Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (691)

Search Parameters:
Keywords = plateau basins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 39231 KiB  
Article
Study on the Distribution Characteristics of Thermal Melt Geological Hazards in Qinghai Based on Remote Sensing Interpretation Method
by Xing Zhang, Zongren Li, Sailajia Wei, Delin Li, Xiaomin Li, Rongfang Xin, Wanrui Hu, Heng Liu and Peng Guan
Water 2025, 17(15), 2295; https://doi.org/10.3390/w17152295 - 1 Aug 2025
Viewed by 139
Abstract
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research [...] Read more.
In recent years, large-scale linear infrastructure developments have been developed across hundreds of kilometers of permafrost regions on the Qinghai–Tibet Plateau. The implementation of major engineering projects, including the Qinghai–Tibet Highway, oil pipelines, communication cables, and the Qinghai–Tibet Railway, has spurred intensified research into permafrost dynamics. Climate warming has accelerated permafrost degradation, leading to a range of geological hazards, most notably widespread thermokarst landslides. This study investigates the spatiotemporal distribution patterns and influencing factors of thermokarst landslides in Qinghai Province through an integrated approach combining field surveys, remote sensing interpretation, and statistical analysis. The study utilized multi-source datasets, including Landsat-8 imagery, Google Earth, GF-1, and ZY-3 satellite data, supplemented by meteorological records and geospatial information. The remote sensing interpretation identified 1208 cryogenic hazards in Qinghai’s permafrost regions, comprising 273 coarse-grained soil landslides, 346 fine-grained soil landslides, 146 thermokarst slope failures, 440 gelifluction flows, and 3 frost mounds. Spatial analysis revealed clusters of hazards in Zhiduo, Qilian, and Qumalai counties, with the Yangtze River Basin and Qilian Mountains showing the highest hazard density. Most hazards occur in seasonally frozen ground areas (3500–3900 m and 4300–4900 m elevation ranges), predominantly on north and northwest-facing slopes with gradients of 10–20°. Notably, hazard frequency decreases with increasing permafrost stability. These findings provide critical insights for the sustainable development of cold-region infrastructure, environmental protection, and hazard mitigation strategies in alpine engineering projects. Full article
Show Figures

Figure 1

16 pages, 4272 KiB  
Article
Prediction Analysis of Integrative Quality Zones for Corydalis yanhusuo W. T. Wang Under Climate Change: A Rare Medicinal Plant Endemic to China
by Huiming Wang, Bin Huang, Lei Xu and Ting Chen
Biology 2025, 14(8), 972; https://doi.org/10.3390/biology14080972 (registering DOI) - 1 Aug 2025
Viewed by 200
Abstract
Corydalis yanhusuo W. T. Wang, commonly known as Yanhusuo, is an important and rare medicinal plant resource in China. Its habitat integrity is facing severe challenges due to climate change and human activities. Establishing an integrative quality zoning system for this species is [...] Read more.
Corydalis yanhusuo W. T. Wang, commonly known as Yanhusuo, is an important and rare medicinal plant resource in China. Its habitat integrity is facing severe challenges due to climate change and human activities. Establishing an integrative quality zoning system for this species is of significant practical importance for resource conservation and adaptive management. This study integrates multiple data sources, including 121 valid distribution points, 37 environmental factors, future climate scenarios (SSP126 and SSP585 pathways for the 2050s and 2090s), and measured content of tetrahydropalmatine (THP) from 22 sampling sites. A predictive framework for habitat suitability and spatial distribution of effective components was constructed using a multi-model coupling approach (MaxEnt, ArcGIS spatial analysis, and co-kriging method). The results indicate that the MaxEnt model exhibits high prediction accuracy (AUC > 0.9), with the dominant environmental factors being the precipitation of the wettest quarter (404.8~654.5 mm) and the annual average temperature (11.8~17.4 °C). Under current climatic conditions, areas of high suitability are concentrated in parts of Central and Eastern China, including the Sichuan Basin, the middle–lower Yangtze plains, and coastal areas of Shandong and Liaoning. In future climate scenarios, the center of suitable areas is predicted to shift northwestward. The content of THP is significantly correlated with the mean diurnal temperature range, temperature seasonality, and the mean temperature of the wettest quarter (p < 0.01). A comprehensive assessment identifies the Yangtze River Delta region, Central China, and parts of the Loess Plateau as the optimal integrative quality zones. This research provides a scientific basis and decision-making support for the sustainable utilization of C. yanhusuo and other rare medicinal plants in China. Full article
Show Figures

Figure 1

16 pages, 4497 KiB  
Article
Impact Assessment of Climate Change on Climate Potential Productivity in Central Africa Based on High Spatial and Temporal Resolution Data
by Mo Bi, Fangyi Ren, Yian Xu, Xinya Guo, Xixi Zhou, Dmitri van den Bersselaar, Xinfeng Li and Hang Ren
Land 2025, 14(8), 1535; https://doi.org/10.3390/land14081535 - 26 Jul 2025
Viewed by 200
Abstract
This study investigates the spatio-temporal dynamics of Climate Potential Productivity (CPP) in Central Africa during 1901–2019 using the Thornthwaite Memorial model coupled with Mann–Kendall tests based on high spatial and temporal resolution data. The results demonstrate the climate–vegetation interactions under global warming: (1) [...] Read more.
This study investigates the spatio-temporal dynamics of Climate Potential Productivity (CPP) in Central Africa during 1901–2019 using the Thornthwaite Memorial model coupled with Mann–Kendall tests based on high spatial and temporal resolution data. The results demonstrate the climate–vegetation interactions under global warming: (1) Central Africa exhibited a statistically significant warming trend (r2 = 0.33, p < 0.01) coupled with non-significant rainfall reduction, suggesting an emerging warm–dry climate regime that parallels meteorological trends observed in North Africa. (2) Central Africa exhibited an overall increasing trend in CPP, with temporal fluctuations closely aligned with precipitation variability. Specifically, the CPP in Central Africa has undergone three distinct phases: an increasing phase (1901–1960), a decreasing phase (1960–1980), and a slow recovery phase (1980–2019). The multiple intersection points between the UF and UB curves indicate that Central Africa’s CPP has been significantly affected by climate change under global warming. (3) The correlation of CPP–Temperature was mainly positive, mainly distributed in the Lower Guinea Plateau and the northern part of the Congo Basin (r2 = 0.26, p < 0.1). The relationship of CPP–Precipitation showed predominantly a very strong positive correlation (r2 = 0.91, p < 0.01). Full article
(This article belongs to the Section Land–Climate Interactions)
Show Figures

Figure 1

14 pages, 730 KiB  
Article
Potato Productivity Response to Potassium Fertilizer Source and Rate in Oregon’s Columbia Basin
by Shahram Torabian, Jack Pieper, Ruijun Qin, Christos Noulas, Vidyasagar Sathuvalli, Brian Charlton, Surendra K. Dara and Rhett Spear
Agronomy 2025, 15(8), 1795; https://doi.org/10.3390/agronomy15081795 - 25 Jul 2025
Viewed by 400
Abstract
Potatoes require high potassium (K) fertilization for good yields, especially in Oregon’s Columbia Basin, but little is known about how K rate and source affect potatoes. This study aimed to evaluate the effects of different K fertilizer rates and sources on the yield [...] Read more.
Potatoes require high potassium (K) fertilization for good yields, especially in Oregon’s Columbia Basin, but little is known about how K rate and source affect potatoes. This study aimed to evaluate the effects of different K fertilizer rates and sources on the yield and quality of various potato cultivars. Two-year trials (2020 and 2022) were conducted as a split-plot, randomized complete block design with four replications in a producer’s field near Boardman, Oregon. The study tested two K fertilizer sources (potassium sulfate—K2SO4 and potassium chloride—KCl, at five application rates from 0 to 896 kg K2O ha−1, on three potato cultivars: Clearwater Russet, Russet Burbank, and Umatilla Russet. Among cultivars, Umatilla Russet, with 56.5 t ha−1, had the highest total yield. Potassium fertilizer application, regardless of the rate, significantly increased tuber yield, resulting in an average 10% increase in total yield and a 12% increase in US No. 1 yield compared to the control. Although total yield differences among K application rates from 224 to 896 kg K2O ha−1 were generally not significant, the linear-plateau model identified a breakpoint at 251 kg K2O ha−1, indicating that applying rates beyond this level does not result in a significant yield increase. Additionally, higher K application rates were linked to a reduction in tuber-specific gravity. In terms of K sources, both K2SO4 and KCl produced similar yields. Further studies in diverse environments are needed to better understand how K fertilization affects potato yield and quality and to develop best practices for maximizing productivity. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

30 pages, 5311 KiB  
Article
Ancient Earth Births: Compelling Convergences of Geology, Orality, and Rock Art in California and the Great Basin
by Alex K. Ruuska
Arts 2025, 14(4), 82; https://doi.org/10.3390/arts14040082 - 22 Jul 2025
Viewed by 553
Abstract
This article critically considers sample multigenerational oral traditions of Numic-speaking communities known as the Nüümü (Northern Paiute), Nuwu (Southern Paiute), and Newe (Western Shoshone), written down over the last 151 years. Utilizing the GOAT! phenomenological method to compare the onto-epistemologies of Numic peoples [...] Read more.
This article critically considers sample multigenerational oral traditions of Numic-speaking communities known as the Nüümü (Northern Paiute), Nuwu (Southern Paiute), and Newe (Western Shoshone), written down over the last 151 years. Utilizing the GOAT! phenomenological method to compare the onto-epistemologies of Numic peoples with a wide range of data from (G)eology, (O)ral traditions, (A)rchaeology and (A)nthropology, and (T)raditional knowledge, the author analyzed 824 multigenerational ancestral teachings. These descriptions encode multigenerational memories of potential geological, climatic, and ecological observations and interpretations of multiple locations and earth processes throughout the Numic Aboriginal homelands within California and the Great Basin. Through this layered and comparative analysis, the author identified potential convergences of oral traditions, ethnography, ethnohistory, rock art, and geological processes in the regions of California, the Great Basin, and the Colorado Plateau, indicative of large-scale earth changes, cognized by Numic Indigenous communities as earth birthing events, occurring during the Late Pleistocene/Early Holocene to Middle and Late Holocene, including the Late Dry Period, Medieval Climatic Anomaly, and Little Ice Age. Full article
(This article belongs to the Special Issue Advances in Rock Art Studies)
Show Figures

Figure 1

20 pages, 35728 KiB  
Article
Prestack Depth Migration Imaging of Permafrost Zone with Low Seismic Signal–Noise Ratio Based on Common-Reflection-Surface (CRS) Stack
by Ruiqi Liu, Zhiwei Liu, Xiaogang Wen and Zhen Zhao
Geosciences 2025, 15(8), 276; https://doi.org/10.3390/geosciences15080276 - 22 Jul 2025
Viewed by 217
Abstract
The Qiangtang Basin (Tibetan Plateau) poses significant geophysical challenges for seismic exploration due to near-surface widespread permafrost and steeply dipping Mesozoic strata induced by the Cenozoic Indo-Eurasian collision. These seismic geological conditions considerably contribute to lower signal-to-noise ratios (SNRs) with complex wavefields, to [...] Read more.
The Qiangtang Basin (Tibetan Plateau) poses significant geophysical challenges for seismic exploration due to near-surface widespread permafrost and steeply dipping Mesozoic strata induced by the Cenozoic Indo-Eurasian collision. These seismic geological conditions considerably contribute to lower signal-to-noise ratios (SNRs) with complex wavefields, to some extent reducing the reliability of conventional seismic imaging and structural interpretation. To address this, the common-reflection-surface (CRS) stack method, derived from optical paraxial ray theory, is implemented to transcend horizontal layer model constraints, offering substantial improvements in high-SNR prestack gather generation and prestack depth migration (PSDM) imaging, notably for permafrost zones. Using 2D seismic data from the basin, we detailedly compare the CRS stack with conventional SNR enhancement techniques—common midpoint (CMP) FlexBinning, prestack random noise attenuation (PreRNA), and dip moveout (DMO)—evaluating both theoretical foundations and practical performance. The result reveals that CRS-processed prestack gathers yield superior SNR optimization and signal preservation, enabling more robust PSDM velocity model building, while comparative imaging demonstrates enhanced diffraction energy—particularly at medium (20–40%) and long (40–60%) offsets—critical for resolving faults and stratigraphic discontinuities in PSDM. This integrated validation establishes CRS stacking as an effective preprocessing foundation for the depth-domain imaging of complex permafrost geology, providing critical improvements in seismic structural resolution and reduced interpretation uncertainty for hydrocarbon exploration in permafrost-bearing basins. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

17 pages, 9043 KiB  
Article
Soil Erosion Dynamics and Driving Force Identification in the Yiluo River Basin Under Multiple Future Scenarios
by Jun Hou, Jianwei Wang, Xiaofeng Chen, Yong Hu and Guoqiang Dong
Water 2025, 17(14), 2157; https://doi.org/10.3390/w17142157 - 20 Jul 2025
Viewed by 297
Abstract
Our study focused on identifying the evolution of soil erosion and its key drivers under multiple future scenarios in the Yiluo River Basin. Integrating the Universal Soil Loss Equation (USLE), future land use and vegetation cover simulation methods, and the Geodetector model, we [...] Read more.
Our study focused on identifying the evolution of soil erosion and its key drivers under multiple future scenarios in the Yiluo River Basin. Integrating the Universal Soil Loss Equation (USLE), future land use and vegetation cover simulation methods, and the Geodetector model, we analyzed historical soil erosion trends (2000–2020), projected future soil erosion risks under multiple Shared Socioeconomic Pathways (SSPs), and quantified the interactive effects of key driving factors. The results showed that soil erosion within the basin exhibited moderate intensity. Over the past 20 years, soil erosion decreased by 28.78%, with 76.29% of the area experiencing reduced erosion intensity. Future projections indicated an overall declining trend in soil erosion, showing reductions of 4.93–35.95% compared to baseline levels. However, heterogeneous patterns emerged across various scenarios, with the highest risk observed under SSP585. Land use type was identified as the core driving factor behind soil erosion (explanatory capacity q-value > 5%). Under diverse future climate scenarios, interactions between land use type and precipitation and temperature exhibited high sensitivity, highlighting the critical regulatory role of climate change in regulating erosion processes. This research provides a scientific foundation for the precise prevention and adaptive management of soil erosion in the Loess Plateau region. Full article
Show Figures

Figure 1

19 pages, 7491 KiB  
Article
A Model and the Characteristics of Gas Generation of the Longmaxi Shale in the Sichuan Basin
by Xuewen Shi, Yi Li, Yuqiang Jiang, Ye Zhang, Wei Wu, Zhiping Zhang, Zhanlei Wang, Xingping Yin, Yonghong Fu and Yifan Gu
Processes 2025, 13(7), 2294; https://doi.org/10.3390/pr13072294 - 18 Jul 2025
Viewed by 285
Abstract
Currently, the Longmaxi shale in the Sichuan Basin is the most successful stratum of shale gas production in China. However, because Longmaxi shale mostly has high over-maturity, a low-maturity sample cannot be obtained for gas generation thermal simulations, and as a result, a [...] Read more.
Currently, the Longmaxi shale in the Sichuan Basin is the most successful stratum of shale gas production in China. However, because Longmaxi shale mostly has high over-maturity, a low-maturity sample cannot be obtained for gas generation thermal simulations, and as a result, a gas generation model has not yet been established for it. Therefore, models of other shales are usually used to calculate the amount of gas generated from Longmaxi shale, but they may produce inaccurate results. In this study, a Longmaxi shale sample with an equivalent vitrinite reflectance calculated from Raman spectroscopy (EqVRo) of 1.26% was obtained from Well Yucan 1 in the Chengkou area, northeast Sichuan Province. This Longmaxi shale may have the lowest maturity in nature. Pyrolysis simulations based on gold tubes were performed on this sample, and the gas generation line was obtained. The amount of gas generated during the low-maturity stage was compensated by referring to gas generation data obtained from Lower Silurian black shale in western Lithuania. Thus, a gas generation model of the Longmaxi shale was built. The model showed that the gas generation process of Longmaxi shale could be divided into three stages: (1) First, there is the quick generation stage (EqVRo 0.5–3.0%), where hydrocarbon gases were generated quickly and constantly, and the generation rate was steady. A maximum of 458 mL/g TOC was reached at a maturity of 3.0% EqVRo. (2) Second, there is the stable stage (EqVRo 3.0–3.25%), where the amount of generated gas reached a plateau of 453–458 mL/g TOC. (3) Third, there is the rapid descent stage (EqVRo > 3.25%), where the amount of generated gas started to decrease, and it was 393 mL/g TOC at an EqVRo of 3.34%. This model allows us to more accurately calculate the amount of gas generated from the Longmaxi shale in the Sichuan Basin. Full article
Show Figures

Figure 1

18 pages, 11737 KiB  
Article
MoHiPr-TB: A Monthly Gridded Multi-Source Merged Precipitation Dataset for the Tarim Basin Based on Machine Learning
by Ping Chen, Junqiang Yao, Jing Chen, Mengying Yao, Liyun Ma, Weiyi Mao and Bo Sun
Remote Sens. 2025, 17(14), 2483; https://doi.org/10.3390/rs17142483 - 17 Jul 2025
Viewed by 256
Abstract
A reliable precipitation dataset with high spatial resolution is essential for climate research in the Tarim Basin. This study evaluated the performances of four models, namely a random forest (RF), a long short-term memory network (LSTM), a support vector machine (SVM), and a [...] Read more.
A reliable precipitation dataset with high spatial resolution is essential for climate research in the Tarim Basin. This study evaluated the performances of four models, namely a random forest (RF), a long short-term memory network (LSTM), a support vector machine (SVM), and a feedforward neural network (FNN). FNN, which was found to be superior to the other models, was used to integrate eight precipitation datasets spanning from 1990 to 2022 across the Tarim Basin, resulting in a new monthly high-resolution (0.1°) precipitation dataset named MoHiPr-TB. This dataset was subsequently bias-corrected by the China Land Data Assimilation System version 2.0 (CLDAS2.0). Validation results indicate that the corrected MoHiPr-TB not only accurately reflects the spatial distribution of precipitation but also effectively simulates its intensity and interannual and seasonal variations. Moreover, MoHiPr-TB is capable of detecting the precipitation–elevation relationship in the Pamir Plateau, where precipitation initially increases and then decreases with elevation, as well as the synchronous variation of precipitation and elevation in the Tianshan region. Collectively, this study delivers a high-accuracy precipitation dataset for the Tarim Basin, which is anticipated to have extensive applications in meteorological, hydrological, and ecological research. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

20 pages, 5984 KiB  
Article
Potassium Fulvate Alleviates Salinity and Boosts Oat Productivity by Modifying Soil Properties and Rhizosphere Microbial Communities in the Saline–Alkali Soils of the Qaidam Basin
by Jie Wang, Xin Jin, Xinyue Liu, Yunjie Fu, Kui Bao, Zhixiu Quan, Chengti Xu, Wei Wang, Guangxin Lu and Haijuan Zhang
Agronomy 2025, 15(7), 1673; https://doi.org/10.3390/agronomy15071673 - 10 Jul 2025
Viewed by 403
Abstract
Soil salinization severely limits global agricultural sustainability, particularly across the saline–alkaline landscapes of the Qinghai–Tibet Plateau. We examined how potassium fulvate (PF) modulates oat (Avena sativa L.) performance, soil chemistry, and rhizospheric microbiota in the saline–alkaline soils of the Qaidam Basin. PF [...] Read more.
Soil salinization severely limits global agricultural sustainability, particularly across the saline–alkaline landscapes of the Qinghai–Tibet Plateau. We examined how potassium fulvate (PF) modulates oat (Avena sativa L.) performance, soil chemistry, and rhizospheric microbiota in the saline–alkaline soils of the Qaidam Basin. PF markedly boosted shoot and root biomass, with the greatest response observed at 150 kg hm−2. At the same time, it enhanced soil fertility by increasing organic matter, nitrate-N, ammonium-N, and available potassium, and improved ionic balance by lowering Na+ concentrations and the sodium adsorption ratio (SAR), while increasing Ca2+ levels and soil moisture content. Under the high-dose treatment (F2), endogenous fungal contributions declined sharply, exogenous replacements increased, and fungal α-diversity fell; multivariate ordinations confirmed that PF reshaped both bacterial and fungal communities, with fungi exhibiting the stronger response. We integrated three machine learning algorithms—least absolute shrinkage and selection operator (LASSO), Random Forest (RF), and eXtreme Gradient Boosting (XGBoost)—to minimize the bias inherent in any single method. We identified microbial β-diversity, organic matter, and Na+ and Ca2+ concentrations as the most robust predictors of the Soil Salinization and Alkalization Index (SSAI). Structural equation modeling further showed that PF mitigates salinity chiefly by improving soil physicochemical properties (path coefficient = −0.77; p < 0.001), with microbial assemblages acting as key intermediaries. These findings provide compelling theoretical and empirical support for deploying PF to rehabilitate saline–alkaline soils in alpine environments and offer practical guidance for sustainable land management in the Qaidam Basin. Full article
Show Figures

Figure 1

18 pages, 22954 KiB  
Article
Spatiotemporal Analysis of Drought Variation from 2001 to 2023 in the China–Mongolia–Russia Transboundary Heilongjiang River Basin Based on ITVDI
by Weihao Zou, Juanle Wang, Congrong Li, Keming Yang, Denis Fetisov, Jiawei Jiang, Meng Liu and Yaping Liu
Remote Sens. 2025, 17(14), 2366; https://doi.org/10.3390/rs17142366 - 9 Jul 2025
Viewed by 372
Abstract
Drought impacts agricultural production and regional sustainable development. Accordingly, timely and accurate drought monitoring is essential for ensuring food security in rain-fed agricultural regions. Alternating drought and flood events frequently occur in the Heilongjiang River Basin, the largest grain-producing area in Far East [...] Read more.
Drought impacts agricultural production and regional sustainable development. Accordingly, timely and accurate drought monitoring is essential for ensuring food security in rain-fed agricultural regions. Alternating drought and flood events frequently occur in the Heilongjiang River Basin, the largest grain-producing area in Far East Asia. However, spatiotemporal variability in drought is not well understood, in part owing to the limitations of the traditional Temperature Vegetation Dryness Index (TVDI). In this study, an Improved Temperature Vegetation Dryness Index (ITVDI) was developed by incorporating Digital Elevation Model data to correct land surface temperatures and introducing a constraint line method to replace the traditional linear regression for fitting dry–wet boundaries. Based on MODIS (Moderate-resolution Imaging Spectroradiometer) normalized vegetation index and land surface temperature products, the Heilongjiang River Basin, a cross-border basin between China, Mongolia, and Russia, exhibited pronounced spatiotemporal variability in drought conditions of the growing season from 2001 to 2023. Drought severity demonstrated clear geographical zonation, with a higher intensity in the western region and lower intensity in the eastern region. The Mongolian Plateau and grasslands were identified as drought hotspots. The Far East Asia forest belt was relatively humid, with an overall lower drought risk. The central region exhibited variation in drought characteristics. From the perspective of cross-national differences, the drought severity distribution in Northeast China and Inner Mongolia exhibits marked spatial heterogeneity. In Mongolia, regional drought levels exhibited a notable trend toward homogenization, with a higher proportion of extreme drought than in other areas. The overall drought risk in the Russian part of the basin was relatively low. A trend analysis indicated a general pattern of drought alleviation in western regions and intensification in eastern areas. Most regions showed relatively stable patterns, with few areas exhibiting significant changes, mainly surrounding cities such as Qiqihar, Daqing, Harbin, Changchun, and Amur Oblast. Regions with aggravation accounted for 52.29% of the total study area, while regions showing slight alleviation account for 35.58%. This study provides a scientific basis and data infrastructure for drought monitoring in transboundary watersheds and for ensuring agricultural production security. Full article
Show Figures

Figure 1

18 pages, 3145 KiB  
Article
Precipitation Changes and Future Trend Predictions in Typical Basin of the Loess Plateau, China
by Beilei Liu, Qi Liu, Peng Li, Zhanbin Li, Jiajia Guo, Jianye Ma, Bo Wang and Xiaohuang Liu
Sustainability 2025, 17(14), 6267; https://doi.org/10.3390/su17146267 - 8 Jul 2025
Viewed by 317
Abstract
This study analyzes precipitation patterns and future trends in the Kuye River Basin in the context of climate change, providing a scientific foundation for water resource management and ecological protection. Using methods such as the Mann–Kendall test, Pettitt test, and complex Morlet wavelet [...] Read more.
This study analyzes precipitation patterns and future trends in the Kuye River Basin in the context of climate change, providing a scientific foundation for water resource management and ecological protection. Using methods such as the Mann–Kendall test, Pettitt test, and complex Morlet wavelet analysis, this study examines both interannual and intra-annual variability in historical precipitation data, identifying abrupt changes and periodic patterns. Future projections are based on CMIP5 models under RCP4.5 and RCP8.5 scenarios, forecasting changes over the next 30 years (2023–2052). The results reveal significant spatiotemporal variability in precipitation, with 88.16% concentrated in the summer and flood seasons, while only 1.07% falls in winter. The basin’s multi-year average precipitation is 445 mm, exhibiting stable interannual variability, but with a significant increase starting in 2006. Projections indicate that the average annual precipitation will rise to 524.69 mm from 2023 to 2052, with a notable change point in 2043. Precipitation is expected to increase spatially from northwest to southeast. This research underscores the importance of understanding precipitation dynamics in managing drought and flood risks. It highlights the role of soil and water conservation and vegetation restoration in improving water resource efficiency, supporting sustainable development, and guiding climate adaptation strategies. Full article
(This article belongs to the Special Issue Ecological Water Engineering and Ecological Environment Restoration)
Show Figures

Figure 1

18 pages, 2395 KiB  
Article
Unveiling the Synergies and Conflicts Between Vegetation Dynamic and Water Resources in China’s Yellow River Basin
by Zuqiao Gao and Xiaolei Ju
Land 2025, 14(7), 1396; https://doi.org/10.3390/land14071396 - 3 Jul 2025
Viewed by 293
Abstract
Understanding the relationship between regional vegetation dynamics and water resources is essential for improving integrated vegetation–water management, enhancing ecosystem services, and advancing the sustainable development of ecological–economic–social systems. As China’s second largest river basin, the Yellow River Basin (YRB) is ecologically fragile and [...] Read more.
Understanding the relationship between regional vegetation dynamics and water resources is essential for improving integrated vegetation–water management, enhancing ecosystem services, and advancing the sustainable development of ecological–economic–social systems. As China’s second largest river basin, the Yellow River Basin (YRB) is ecologically fragile and experiences severe water scarcity. Vegetation changes further intensify conflicts between water supply and demand. To investigate the evolution and interaction mechanisms between vegetation and water resources in the YRB, this study uses the InVEST model to simulate annual water yield (Wyield) from 1982 to 2020 and applies the Dimidiate Pixel Model (DPM) to estimate fractional vegetation cover (FVC). The Theil–Sen method is applied to quantify the spatiotemporal trends of Wyield and FVC. A pixel-based second-order partial correlation analysis is performed to clarify the intrinsic relationship between FVC and Wyield at the grid scale. The main conclusions are as follows: (1) During the statistical period (1982–2020), the multi-year average annual Wyield in the YRB was 73.15 mm. Interannual Wyield showed a clear fluctuating trend, with an initial decline followed by a subsequent increase. Wyield showed marked spatial heterogeneity, with high values in the southern upper reaches and low values in the Longzhong Loess Plateau and Hetao Plain. During the same period, about 68.74% of the basin experienced increasing Wyield, while declines were concentrated in the upper reaches. (2) The average FVC across the basin was 0.51, showing a significant increasing trend during the statistical period. The long-term average FVC showed significant spatial heterogeneity, with high values in the Fenwei Plain, Shanxi Basin, and Taihang Mountains, and low values in the Loess Plateau and Hetao Plain. Spatially, 68.74% of the basin exhibited significant increases in FVC, mainly in the middle and lower reaches, while decreases were mostly in the upper reaches. (3) Areas with significant FVC–Wyield correlations covered a small portion of the basin: trade-off regions made up 10.35% (mainly in the southern upper reaches), and synergistic areas accounted for 5.26% (mostly in the Hetao Plain and central Loess Plateau), both dominated by grasslands and croplands. Mechanistic analysis revealed spatiotemporal heterogeneity in FVC–Wyield relationships across the basin, influenced by both natural drivers and anthropogenic activities. This study systematically explores the patterns and interaction mechanisms of FVC and Wyield in the YRB, offering a theoretical basis for regional water management, ecological protection, and sustainable development. Full article
(This article belongs to the Special Issue Integrating Climate, Land, and Water Systems)
Show Figures

Figure 1

24 pages, 28055 KiB  
Article
Sequence Stratigraphic and Geochemical Records of Paleo-Sea Level Changes in Upper Carboniferous Mixed Clastic–Carbonate Successions in the Eastern Qaidam Basin
by Yifan Li, Xiaojie Wei, Kui Liu and Kening Qi
J. Mar. Sci. Eng. 2025, 13(7), 1299; https://doi.org/10.3390/jmse13071299 - 2 Jul 2025
Viewed by 303
Abstract
The Upper Carboniferous strata in the eastern Qaidam Basin, comprising several hundred meters of thick, mixed clastic–carbonate successions that have been little reported or explained, provide an excellent geological record of paleoenvironmental and paleo-sea level changes during the Late Carboniferous icehouse period. This [...] Read more.
The Upper Carboniferous strata in the eastern Qaidam Basin, comprising several hundred meters of thick, mixed clastic–carbonate successions that have been little reported or explained, provide an excellent geological record of paleoenvironmental and paleo-sea level changes during the Late Carboniferous icehouse period. This tropical carbonate–clastic system offers critical constraints for correlating equatorial sea level responses with high-latitude glacial cycles during the Late Paleozoic Ice Age. Based on detailed outcrop observations and interpretations, five facies assemblages, including fluvial channel, tide-dominated estuary, wave-dominated shoreface, tide-influenced delta, and carbonate-dominated marine, have been identified and organized into cyclical stacking patterns. Correspondingly, four third-order sequences were recognized, each composed of lowstand, transgressive, and highstand system tracts (LST, TST, and HST). LST is generally dominated by fluvial channels as a result of river juvenation when the sea level falls. The TST is characterized by tide-dominated estuaries, followed by retrogradational, carbonated-dominated marine deposits formed during a period of sea level rise. The HST is dominated by aggradational marine deposits, wave-dominated shoreface environments, or tide-influenced deltas, caused by subsequent sea level falls and increased debris supply. The sequence stratigraphic evolution and geochemical records, based on carbon and oxygen isotopes and trace elements, suggest that during the Late Carboniferous period, the eastern Qaidam Basin experienced at least four significant sea level fluctuation events, and an overall long-term sea level rise. These were primarily driven by the Gondwana glacio-eustasy and regionally ascribed to the Paleo-Tethys Ocean expansion induced by the late Hercynian movement. Assessing the history of glacio-eustasy-driven sea level changes in the eastern Qaidam Basin is useful for predicting the distribution and evolution of mixed cyclic succession in and around the Tibetan Plateau. Full article
Show Figures

Figure 1

20 pages, 3744 KiB  
Article
Potassium Fulvate Alleviates Salt–Alkali Stress and Promotes Comprehensive Growth of Oats in Saline–Alkali Soils of the Qaidam Basin
by Xin Jin, Jie Wang, Xinyue Liu, Jianping Chang, Caixia Li and Guangxin Lu
Plants 2025, 14(13), 1982; https://doi.org/10.3390/plants14131982 - 28 Jun 2025
Viewed by 443
Abstract
Soil salinization limits global agricultural sustainability, and extensive areas of saline–alkaline soils on the Qinghai–Tibet Plateau remain underutilized. Against this backdrop, this study evaluated the effects and ecological regulatory mechanisms of potassium fulvate (PF) application on oat (Avena sativa L.) growth, soil [...] Read more.
Soil salinization limits global agricultural sustainability, and extensive areas of saline–alkaline soils on the Qinghai–Tibet Plateau remain underutilized. Against this backdrop, this study evaluated the effects and ecological regulatory mechanisms of potassium fulvate (PF) application on oat (Avena sativa L.) growth, soil properties, and rhizosphere microbial communities in the saline–alkali soils of the Qaidam Basin. The results showed that PF significantly enhanced both aboveground and belowground biomass and improved root morphological traits, with the higher application rate (150 kg·hm−2) showing superior performance. PF also effectively improved soil nutrient conditions (organic matter, ammonium nitrogen, and potassium), reduced the integrated salinity–alkalinity index, significantly optimized the composition of rhizosphere soil cations (increased K+ and Ca2+; decreased Na+ and Mg2+), and induced a marked reshaping of the composition and structure of rhizosphere microbial communities. Notably, microbial β-diversity exhibited a significant regulatory effect on the comprehensive growth of oats. Structural equation modeling (SEM) revealed that PF primarily promoted oat growth indirectly by improving soil physicochemical properties (direct effect = 0.94), while the microbial community structure served as a synergistic ecological mediator. This study clarifies the regulatory mechanisms of PF in oat cultivation under alpine saline–alkali conditions, providing both theoretical and practical support for improving soil quality, enhancing forage productivity, and promoting sustainable agriculture in cold regions. Full article
Show Figures

Figure 1

Back to TopTop