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Abstract: Pneumatic artificial muscle (PAM) is attractive in rehabilitation and biomimetic robots due
to its flexibility. However, there exists a strong hysteretic nonlinearity in PAMs and strong coupling
between the output displacement and the output force. At present, most commonly used hysteresis
models can be treated as two-dimensional models, which only consider the nonlinearity between the
input and the output displacement of the PAM without considering the coupling of the output force.
As a result, high-precision modeling and estimation of the PAM’s behavior is difficult, especially
when the external load of the system varies significantly. In this paper, the influence of the output
force on the displacement is experimentally investigated. A three-dimensional model based on the
modified Prandtl–Ishlinskii (MPI) model and the Nonlinear AutoRegressive Moving Average with
eXogenous inputs (NARMAX) model is proposed to describe the relationship and couplings among
the input, the output displacement, and the output force of the PAM. Experiments are conducted to
verify the modeling accuracy of the proposed model when the external load of the PAM varies across
a wide range. The experimental results show that the proposed model captures well the hysteresis
and couplings of the PAM and can precisely predict the PAM’s behavior.

Keywords: pneumatic artificial muscle; hysteresis model; nonlinearity; NARMAX; RFNN

1. Introduction

Pneumatic artificial muscle (PAM), a flexible actuator, mainly consists of an inner elas-
tomeric tube and an outer braided mesh [1]. When the inner pressure increases, the PAM
will produce radial expansion and axial contraction, similar to muscles. Compared with
other popular actuators, e.g., motors, PAM features a simple structure, easy installation,
light weight, and large output force/weight ratio [2]. Further, PAM shows good flexibility
because it generates an output force and displacement based on its elastic deformations [3].
This helps to guarantee the safety in human–machine interactions. Therefore, it has been
widely used in rehabilitation and biomimetic robots [4]. For example, Festo developed
different bionic manipulators using PAMs. A PAM-driven intrinsically soft ankle rehabili-
tation robot was developed by Meng et al. [5]. A novel bionic elbow joint system actuated
by PAM was developed by Yang et al. [6].

It must be noted that the precise control of the PAM is challenging. PAM exhibits
a complex hysteresis nonlinearity due to the internal friction, the deformation of the
elastomeric tube during the gas charging and discharging, etc. [6–8]. Further, the hysteresis
is sensitive to many factors. For instance, the rate dependence refers to the fact that
the hysteresis loop will become wider if the input rate increases, especially at higher
frequencies. Consequently, the motion accuracy of the PAM is significantly affected, which
increases the difficulty in the motion control of PAM-based systems. Therefore, modeling
and compensation of the PAM’s hysteresis have become some of the hot topics. In the
research work of Sofla et al. [9], a PAM-driven multi-section-compliant robotic manipulator
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was developed, where the Bouc–Wen model was modified based on the constant curvature
method and the concentrated masses to compensate the asymmetric hysteresis. For the
miniature PAM-based catheter control, a feedforward controller based on a generalized
Prandtl–Ishlinskii model was proposed by Shakiba et al. [10]. Liang et al. proposed an
energy-based nonlinear control method for a two-link PAM-driven robot to realize accurate
positioning control [11].

The hysteresis models can be briefly classified into three categories: the integral type,
the differential type, and the system identification type [12]. The integral model, also
called the operator-based model, mainly includes the Maxwell model, Preisach model, and
Prandtl–Ishlinskii (PI) model. The differential model mainly includes the Duhem model
and Bouc–Wen model. In the system identification model, the popular algorithms include
the least mean squares, the recursive least squares, the genetic algorithm, the particle
swarm optimization, and the neural network. Based on the above basic structure, a variety
of hysteresis modeling methods can be obtained. For instance, a rate-dependent PI model
was used to improve the control performance of a compliant mechanism [13]. A novel
black-box approach was proposed to build the pressure-contraction hysteresis model of the
PAM across multiple operating ranges using an adaptive-network-based fuzzy inference
system (ANFIS) [14].

The above hysteresis models can be labeled as two-dimensional (2D) models reflecting
the mapping from the input to the output displacement of the PAM. For PAMs, due to
the flexibility, there exist strong couplings between the output displacement and output
force. In other words, the behavior of the PAM will vary significantly at different loads,
i.e., the so-called load dependence [15]. As a result, the input and outputs relationship of
the PAM is three-dimensional (3D) in nature. However, the effect of the output force is not
considered in the above 2D models. Consequently, they cannot precisely predict the PAM’s
behavior if confronted with varying loads or strong disturbances.

Some solutions have been proposed to account for the influence of the output force
(or the external load). In Sofla’s research [16], a modified Bouc–Wen model was used to
describe the relationship among the inner pressure, the hysteretic restoring force, and
the length of the PAM. The influence of the PAM’s length on the hysteretic restoring
force was also considered. This model was then adopted in the design of a PAM-driven
manipulator [9]. In Zhang’s work, a comprehensive dynamic model was proposed for
predicting the dynamic hysteresis behaviors with rate-dependent and load-dependent
effects [17]. In addition, in Konda’s work [18], the influence of the load on the PAM, shape
memory polymer, and super-coiled polymer was investigated, and the corresponding
modeling and compensation methods were developed.

In this paper, the modified Prandtl–Ishlinskii (MPI) model is integrated with the
Nonlinear AutoRegressive Moving Average with eXogenous inputs (NARMAX) model to
describe the relationship among the input-displacement-force of the PAM. The proposed
model is composed of a hysteresis modeling unit and a coupling unit. The hysteresis
modeling unit characterizes the hysteresis between the input and output displacement
of the PAM. The coupling unit is used to account for the couplings between the output
displacement and output force. The effectiveness of the proposed model is tested on
an in-house-built testbench for PAMs. The experimental results show that the proposed
MPI-NARMAX hysteresis model can describe the complex relationship among the input-
displacement-force well. Compared to the standalone MPI model individually identified at
different loads, it does not need to repeat the identification process for the MPI-NARMAX
model if the external load varies significantly. Therefore, the proposed MPI-NARMAX
model achieves higher modeling accuracy and applicability.

2. The Hysteresis and Couplings of the PAM
2.1. Testbench for PAM Characterization

In this paper, a testbench is developed to simultaneously record the control input,
the output displacement, and the output force of the PAM to facilitate the 3D hysteresis
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modeling of PAMs. As shown in Figure 1, the PAM is installed on a linear guiding rail
system with one end clamped and the other end sliding along the rail. The inner pressure
of the PAM is controlled by a proportional pressure regulator valve (model VPPM-6L-1-
G18-0L6H from Festo) with the help of an air compressor. The displacement of the PAM
is measured using a displacement sensor (Model 102322/A from novotechnik). A force
sensor (Model H3-C3-200 kg-3B from ZEMIC) is used to measure the external force applied
on the PAM or the payload of the system. The data acquisition is implemented in the
environment of a real-time target machine (Model Mobile from Speedgoat). The overall
system runs at a sampling rate of 1 kHz. Different PAMs can be installed on the testbench
for the characterization and testing.

Figure 1. The developed testbench: (a) the schematic diagram of the overall system, (b) the photo of
the testbench, and (c) the hysteresis loops of the PAM at different frequencies.

2.2. The Input-Displacement Hysteresis of the PAM

As previously mentioned, there is an obvious hysteresis nonlinearity between the
input and the displacement of the PAM. In this paper, the input voltage applied to the
pressure regulator valve is adopted as the input of the overall system. First, the input-
displacement hysteresis is investigated by removing the external load from the PAM. In
this case, the output force can be treated as 0. The following sinusoidal signal is adopted as
the input:

u =
A− δ

2
sin
(

2π f t− π

2

)
+

A + δ

2
(1)

where u represents the input, f is the frequency of the signal, and A and δ are the maximum
allowable voltage and the dead zone of the pressure regulator valve, respectively.

For the selected pressure regular valve, A = 10 and δ = 0.1. In human–machine
interactions, the PAM generally works at a relatively slow speed. As a result, in the
preliminary tests, the frequency of the signal is set to f = 0.05, 0.1, and 0.2 Hz. The
displacements of the PAM are measured, and the input–displacement hysteresis loops are
shown in Figure 1c. It can be easily found that the PAM’s hysteresis loop is not symmetric
about its loop center. As the frequencies are low in Figure 1c, the rate dependence of the
PAM’s hysteresis is observable but not very obvious.

2.3. The Couplings between the Output Force and Displacement

As the PAM is a flexible actuator, its displacement and force are coupled. The variation
in the external load or disturbances will significantly affect the PAM’s displacement [8]. In
order to intuitively demonstrate the couplings between the output force and displacement,
external forces are added to the free end of the PAM when the PAM moves back and forth.
First, all the load is removed from the PAM. In this case, the measured hysteresis all comes
from the PAM itself. Secondly, a constant load (~91 N) is added to the hook. Finally, the
hook is pulled by hand to provide a varying load. Figure 2 shows the PAM’s behaviors in
the above scenarios at different frequencies.
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Figure 2. The influences of the load and external disturbances on the PAM’s displacement: (a) 0.05 Hz,
(b) 0.1 Hz, and (c) 0.2 Hz.

It can be found from Figure 2 that the external load will significantly affect the behavior
of the PAM. For the constant load, the stroke of the PAM will decrease, i.e., the hysteresis
loop of the PAM will be squeezed along the Y axis. It is noted that the shape of the
hysteresis loop is basically unchanged. However, when the external load is varying during
the process, there exist several regional distortions on the measured hysteresis loops.
As a result, it will be very difficult to model such a distorted hysteresis loop using 2D
hysteresis models.

The couplings between the output force and displacement are also experimentally
investigated. In this case, the inner pressure is kept constant at different levels, and the
relationship between the external load and the displacement of the PAM is measured. The
experimental results are plotted in Figure 3. It is observed that hysteresis loops can also be
found between the output force and displacement of the PAM.

Figure 3. The force–displacement couplings of the PAM.

Based on the above results, it is clear that there exist a strong hysteresis and couplings
among the input, the output force, and the displacement of the PAM. The 3D hysteresis
model is required to obtain an accurate model of such a complex system.

3. MPI-NARMAX Hysteresis Model

In this paper, a 3D hysteresis model, namely the MPI-NARMAX model, is proposed
for modeling the complex relationship among the input-displacement-force of the PAM.
The schematic diagram of the model is illustrated in Figure 4, where the current input
voltage, the current external force, and the historical output displacement are adopted as
inputs. The proposed model can be divided into a hysteresis modeling unit and a coupling
unit. In the hysteresis modeling unit, the MPI model is used to characterize the hysteresis
between the input voltage and the output displacement of the PAM when no external load
is applied. Subsequently, in the coupling unit, the NARMAX model is used to model the
couplings between the output force and displacement of the PAM. Compared with the 2D
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hysteresis models, the proposed 3D hysteresis model is developed to predict the PAM’s
behavior even when confronted with varying external loads.

Figure 4. The schematic diagram of the proposed MPI-NARMAX hysteresis model.

3.1. The MPI Model

The classical PI model is a widely used hysteresis model consisting of a set of weighted
backlash operators. The backlash operator is defined as follows:

hi(t) = max{u(t)− ri, min{u(t) + ri, hi(t− T)}} (2)

where u represents the input of the operator, hi represents the output of the ith backlash
operator, ri is the threshold, and T represents the sampling period. Then, the classical PI
model can be obtained by the weighted summation of a series of backlash operators:

b(t) =
n

∑
i=1

ωi·hi(t) = (ω1, . . . , ωn)·

 h1(t)
...

hn(t)

 = ωT·H(t) (3)

where n is defined as the order of the model, ωi is the weight for hi, and b(t) represents the
output of the classical PI model.

The hysteresis of PAM is rate-dependent, whereas the classical PI model is static. In
order to account for the rate dependence, the weights of backlash operators can be linearly
adjusted according to the input rate, which can be described as follows:

ωi = ki
.
u(t) + di (4)

where ki is the slope and di is the intercept.
From Figure 1c, it can be observed that the hysteresis loop of the PAM is asymmetric.

However, the classical PI model is a symmetric model, making it difficult to describe the
asymmetry of the PAM’s hysteresis well. Based on our previous work, a polynomial opera-
tor can capture well the asymmetry and improve the modeling accuracy [13]. Therefore,
the following polynomial operator is integrated to form the MPI model:

f (t) = a1b(t) + a2b2(t) + . . . + aibi(t) (5)

where f (t) represents the polynomial output, ai represents the polynomial coefficient, and
bi(t) represents the ith power of the output of the classical PI model in (3).

3.2. NARMAX Model Based on RFNN

The NARMAX model can be used to deal with the identification problem of nonlinear
systems [19]. A nonlinear system can be described as:

y(t) = g
[
y(t− T), . . . , y(t− nyT), x(t− T), . . . , y(t− nxT)

]
(6)
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where y(t) and x(t) represent the output and input of the NARMAX model, respectively, ny
and nx represent maximum time lags associated with y(t) and x(t), respectively, and g(•)
represents the nonlinear relationship between the outputs and inputs.

For the hysteretic system in this paper, the NARMAX model can be described as:

ŷ(t) = g[ŷ(t− T), . . . , ŷ(t− naT), f (t), . . . , f (t− nbT), F(t), . . . , F(t− ncT)] (7)

where ŷ(t) represents the predictive output of the system, f (t) represents the output of the
MPI model, F(t) is the output force of the PAM, and na, nb, and nc represent the maximum
orders in ŷ(t), f (t), and F(t), respectively.

Based on previous research [20,21], g(•), the nonlinear mapping relationship between
ŷ(t), f (t), and F(t), can be identified by neural networks. Therefore, the recurrent fuzzy
neural network (RFNN) is selected in this paper to identify the NARMAX model. Gener-
alized from the fuzzy neural network (FNN), the RFNN was shown to possess the same
advantages over recurrent neural networks and extend the application domain of the FNN
to temporal problems [22]. In this paper, the structure of the RFNN is shown in Figure 5.
For the convenience of subsequent expression, N is defined as:

N = na + nb + nc (8)

Figure 5. Structure of the RFNN.

There are 5 layers in the RFNN. The first layer includes 3N neurons, i.e., 3 fuzzy
operators for each input. It realizes time recursion and the fuzzification process. The output
of each node can be described as:

O1
ij(t) = exp

−
(

xi(t)−mij − θij·O1
ij(t− T)

)2

2σ2
ij

, i = 1, 2, . . . , N ; j = 1, 2, 3 (9)

where xi represents the ith input element, j represents the ordinal number of the fuzzy
operator, mij and σij are parameters of the Gaussian membership function, and θij is the
parameter of time recursion.

The second layer, which contains 3N neurons, combines the outputs of the first layer
to achieve the nonlinearity of the output:

O2
k(t) =

N

∏
i=1

O1
ij(t), j ∈ {1, 2, 3} ; k = 1, 2, . . . , 3N (10)
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The third layer, which has the same number of neurons as the second layer, normalizes
the output of each node in the previous layer:

O3
k(t) =

O2
k(t)

3N

∑
k=1

O2
k(t)

(11)

The fourth layer multiplies the output of the previous layer as a weight on the input:

O4
k(t) = O3

k(t)
N

∑
i=1

pkixi(t) (12)

Finally, the fifth layer sums the outputs of the fourth layer:

O5(t) =
3N

∑
k=1

O4
k(t) (13)

4. Experimental Results
4.1. Parameter Identification of MPI Model

In the MPI model, the parameters that need to be identified include ri, ki, di, and ai.
The least squares method is used to identify the MPI model from the experimental results
of the 0.1 Hz sinusoidal excitation without load. The identified parameters are given in
Table 1. The measured displacement and model output are shown in Figure 6. It can be
observed that great agreement between the measurement and the model output has been
achieved, as shown in Figure 6a,c. In order to quantify the modeling accuracy, the mean
absolute error (MAE) and root-mean-square error (RSME) are calculated to be 0.4538 mm
and 0.6120 mm, respectively.

Table 1. Identification result of the parameters.

i 1 2 3 4 5 6 7 8 9 10

ri 0 0.0101 0.0296 0.2596 0.4318 0.8309 1.6003 1.9544 3.9537 4.95
ki 3.5838 −3.8779 0.3084 0.1117 −0.0887 −0.0033 −0.0116 −0.0208 −0.0429 0.0315
di −0.3435 0.643 −0.1711 0.1878 −0.0425 0.0359 0.046 0.0461 −0.0298 0.0698
ai −8.97e-04 0 0.0411 0 −0.6712 0 4.4945 0 2.3917 0

Figure 6. Identification of the MPI model: (a) time plot, (b) error histogram, and (c) hysteresis plot.
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The statistics of the modeling error are shown in Figure 6b. It can be observed that the
modeling errors center around 0 and lie mainly within the range of ±1 mm. As a result, the
MPI model can well predict the PAM’s displacement when no load is added to the system.
However, the influence of the external load is not considered in MPI model. Typically, if a
constant load is added to the hook, the same modeling and identification process has to be
repeated to obtain another MPI model. This is straightforward and thus is not be presented
herein, to guarantee the conciseness of the paper.

4.2. Training of RFNN

In order to capture the influence of the time-varying load on the PAM’s displacement,
different external loads are applied on the hook when the PAM is moving. The output force
and displacement of PAM are measured during the process. The output of the MPI model,
the output force, and the displacement of the PAM are used as the training data for the
RFNN.

In the training of the RFNN, the standard particle swarm optimization (PSO) method
is used to identify the parameters of the RFNN. PSO is initialized by a group of particles,
and the optimal solution is found in the subsequent iterative update. The updating rule of
particles can be expressed by the following formulas:

qi(t + 1) = qi(t) + vi(t + 1) (14)

vi(t + 1) = wv·vi(t) + c1·rand()·[pbesti − qi(t)] + c2·rand()·[gbesti − qi(t)] (15)

where qi(t) and vi(t) represent the current position and velocity of the particle, respectively,
wv is the inertial weight, c1 and c2 represent the learning constants, rand() represents the
random number, and pbest and gbest represent the best position for the individual particle
and all particles, respectively.

The linear decreasing weight is used to update the inertial weight wv. The updating
rule of wv can be expressed by the following formula:

wv(t) = (wini − wend)(Mx −m)/Mx + wend (16)

where m represents the current iteration number. In this paper, the learning constant c1 and
c2 are set to be 2. wini and wend, which represent the initial and final value of wv, respectively,
are set to 0.9 and 0.4.

The overall 3D hysteresis model can be obtained after training the RFNN and cascading
it to the MPI model. The experimental results of the training set are shown in Figure 7.
The external load with a peak of approximately 100 N is applied and removed from the
hook three times. The shaded areas in Figure 7a indicate the durations of the external load.
In this manner, the PAM’s behaviors with and without external load can be captured in
one measurement. It can be found from Figure 7 that when there is no external load, the
MPI-NARMAX model can follow the displacement of the PAM well. When there is external
load on the PAM, the MPI-NARMAX model can still predict the output displacement
of PAM well. There is no obvious change in the magnitude of the modeling error for
the PAM with and without external loads. The MAE and RMSE are calculated to be
0.8730 mm and 1.0913 mm, respectively. Due to the influence of the external load, the input–
displacement hysteresis loops are distorted, as shown in Figure 7b. This will be difficult
to model using conventional 2D hysteresis models. The couplings between the force and
displacement of the PAM are shown in Figure 7c. It can be observed that the proposed
MPI-NARMAX successfully captures the influence of the external load and improves the
prediction accuracy on the output displacement of the PAM. As shown in Figure 7b, the
input–displacement relationship of the MPI-NARMAX model matches the measurement well.
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Figure 7. Training of the RFNN: (a) time plots of the input and outputs with shaded areas indi-
cating the durations of the external load, (b) the input–displacement hysteresis, and (c) the force–
displacement couplings.

4.3. The Results of MPI-NARMAX Model
4.3.1. Varying Load

The effectiveness of the identified MPI-NARMAX model is verified on another testing
dataset, where the PAM is confronted with stronger external forces. The experimental
results of the testing set are shown in Figure 8.

Figure 8. Verification of the proposed MPI-NARMAX model: (a) time plots of the input and outputs
with shaded areas indicating the durations of the external load, (b) the input–displacement hysteresis,
and (c) the force–displacement couplings.

Similar to the training set, the external load is applied and removed from the hook
three times. However, the peak of the external load increases to approximately 150 N. For
such a high and varying external force, the proposed model can still precisely predict the
output displacement. The MAE and RSME are calculated to be 0.9304 mm and 1.2138 mm,
respectively. The modeling error on the testing set is comparable to the modeling error on
the training set. The input–displacement hysteresis loops and force–displacement couplings
are shown in Figure 8b,c, respectively. Good agreements between the measurements and
the model output can be found. This demonstrates that the complex relationship among
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the input, the output displacement, and the output force of the PAM can be captured well
in the proposed 3D hysteresis model.

In order to compare the performance of the proposed model, the performance of
the MPI model identified in Section 4.1 is also provided in Figure 8. As this standalone
MPI model is identified without any external load, the influence of the external load is
totally ignored in this MPI model. As a result, there exist obvious discrepancies between
the MPI’s output and the measurement. The modeling accuracy of the standalone MPI
model is poor. The MAE and RMSE of the MPI model are calculated to be 3.8926 mm and
4.4845 mm, respectively. This demonstrates that the conventional 2D hysteresis models
cannot capture the couplings between the output force and displacement of the PAM. The
modeling accuracy of the 2D models are poor when confronted with strong and varying
external loads.

4.3.2. Cross-Checking with Different Load Statuses

In applications, the influence of the external load can also be modeled by applying
different payloads to the PAM and identifying the parameters of the standalone MPI model
for each payload. As a result, instead of a single model, multiple MPI models are obtained
using this method. In order to compare the performance of the proposed MPI-NARMAX
model with these models, the PAM’s behaviors in the following load statuses are measured:

Status 1 : 0.1 Hz sinusoidal signal actuation without load.

Status 2 : 0.2 Hz sinusoidal actuation with a constant load of 10.04 kg.

Status 3 : 0.2 Hz sinusoidal actuation with a constant load of 21.75 kg.

Status 4 : 0.22 Hz sinusoidal actuation with varying load, as investigated in Figure 8.

In status 4, it is very difficult to use a standalone MPI model to fit the measurement, as
the measured hysteresis loops contain several regional distortions. As a result, three MPI
models are individually identified at status 1, 2, and 3, which are denoted as MPI-1, MPI-2,
and MPI-3, respectively.

The identified MPI models, together with the proposed MPI-NARMAX model, are
cross-checked using the other measurements. The MAE and RMSE of these models with
different load statuses are calculated and listed in Tables 2 and 3, respectively.

Table 2. The MAE with different load statuses.

Status 1 Status 2 Status 3 Status 4

MPI-1 0.5675 6.8589 10.0609 3.8926
MPI-2 4.6434 0.1716 3.2333 3.6108
MPI-3 7.8112 3.2266 0.1628 6.7443

MPI-NARMAX 0.3094 0.2887 0.3676 0.9304

Table 3. The RMSE with different load statuses.

Status 1 Status 2 Status 3 Status 4

MPI-1 0.6577 5.4060 6.5387 4.4845
MPI-2 2.9424 0.2348 1.9331 2.3808
MPI-3 4.5439 1.9357 0.2146 3.8913

MPI-NARMAX 0.3997 0.3887 0.4668 1.2138

For standalone MPI models, it is observed that a low modeling error is achieved in
identification, as marked in bold. As a result, if the load status remains, a high modeling
accuracy is expected. However, if the load status changes, the modeling error increases
obviously. For the varying load in status 4, the modeling accuracy of all the standalone
MPI models is poor.

On the contrary, the modeling accuracy of the proposed MPI-NARMAX model is
consistent, regardless of the change in the load status. For constant loads, the modeling
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error of the proposed MPI-NARMAX model is comparable to the standalone MPI models
individually identified. For the varying load in status 4, the modeling accuracy of the
proposed model is the best among the models.

The above experimental results also demonstrate that the proposed MPI-NARMAX
model is effective for both constant and varying external loads. It is superior to the
standalone MPI models individually identified at different constant loads as it can adapt
to different load statuses after only one training, and the parameter identification process
does not need to be repeated when the external load changes.

5. Conclusions

For PAMs, there exists strong hysteresis between the input and outputs. In addition,
the coupling between the output displacement and output force is obvious. These make the
precise modeling of the PAM’s behavior very difficult, especially when varying external
load or disturbances occur. This paper proposes a displacement and force hybrid 3D hys-
teresis model, where the MPI model and RFNN-based NARMAX model are integrated. The
MPI model is constructed by cascading a polynomial saturation operator to the classical PI
model to account for the asymmetry of the PAM’s hysteresis. The RFNN-based NARMAX
model is used to capture the couplings between the output force and displacement of the
PAM. Similar research work can be found in Zhang’s paper [17], where the weight of the
constant payload is included in the training data, making the model capable of predicting
the behavior of the PAM with different but constant loads. In this paper, with the help of a
force sensor, the dynamic variation in the external load can be measured and included as
one input to the model. This makes the proposed MPI-NARMAX hysteresis model capable
of predicting the PAM’s behavior regardless of the change in the external load.

The proposed MPI-NARMAX model only needs to be identified and trained once. The
experimental results of the PAM with constant and varying external loads verify that the
proposed MPI-NARMAX hysteresis model successfully captures the complex hysteresis
and couplings among the input, the output displacement, and the output force of the PAM.
It is capable of precisely predicting the output of the PAM when confronted with constant
and varying external loads. The modeling accuracy is robust against the variation in the
external load. The effectiveness and applicability of the proposed MPI-NARMAX model
are verified.
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