Unveiling the Synergies and Conflicts Between Vegetation Dynamic and Water Resources in China’s Yellow River Basin
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. InVEST Model
2.3.2. Dimidiate Pixel Model
2.3.3. Theil–Sen Median Trend Analysis
2.3.4. Pixel-Wise Second-Order Partial Correlation Analysis
3. Results
3.1. Spatiotemporal Dynamics of Wyield
3.2. Spatiotemporal Dynamics of FVC
3.3. Wyield–FVC Relationship Analysis
3.3.1. Partial Correlation Analysis
3.3.2. Interaction Mechanism Analysis
4. Discussion
4.1. Hydrological Spatiotemporal Characteristics of Trade-Off/Synergy Mechanisms
4.2. Research Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Wyield | water yield |
FVC | fractional vegetation cover |
YRB | Yellow River Basin |
GGP | Grain-for-Green Program |
Tem | temperature |
Pre | precipitation |
PET | potential evapotranspiration |
DEM | Digital Elevation Model |
LUC | land use/cover |
NDVI | Normalized Difference Vegetation Index |
Tr | vegetation transpiration |
CI | canopy interception |
Ev | soil evaporation |
AET | actual evapotranspiration |
DPM | Dimidiate Pixel Model |
AI | aridity index |
References
- Ma, S.; Qiao, Y.P.; Wang, L.J.; Zhang, J.C. Terrain gradient variations in ecosystem services of different vegetation types in mountainous regions: Vegetation resource conservation and sustainable development. For. Ecol. Manag. 2021, 482, 118856. [Google Scholar] [CrossRef]
- Benayas, J.M.R.; Newton, A.C.; Diaz, A.; Bullock, J.M. Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science 2009, 325, 1121–1124. [Google Scholar] [CrossRef]
- Baer, S.G.; Bach, E.M.; Meyer, C.K.; Preez, C.C.D.; Six, J. Belowground ecosystem recovery during grassland restoration: South African Highveld compared to US tallgrass prairie. Ecosystems 2015, 18, 390–403. [Google Scholar] [CrossRef]
- Brasil, I.D.S.; Corte, A.P.D.; Moura, M.M.; Nakajima, N.Y.; Sanquetta, C.R.; Rex, F.E.; Mallmann, A.A. Contributions of forest regeneration after intense fragmentation in the Amazon through morphological spatial pattern analysis. For. Sci. 2022, 68, 508–520. [Google Scholar] [CrossRef]
- Wen, X.; Théau, J. Spatiotemporal analysis of water-related ecosystem services under ecological restoration scenarios: A case study in northern Shaanxi, China. Sci. Total Environ. 2020, 720, 137477. [Google Scholar] [CrossRef] [PubMed]
- National Forestry and Grassland Administration. 2022 China National Afforestation and Greening Bulletin. Land Greening; National Forestry and Grassland Administration: Beijing, China, 2023; Volume 3, pp. 6–11. [Google Scholar]
- Wu, X.T.; Wang, S.; Fu, B.J.; Feng, X.M.; Chen, Y.Z. Socio-ecological changes on the Loess Plateau of China after Grain to Green Program. Sci. Total Environ. 2019, 678, 565–573. [Google Scholar] [CrossRef]
- Li, X.; Zulkar, H.; Wang, D.; Zhao, T.; Xu, W. Changes in Vegetation Coverage and Migration Characteristics of Center of Gravity in the Arid Desert Region of Northwest China in 30 Recent Years. Land 2022, 11, 1688. [Google Scholar] [CrossRef]
- Yan, Y.F.; Bai, Q.; Sun, H.; Wang, N.; Lao, X.R. Spatiotemporal characteristics of vegetation change and water yield services in the Yellow River Basin. J. Soil Water Conserv. 2024, 38, 130–139. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Sharma, A.; Goyal, M.K. Assessment of ecosystem resilience to hydroclimatic disturbances in India. Glob. Change Biol. 2018, 24, e432–e441. [Google Scholar] [CrossRef]
- Sun, S.L.; Liu, Y.B.; Chen, H.S.; Ju, W.M.; Xu, C.Y.; Liu, Y.; Zhou, B.T.; Zhou, Y.; Zhou, Y.L.; Yu, M. Causes for the increases in both evapotranspiration and water yield over vegetated mainland China during the last two decades. Agric. For. Meteorol. 2022, 324, 109118. [Google Scholar] [CrossRef]
- Ellison, D.; Futter, M.N.; Bishop, K. On the forest cover–water yield debate: From demand- to supply-side thinking. Glob. Change Biol. 2012, 18, 806–820. [Google Scholar] [CrossRef]
- Zhang, B.Q.; Tian, L.; Zhao, X.N.; Wu, P.T. Feedback effects of vegetation restoration on local precipitation in the Loess Plateau. Sci. China Earth Sci. 2021, 51, 1080–1091. [Google Scholar]
- Canadell, J.G.; Pataki, D.E.; Pitelka, L.F. Terrestrial Ecosystems in a Changing World; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Salemi, L.F.; Groppo, J.; Trevisan, R.; de Moraes, J.; Lima, W.; Martinelli, L. Riparian vegetation and water yield: A synthesis. J. Hydrol. 2012, 454–455, 195–202. [Google Scholar] [CrossRef]
- Zhang, Y.; Hao, L. Direct and Indirect Effects of Large-Scale Forest Restoration on Water Yield in China’s Large River Basins. Remote Sens. 2025, 17, 1581. [Google Scholar] [CrossRef]
- Feng, X.M.; Fu, B.J.; Piao, S.L.; Wang, S.; Ciais, P.; Zeng, Z.Z.; Lü, Y.H.; Zeng, Y.; Li, Y.; Jiang, X.H.; et al. Revegetation in China’s Loess Plateau is approaching sustainable water resource limits. Nat. Clim. Change 2016, 6, 1019–1022. [Google Scholar] [CrossRef]
- Zhou, G.Y.; Wei, X.H.; Chen, X.Z.; Zhou, P.; Liu, X.D.; Xiao, Y.; Sun, G.; Scott, D.F.; Zhou, S.D.; Han, L.S.; et al. Global pattern for the effect of climate and land cover on water yield. Sci. Found. China 2015, 23, 40. [Google Scholar] [CrossRef]
- Yosef, G.; Walko, R.; Avisar, R.; Tatarinov, F.; Rotenberg, E.; Yakir, D. Large-scale semi-arid afforestation can enhance precipitation and carbon sequestration potential. Sci. Rep. 2018, 8, 996. [Google Scholar] [CrossRef]
- Jackson, R.B.; Jobbágy, E.G.; Avissar, R.; Roy, S.B.; Barrett, D.J.; Cook, C.W.; Farley, K.A.; Lemaitre, D.C.; McCarl, B.A.; Murray, B.C. Trading water for carbon with biological carbon sequestration. Science 2005, 310, 1944–1947. [Google Scholar] [CrossRef]
- Ugbaje, S.U.; Bishop, T.F.A. Hydrological Control of Vegetation Greenness Dynamics in Africa: A Multi-variate Analysis Using Satellite Observed Soil Moisture, Terrestrial Water Storage and Precipitation. Land 2020, 9, 15. [Google Scholar] [CrossRef]
- Li, Z.K.; Li, X.Y.; Zhou, S.; Yang, X.F.; Fu, Y.S.; Miao, C.Y.; Wang, S.; Zhang, G.H.; Wu, X.C.; Yang, C.; et al. Research progress on soil-vegetation-hydrology coupling processes and mechanisms. Sci. China Earth Sci. 2022, 52, 2105–2138. [Google Scholar] [CrossRef]
- Weligamage, H.G.; Fowler, K.; Ryu, D.; Saft, M.; Peterson, T.; Peel, M.C. Vegetation as a driver of shifts in rainfall-runoff relationship: Synthesising hydrological evidence with remote sensing. J. Hydrol. 2025, 648, 132389. [Google Scholar] [CrossRef]
- Deng, Z.; Lan, H.; Li, L.; Sun, W. Vegetation-induced modifications in hydrological processes and the consequential dynamic effects of slope stability. CATENA 2025, 251, 108793. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Zhang, B.; Yao, R.P.; Wang, L.B. Spatiotemporal changes of fractional vegetation cover and water yield in the Wei River Basin from 2000 to 2020. J. Desert Res. 2022, 42, 223–233. [Google Scholar]
- Gong, J.Y.; Ma, Z.Y.; Hu, C.; He, L.X.; Lei, J.P. Study on the constraint effect of vegetation on ecosystem services in the Yellow River Basin. Forests 2024, 15, 1771. [Google Scholar] [CrossRef]
- Gao, F.; Pan, J.Y.; Gong, Z.J. Detection of spatial and temporal variation characteristics of vegetation cover in the Lower Mekong Region and the influencing factors. Sci. Rep. 2024, 14, 78306. [Google Scholar] [CrossRef]
- Li, X.H.; Liu, Y.T.; Wang, L. Change in fractional vegetation cover and its prediction during the growing season based on machine learning in Southwest China. Remote Sens. 2024, 16, 3623. [Google Scholar] [CrossRef]
- Hou, X.L.; Shi, M.W.; Zhao, J.G.; Meng, L.Y.; Zhang, Y.; Zhang, R.Z.; Yang, H.; Cao, J.S. The impact of major ecological projects on the water yield of mountain basins, northern China. Water 2024, 16, 2900. [Google Scholar] [CrossRef]
- Liu, W.; Tian, H.; Xu, X.G.; Yang, G. Evaluation of water supply function in the Economic Belt of the Northern Slope of the Tianshan Mountains based on the InVEST model. Clim. Serv. 2024, 36, 100519. [Google Scholar] [CrossRef]
- Xu, C.L.; Chen, X.; Yu, Q.; Avirmed, B.; Zhao, J.K.; Liu, W.; Sun, W.J. Relationship between ecological spatial network and vegetation carbon use efficiency in the Yellow River Basin, China. GISci. Remote Sens. 2024, 61, 2318070. [Google Scholar] [CrossRef]
- Zhao, G.L.; Tian, S.M.; Liang, S.; Jing, Y.C.; Chen, R.X.; Wang, W.W.; Han, B. Dynamic evolution trend and driving mechanisms of water conservation in the Yellow River Basin. China. Sci. Rep. 2024, 14, 78241. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Liu, X.P.; Wei, L.; Li, X.Y.; Gao, H.Y.; Chen, R.; Cui, Y.F. Investigation of the interactions and influencing factors of the Water-Land-Energy-Carbon system in the Yellow River Basin. Sci. Total Environ. 2024, 954, 176654. [Google Scholar] [CrossRef]
- Yang, H.M.; Wang, Y.; Peng, B.B.; Zhang, X.P.; Zou, H.Y. Re-examining virtual water transfer in the Yellow River Basin, China. J. Hydrol. Reg. Stud. 2024, 56, 101971. [Google Scholar] [CrossRef]
- Yang, R.; Xu, H. Does agricultural water-saving policy improve food security? Evidence from the Yellow River Basin in China. Water Policy 2023, 25, 253–268. [Google Scholar] [CrossRef]
- Han, Z.Y.; Wu, Q.; Lai, R.X.; Soomro, S.S.E.; Hou, D.R.; Hu, C.H. Spatio-temporal variations of vegetation cover and its influence on surface air temperature change over the Yellow River Basin, China. J. Water Clim. Change 2022, 13, 3239–3252. [Google Scholar] [CrossRef]
- Wang, L.L.; Wei, H.K. Progress and effectiveness evaluation of China’s western development strategy. Financ. Trade Econ. 2003, 10, 5–12. [Google Scholar] [CrossRef]
- Pang, J.Z.; Xu, H.; Zhang, Q.; Zhang, Y.F.; Zhang, Z.Q. Stand characteristics regulate forest water use efficiency in the Three-North Shelterbelt Forest Program region of China. Environ. Res. Lett. 2024, 19, 114028. [Google Scholar] [CrossRef]
- Wang, R.N.; Xiao, Y.; Huang, H.; Chang, M. Exploring the complex relationship between industrial upgrading and energy eco-efficiency in river basin cities: A case study of the Yellow River Basin in China. Energy 2024, 312, 133498. [Google Scholar] [CrossRef]
- Peng, D.L.; Zhang, B.; Wu, C.Y.; Huete, A.; Gonsamo, A.; Lei, L.P.; Ponce-Campos, G.; Liu, X.J.; Wu, Y.H. Country-level net primary production distribution and response to drought and land cover change. Sci. Total Environ. 2017, 574, 65–77. [Google Scholar] [CrossRef]
- Yu, J.R.; Xiao, R.; Liang, M.Z.; Wang, Y.P.; Wang, S. Hydrological drought assessment of the Yellow River Basin based on non-stationary model. J. Hydrol. Reg. Stud. 2024, 56, 101974. [Google Scholar] [CrossRef]
- Yan, J.X.; Yao, X.D.; Li, Q.; Song, M.; Li, J.; Li, G.; Qi, G.P.; Qiao, H.; Gao, P.C.; Zhang, M.H. Ecological risk assessment and influencing factor analysis of the Yellow River basin based on LUCC and boosted regression tree. Front. Environ. Sci. 2024, 12, 1465475. [Google Scholar] [CrossRef]
- Nelson, E.; Mendoza, G.; Regetz, J.; Polasky, S.; Tallis, H.; Cameron, D.R.; Chan, K.M.; Daily, G.C.; Goldstein, J.; Kareiva, P.M. Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 2009, 7, 4–11. [Google Scholar] [CrossRef]
- Fuh, B.P. On the calculation of the evaporation from land surface. Chin. J. Atmos. Sci. 1981, 5, 23–31. [Google Scholar]
- Zhang, L. A rational function approach for estimating mean annual evapotranspiration. Water Resour. Res. 2004, 40, W02502. [Google Scholar] [CrossRef]
- Donohue, R.J.; Roderick, M.L.; McVicar, T.R. Roots, storms, and soil pores: Incorporating key ecohydrological processes into Budyko’s hydrological model. J. Hydrol. 2012, 436–437, 35–50. [Google Scholar] [CrossRef]
- Gutman, G.; Ignatov, A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens. 1998, 19, 1533–1543. [Google Scholar] [CrossRef]
- Mu, X.H.; Yang, Y.; Xu, H.; Guo, Y.H.; Lai, Y.K.; McVicar, T.R.; Xie, D.H.; Yan, G.J. Improvement of NDVI mixture model for fractional vegetation cover estimation with consideration of shaded vegetation and soil components. Remote Sens. Environ. 2024, 314, 114409. [Google Scholar] [CrossRef]
- Theil, H. A Rank-Invariant Method of Linear and Polynomial Regression Analysis. In Henri Theil’s Contributions to Economics and Econometrics; Raj, B., Koerts, J., Eds.; Springer: Dordrecht, The Netherlands, 1992; Volume 53, pp. 345–381. [Google Scholar] [CrossRef]
- Sen, P. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Zhang, L.W.; Fu, B.J.; Lü, Y.H.; Dong, Z.B.; Li, Y.J.; Zeng, Y.; Wu, B.F. Evaluation of ecosystem service protection effectiveness in China based on a comprehensive index method. Acta Geogr. Sin. 2016, 71, 768–780. [Google Scholar]
- Yellow River Conservancy Commission. Yellow River Basin Water Resources Bulletin; Yellow River Conservancy Commission of the Ministry of Water Resources: Zhengzhou, China, 1998–2020.
- Yang, J.; Xie, B.P.; Zhang, D.G.; Tao, W.Q. Climate and land use change impacts on water yield ecosystem service in the Yellow River Basin, China. Environ. Earth Sci. 2021, 80, 72. [Google Scholar] [CrossRef]
- Quetin, G.R.; Swann, A.L.S. Empirically derived sensitivity of vegetation to climate across global gradients of temperature and precipitation. J. Clim. 2017, 30, 5835–5849. [Google Scholar] [CrossRef]
- Yang, H.; Xu, H.; Huntingford, C.; Ciais, P.; Piao, S.L. Strong direct and indirect influences of climate change on water yield confirmed by the Budyko framework. Geogr. Sustain. 2021, 2, 281–287. [Google Scholar] [CrossRef]
- Doherty, R.; Sitch, S.; Smith, B.; Lewis, S.; Thornton, P. Implications of future climate and atmospheric CO2 content for regional biogeochemistry, biogeography and ecosystem services across East Africa. Glob. Change Biol. 2010, 16, 617–640. [Google Scholar] [CrossRef]
- Liu, Y.H.; Leng, X.; Deng, Z.F.; Wang, L.X.; Zhang, L.; Liu, S.R.; An, S.Q. Effects of watershed vegetation on tributary water yields during the wet season in the Heishui Valley, China. Water Resour. Manag. 2010, 25, 1449–1465. [Google Scholar] [CrossRef]
Name | Spatial Resolution | Period | Format | Data Resource |
---|---|---|---|---|
Tem | 1000 m | 1982–2020 | NetCDF | National Plateau Scientific Data Center (https://data.tpdc.ac.cn/ (accessed on 10 December 2022)) |
Pre | ||||
PET | ||||
Bedrock Depth | 250 m | 2017 | Raster | ISRIC Data Centre (https://data.isric.org/ (accessed on 16 December 2022)) |
Soil Texture | 1000 m | 2022 | FAO Data Center (https://www.fao.org/ (accessed on 13 December 2022)) | |
DEM | 30 m | 2020 | Geospatial Data Cloud (http://www.gscloud.cn (accessed on 1 December 2022)) | |
LUC | 1000 m | 1982–2020 | Chinese Acadeny of Scenoe Discipline Data Center for Ecosystem (https://www.nesdc.org.cn/ (accessed on 19 November 2022)) | |
YRB Boundary | - | - | Vector | National Cryosphere Desert Data Center (https://www.ncdc.ac.cn/ (accessed on 17 November 2022)) |
NDVI | 5000 m | 1982–2020 | Raster | National Earth Science Data Center (https://www.geodata.cn/ (accessed on 21 December 2022)) |
Tr | 1000 m | NetCDF | National Plateau Scientific Data Center (https://data.tpdc.ac.cn/ (accessed on 13 January 2023)) | |
CI | ||||
Ev | ||||
AET | ||||
Water Resource Volume | - | - | Statistical Data | Yellow River Conservancy Commission of the Ministry of Water Resources (http://www.yrcc.gov.cn/ (accessed on 9 December 2022)) |
FVC | AI | Pre (mm) | Tr (mm) | CI (mm) | Ev (mm) | AET (mm) | Wyield (mm) | |
---|---|---|---|---|---|---|---|---|
Synergistic regions | 0.47 | 3.04 | 453.07 | 159.59 | 23.93 | 228.09 | 411.60 | 41.47 |
Trade-off regions | 0.56 | 1.92 | 489.17 | 135.81 | 34.42 | 195.19 | 365.42 | 123.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Z.; Ju, X. Unveiling the Synergies and Conflicts Between Vegetation Dynamic and Water Resources in China’s Yellow River Basin. Land 2025, 14, 1396. https://doi.org/10.3390/land14071396
Gao Z, Ju X. Unveiling the Synergies and Conflicts Between Vegetation Dynamic and Water Resources in China’s Yellow River Basin. Land. 2025; 14(7):1396. https://doi.org/10.3390/land14071396
Chicago/Turabian StyleGao, Zuqiao, and Xiaolei Ju. 2025. "Unveiling the Synergies and Conflicts Between Vegetation Dynamic and Water Resources in China’s Yellow River Basin" Land 14, no. 7: 1396. https://doi.org/10.3390/land14071396
APA StyleGao, Z., & Ju, X. (2025). Unveiling the Synergies and Conflicts Between Vegetation Dynamic and Water Resources in China’s Yellow River Basin. Land, 14(7), 1396. https://doi.org/10.3390/land14071396