Bio-Inspired Soft Robotics

A special issue of Actuators (ISSN 2076-0825). This special issue belongs to the section "Actuators for Robotics".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 5654

Special Issue Editor

Department of Industrial Automation and Mechatronics, Faculty of Mechanical Engineering, Technical University of Košice, 04200 Košice, Slovakia
Interests: robotics; underactuated robotics; autonomous robotics; mechatronics; geometrical mechanics; analytical mechanics; control theory

Special Issue Information

Dear Colleagues,

Bio-inspired soft robotics is a trending technological field that takes inspiration from biological systems and their capabilities in the design and development of soft robots. These robots often have flexible, soft structures and movements that resemble those of living organisms rather than traditional rigid-body robots. This field uses the principles of biomechanics, materials engineering, robotics, and other disciplines to create new types of robots capable of moving, manipulating objects, and even interacting with people. The potential of bio-inspired soft robotics for the future is very broad and promising.

Bio-inspired soft robotics emphasizes the development of actuators that are responsible for the movement of soft robots. These actuators must be designed to allow flexible and precise movements, similar to the movements of living organisms. Challenges in this area include achieving sufficient precision and movement force, developing reliable and durable actuators, and optimizing their control. However, the effective development and implementation of innovative actuators can lead to significant development in the field of bio-inspired soft robotics and its application in a wide range of applications.

This Special Issue on "Bio-Inspired Soft Robotics" aims to present new findings and ideas in the field of bio-inspired soft robotics. Manuscripts from the field of soft robotics which try to take into account biological patterns in nature will be primarily beneficial. Contributions can deal with the possibilities of locomotion and the change in a structure’s shape or behavior in response to external stimuli. To this end, we encourage the submission of papers with new advances in theoretical, experimental, and computational approaches to applications of bionic robots with various variable structures, shapes, and control capabilities.

Dr. Erik Prada
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Actuators is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioinspired soft mechanisms
  • bio-inspired actuators
  • biorobotics
  • bio-inspired soft robotics
  • biomimetic soft robots
  • soft robot control
  • locomotion of bio-inspired soft robots

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 7444 KiB  
Article
Soft Robot Workspace Estimation via Finite Element Analysis and Machine Learning
by Getachew Ambaye, Enkhsaikhan Boldsaikhan and Krishna Krishnan
Actuators 2025, 14(3), 110; https://doi.org/10.3390/act14030110 - 23 Feb 2025
Viewed by 831
Abstract
Soft robots with compliant bodies offer safe human–robot interaction as well as adaptability to unstructured dynamic environments. However, the nonlinear dynamics of a soft robot with infinite motion freedom pose various challenges to operation and control engineering. This research explores the motion of [...] Read more.
Soft robots with compliant bodies offer safe human–robot interaction as well as adaptability to unstructured dynamic environments. However, the nonlinear dynamics of a soft robot with infinite motion freedom pose various challenges to operation and control engineering. This research explores the motion of a pneumatic soft robot under diverse loading conditions by conducting finite element analysis (FEA) and using machine learning. The pneumatic soft robot consists of two parallel hyper-elastic tubular chambers that convert pneumatic pressure inputs into soft robot motion to mimic an elephant trunk and its motion. The body of each pneumatic chamber consists of a series of bellows to effectively facilitate the expansion, contraction, and bending of the body. The first chamber spans the entire length of the soft robot’s body, and the second chamber spans half of it. This unique asymmetric design enables the soft robot to bend and curl in various ways. Machine learning is used to establish a forward kinematic relationship between the pressure inputs and the motion responses of the soft robot using data from FEA. Accordingly, this research employs an artificial neural network that is trained on FEA data to estimate the reachable workspace of the soft robot for given pressure inputs. The trained neural network demonstrates promising estimation accuracy with an R-squared value of 0.99 and a root mean square error of 0.783. The workspaces of asymmetric double-chamber and single-chamber soft robots were compared, revealing that the double-chamber robot offers approximately 185 times more reachable workspace than the single-chamber soft robot. Full article
(This article belongs to the Special Issue Bio-Inspired Soft Robotics)
Show Figures

Figure 1

20 pages, 11106 KiB  
Article
Analysis of Robot–Environment Interaction Modes in Anguilliform Locomotion of a New Soft Eel Robot
by Mostafa Sayahkarajy and Hartmut Witte
Actuators 2024, 13(10), 406; https://doi.org/10.3390/act13100406 - 7 Oct 2024
Cited by 2 | Viewed by 1378
Abstract
Bio-inspired robots with elongated anatomy, like eels, are studied to discover anguilliform swimming principles and improve the robots’ locomotion accordingly. Soft continuum robots replicate animal–environment physics better than noncompliant, rigid, multi-body eel robots. In this study, a slender soft robot was designed and [...] Read more.
Bio-inspired robots with elongated anatomy, like eels, are studied to discover anguilliform swimming principles and improve the robots’ locomotion accordingly. Soft continuum robots replicate animal–environment physics better than noncompliant, rigid, multi-body eel robots. In this study, a slender soft robot was designed and tested in an actual swimming experiment in a still-water tank. The robot employs soft pneumatic muscles laterally connected to a flexible backbone and activated with a rhythmic input. The position of seven markers mounted on the robot’s backbone was recorded using QualiSys® Tracking Manager (QTM) 1.6.0.1. The system was modeled as a fully coupled fluid–solid interaction (FSI) system using COMSOL Multiphysics® 6.1. Further data postprocessing and analysis were conducted, proposing a new mode decomposition algorithm using simulation data. Experiments show the success of swimming with a velocity of 28 mm/s and at a frequency of 0.9 Hz. The mode analysis allowed the modeling and explanation of the fluctuation. Results disclose the presence of traveling waves related to anguilliform waves obtained by the superposition of two main modes. The similarities of the results with natural anguilliform locomotion are discussed. It is concluded that soft robot undulation is ruled by dynamic modes induced by robot–environment interaction. Full article
(This article belongs to the Special Issue Bio-Inspired Soft Robotics)
Show Figures

Figure 1

13 pages, 25407 KiB  
Article
Mechanical Design of a New Hybrid 3R-DoF Bioinspired Robotic Fin Based on Kinematics Modeling and Analysis
by Eliseo de J. Cortés Torres, Luis E. García Gonzales, Luis E. Villamizar Marin and Cecilia E. García Cena
Actuators 2024, 13(9), 353; https://doi.org/10.3390/act13090353 - 11 Sep 2024
Cited by 2 | Viewed by 1477
Abstract
The field of bioinspired underwater robots aims to replicate the capabilities of marine animals in artificial systems. Stingrays have emerged as highly promising species to be mimicked because of their flat body morphology and size. Furthermore, they are considered high-performance species due to [...] Read more.
The field of bioinspired underwater robots aims to replicate the capabilities of marine animals in artificial systems. Stingrays have emerged as highly promising species to be mimicked because of their flat body morphology and size. Furthermore, they are considered high-performance species due to their maneuverability, propulsion mode, and sliding efficiency. Designing and developing mechanisms to imitate their pectoral fins is a challenge for underwater robotic researchers mainly because the locomotion characteristics depend on the coordinated movement of the fins. In the state of the art, several mechanisms were proposed with 2 active rotation degrees of freedom (DoFs) to replicate fin movement. In this paper, we propose adding an additional active DoF in order to improve the realism in the robotic manta ray movement. Therefore, in this article, we present the mechanical design, modeling, and kinematics analysis of a 3-active-and-rotational-DoF pectoral fin inspired by the Mobula Alfredi or reef manta ray. Additionally, by using the kinematics model, we were able to simulate and compare the behaviour of both mechanisms, that is, those with 2 and 3 DoFs. Our simulation results reveal an improvement in the locomotion, and we hypothesized that with the third DoF, some specific missions, such as hovering or fast emergence to the surface, will have a better performance. Full article
(This article belongs to the Special Issue Bio-Inspired Soft Robotics)
Show Figures

Figure 1

15 pages, 7996 KiB  
Article
Wireless Hybrid-Actuated Soft Miniature Robot for Biomedical Applications
by Heera Kim, Kyongsu Lee and Gwangjun Go
Actuators 2024, 13(9), 341; https://doi.org/10.3390/act13090341 - 5 Sep 2024
Viewed by 1305
Abstract
Wireless soft miniature robots have been studied for biomedical applications. However, the wireless soft miniature robots developed so far are mainly composed of synthetic polymers that do not guarantee biocompatibility and biodegradability. Additionally, current soft robots have limitations in demonstrating mobility in narrow [...] Read more.
Wireless soft miniature robots have been studied for biomedical applications. However, the wireless soft miniature robots developed so far are mainly composed of synthetic polymers that do not guarantee biocompatibility and biodegradability. Additionally, current soft robots have limitations in demonstrating mobility in narrow spaces, such as blood vessels within the body, by using their flexible body. This study proposes a wireless hybrid-actuated soft miniature robot for biomedical applications. The proposed soft miniature robot consists of biodegradable chitosan and magnetic nanoparticles (MNPs) and is fabricated into an eight-arm shape by laser micromachining. The soft miniature robot can implement hydrogel swelling and magnetic-actuated shape morphing by using the difference in MNP density and magnetic field responsiveness within the robot body, respectively. Furthermore, the soft miniature robot can be guided by external magnetic fields. As feasibility tests, the soft miniature robot demonstrated on-demand pick-and-place motion, grasping a bead, moving it to a desired location, and releasing it. Furthermore, in an in-channel mobility test, the flexible body of the soft miniature robot passed through a tube smaller in size than the robot itself through magnetically actuated shape morphing. These results indicate that the soft miniature robot with controllable shape change and precise magnetic-driven mobility can be a minimally invasive surgical robot for disease diagnosis and treatment. Full article
(This article belongs to the Special Issue Bio-Inspired Soft Robotics)
Show Figures

Figure 1

Back to TopTop