approach thus avoids fluidic or pneumatic compo-nents, enabling, e.g., future smart textile applications with cooperative sensing, haptics, and even acoustic features. The paper introduces design concepts and a first soft, single-actuator demonstrator along with experimental characterization, before expanding it to a 3 × 1 system. This system is used to experimentally study coupling effects, supported by finite element and lumped parameter simulations, which represent the basis for future cooperative control methods. Finally, the paper also introduces a new methodology to fabricate metal-based electrodes of sub-micrometer thickness with high membrane-straining capability and extremely low resistance. These electrodes will enable further miniaturization towards future microscale applications. Full article
(This article belongs to the Special Issue Cooperative Microactuator Devices and Systems)
Show Figures

Figure 1

16 pages, 3866 KiB  
Article
Effects of Flexural Rigidity on Soft Actuators via Adhering to Large Cylinders
by Liuwei Wang, Qijun Jiang, Zhiyuan Weng, Qingsong Yuan and Zhouyi Wang
Actuators 2022, 11(10), 286; https://doi.org/10.3390/act11100286 - 7 Oct 2022
Cited by 5 | Viewed by 2689
Abstract
This study proposes a soft pneumatic actuator with adhesion (SPAA) consisting of a top fluidic-driven elastic actuator and four bottom adhesive pads for adhering to large cylinders. Finite element models were developed to investigate the bending properties under positive air pressure and the [...] Read more.
This study proposes a soft pneumatic actuator with adhesion (SPAA) consisting of a top fluidic-driven elastic actuator and four bottom adhesive pads for adhering to large cylinders. Finite element models were developed to investigate the bending properties under positive air pressure and the effect of “rib” height on the flexural rigidity of the SPAA. A synchronous testing platform for the adhesive contact state and mechanics was developed, and the bending curvature and flexural rigidity of the SPAA were experimentally measured relative to the pressure and “rib” height, respectively, including the adhesion performance of the SPAA with different rigidities on large cylinders. The obtained results indicate that the SPAA can continuously bend with controllable curvature under positive air pressure and can actively envelop a wide range of cylinders of different curvatures. The increase in the “rib” height from 4 to 8 mm increases the flexural rigidity of the SPAA by approximately 230%, contributing to an average increase of 54% in the adhesion performance of the SPAA adhering to large cylinders. The adhesion performance increases more significantly with an increase in the flexural rigidity at a smaller peeling angle. SPAA has a better adhesion performance on large cylinders than most existing soft adhesive actuators, implying that is more stable and less affected by the curvature of cylinders. To address the low contact ratio of the SPAA during adhesion, the optimization designs of the rigid–flexible coupling hierarchical and differentiated AP structures were proposed to increase the contact ratio to more than 80% in the simulation. In conclusion, this study improved the adhesion performance of soft adhesive actuators on large cylinders and extended the application scope of adhesion technology. SPAA is a basic adhesive unit with a universal structure and large aspect ratio similar to that of the human finger. According to working conditions requirements, SPAAs can be assembled to a multi-finger flexible adhesive gripper with excellent maneuverability. Full article
(This article belongs to the Special Issue Soft Actuators and Robotics)
Show Figures

Figure 1

16 pages, 4990 KiB  
Article
Design and Simulation Experiment of Rigid-Flexible Soft Humanoid Finger
by Jiteng Sun, Chang Chen, Long Wang, Yuandong Liang, Guojin Chen, Ming Xu, Ruru Xi and Huifeng Shao
Machines 2022, 10(6), 448; https://doi.org/10.3390/machines10060448 - 6 Jun 2022
Cited by 5 | Viewed by 2967
Abstract
This paper is based on the “Fast Pneumatic Mesh Driver” (FPN) used to couple a silicone rubber soft body with a rigid skeleton. A rigid-flexible coupling soft-body human-like finger design scheme is proposed to solve the problem of low load on the soft-body [...] Read more.
This paper is based on the “Fast Pneumatic Mesh Driver” (FPN) used to couple a silicone rubber soft body with a rigid skeleton. A rigid-flexible coupling soft-body human-like finger design scheme is proposed to solve the problem of low load on the soft-body gripping hand. The second-order Yeoh model is used to establish the statics model of the soft humanoid finger, and the ABAQUS simulation analysis software is used for correction and comparison to verify the feasibility of the soft humanoid finger bending. The thickness of the driver cavity and the confining strain layer were determined by finite element simulation. The mold casting process is used to complete the preparation of human-like fingers and design a pneumatic control system for experiments combined with 3D printing technology. The experimental results show that the proposed rigid-flexible coupling soft body imitating the human finger structure can realize the corresponding actions, such as the multi-joint bending and side swinging, of human fingers. Compared with the traditional pure soft-body finger, the fingertip output force is significantly improved. The optimal design and simulation analysis of the human gripper and the feasibility of the application have practical guiding significance. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

17 pages, 12357 KiB  
Article
Pneumatic Bionic Hand with Rigid-Flexible Coupling Structure
by Chang Chen, Jiteng Sun, Long Wang, Guojin Chen, Ming Xu, Jing Ni, Rizauddin Ramli, Shaohui Su and Changyong Chu
Materials 2022, 15(4), 1358; https://doi.org/10.3390/ma15041358 - 13 Feb 2022
Cited by 14 | Viewed by 4363
Abstract
This paper presents a rigid-flexible composite of bionic hand structure design scheme solution for solving the problem of low load on the soft gripping hand. The bionic hand was designed based on the Fast Pneumatic Network (FPN) approach, which can produce a soft [...] Read more.
This paper presents a rigid-flexible composite of bionic hand structure design scheme solution for solving the problem of low load on the soft gripping hand. The bionic hand was designed based on the Fast Pneumatic Network (FPN) approach, which can produce a soft finger bending drive mechanism. A soft finger bending driver was developed and assembled into a human-like soft gripping hand which includes a thumb for omnidirectional movement and four modular soft fingers. An experimental comparison of silicone rubber materials with different properties was conducted to determine suitable materials. The combination of 3D printing technology and mold pouring technology was adopted to complete the prototype preparation of the bionic hand. Based on the second-order Yeoh model, a soft bionic finger mathematical model was established, and ABAQUS simulation analysis software was used for correction to verify the feasibility of the soft finger bending. We adopted a pneumatic control scheme based on a motor micro-pump and developed a human–computer interface through LabView. A comparative experiment was carried out on the bending performance of the finger, and the experimental data were analyzed to verify the accuracy of the mathematical model and simulation. In this study, the control system was designed, and the human-like finger gesture and grasping experiments were carried out. Full article
Show Figures

Figure 1

12 pages, 3597 KiB  
Article
High-Precision Displacement and Force Hybrid Modeling of Pneumatic Artificial Muscle Using 3D PI-NARMAX Model
by Yanding Qin, Yuankai Xu, Chenyu Shen and Jianda Han
Actuators 2022, 11(2), 51; https://doi.org/10.3390/act11020051 - 8 Feb 2022
Cited by 3 | Viewed by 2688
Abstract
Pneumatic artificial muscle (PAM) is attractive in rehabilitation and biomimetic robots due to its flexibility. However, there exists a strong hysteretic nonlinearity in PAMs and strong coupling between the output displacement and the output force. At present, most commonly used hysteresis models can [...] Read more.
Pneumatic artificial muscle (PAM) is attractive in rehabilitation and biomimetic robots due to its flexibility. However, there exists a strong hysteretic nonlinearity in PAMs and strong coupling between the output displacement and the output force. At present, most commonly used hysteresis models can be treated as two-dimensional models, which only consider the nonlinearity between the input and the output displacement of the PAM without considering the coupling of the output force. As a result, high-precision modeling and estimation of the PAM’s behavior is difficult, especially when the external load of the system varies significantly. In this paper, the influence of the output force on the displacement is experimentally investigated. A three-dimensional model based on the modified Prandtl–Ishlinskii (MPI) model and the Nonlinear AutoRegressive Moving Average with eXogenous inputs (NARMAX) model is proposed to describe the relationship and couplings among the input, the output displacement, and the output force of the PAM. Experiments are conducted to verify the modeling accuracy of the proposed model when the external load of the PAM varies across a wide range. The experimental results show that the proposed model captures well the hysteresis and couplings of the PAM and can precisely predict the PAM’s behavior. Full article
(This article belongs to the Special Issue Design and Control of Compliant Manipulators: Volume II)
Show Figures

Figure 1

28 pages, 9895 KiB  
Article
Calibrated Numerical Approach for the Dynamic Analysis of Glass Curtain Walls under Spheroconical Bag Impact
by Alessia Bez, Chiara Bedon, Giampiero Manara, Claudio Amadio and Guido Lori
Buildings 2021, 11(4), 154; https://doi.org/10.3390/buildings11040154 - 7 Apr 2021
Cited by 14 | Viewed by 4648
Abstract
The structural design of glass curtain walls and facades is a challenging issue, considering that building envelopes can be subjected extreme design loads. Among others, the soft body impact (SBI) test protocol represents a key design step to protect the occupants. While in [...] Read more.
The structural design of glass curtain walls and facades is a challenging issue, considering that building envelopes can be subjected extreme design loads. Among others, the soft body impact (SBI) test protocol represents a key design step to protect the occupants. While in Europe the standardized protocol based on the pneumatic twin-tire (TT) impactor can be nowadays supported by Finite Element (FE) numerical simulations, cost-time consuming experimental procedures with the spheroconical bag (SB) impactor are still required for facade producers and manufacturers by several technical committees, for the impact assessment of novel systems. At the same time, validated numerical calibrations for SB are still missing in support of designers and manufacturers. In this paper, an enhanced numerical approach is proposed for curtain walls under SB, based on a coupled methodology inclusive of a computationally efficient two Degree of Freedom (2-DOF) and a more geometrically accurate Finite Element (FE) model. As shown, the SB impactor is characterized by stiffness and dissipation properties that hardly match with ideal rigid elastic assumptions, nor with the TT features. Based on a reliable set of experimental investigations and records, the proposed methodology acts on the time history of the imposed load, which is implicitly calibrated to account for the SB impactor features, once the facade features (flexibility and damping parameters) are known. The resulting calibration of the 2-DOF modelling parameters for the derivation of time histories of impact force is achieved with the support of experimental measurements and FE model of the examined facade. The potential and accuracy of the method is emphasized by the collected experimental and numerical comparisons. Successively, the same numerical approach is used to derive a series of iso-damage curves that could support practical design calculations. Full article
(This article belongs to the Collection Innovation in Structural Analysis and Dynamics for Constructions)
Show Figures

Figure 1

Back to TopTop