Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,251)

Search Parameters:
Keywords = plasmid DNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4677 KB  
Article
Functional Analysis of CRISPR-Cas9-Mediated Gene Deletion in E. coli DH5α on Membrane Permeability and Transformation Efficiency
by Feifan Leng, Xinyi Liu, Jinli He, Yubo Wang, Ning Zhu, Xiaopeng Guo, Wen Luo and Yonggang Wang
Microorganisms 2026, 14(1), 198; https://doi.org/10.3390/microorganisms14010198 - 15 Jan 2026
Abstract
This research utilized the CRISPR/Cas9 editing method to generate six mutant strains of Escherichia coli (E. coli) DH5α targeting specific genes. The functional characterization and phenotypic analysis confirmed the regulatory roles of these genes in modifying membrane permeability. The variations in [...] Read more.
This research utilized the CRISPR/Cas9 editing method to generate six mutant strains of Escherichia coli (E. coli) DH5α targeting specific genes. The functional characterization and phenotypic analysis confirmed the regulatory roles of these genes in modifying membrane permeability. The variations in membrane permeability among the mutant strains were assessed by measuring electrical conductivity, ortho-nitrophenyl-β-D-galactopyranoside (ONPG) hydrolysis, and propidium iodide (PI) fluorescence, with E. coli DH5α:ompA′ exhibiting the most pronounced increase in membrane permeability. The function of these genes in transformation was analyzed from physicochemical and microscopic perspectives. Assays of plasmid transformation efficiency revealed a significant enhancement in the E. coli DH5α:ompA′ mutant strain, underscoring the critical function of outer membrane proteins in DNA acquisition. Permeability simulations were performed utilizing the E. coli DH5α:ompA′ mutant strain, grounded in a previously established model. The quantitative correlation between transformation efficiency and membrane permeability in this mutant conformed to the equation T = aP + c. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

15 pages, 2249 KB  
Article
Mutagenic Potentials of DNA Interstrand Cross-Links Induced by 7,8-Dihydro-8-Oxoadenine
by Lillian F. Schmaltz, Nestor Rodriguez and Seongmin Lee
Molecules 2026, 31(2), 291; https://doi.org/10.3390/molecules31020291 - 14 Jan 2026
Viewed by 48
Abstract
DNA interstrand cross-links (ICLs) are among the most cytotoxic forms of DNA damage, arising when the two strands of the DNA helix are covalently linked by crosslink-inducing agents such as bifunctional alkylating agents and reactive aldehydes. Several studies have demonstrated that ICLs can [...] Read more.
DNA interstrand cross-links (ICLs) are among the most cytotoxic forms of DNA damage, arising when the two strands of the DNA helix are covalently linked by crosslink-inducing agents such as bifunctional alkylating agents and reactive aldehydes. Several studies have demonstrated that ICLs can also be induced by reactive oxygen and nitrogen species. We previously reported that under oxidative conditions, the major oxidative adenine lesion 7,8-dihydro-8-oxoadenine (oxoA) can efficiently generate a novel class of oxoA-G ICLs, structurally resembling guanine–guanine (G–G) cross-links that can be induced by reactive nitrogen species. To investigate the mutagenic potential of these oxidation-induced ICLs in cells, we employed a SupF-based mutagenesis assay using bacterial cells. A single site-specific oxoA–G ICL was synthesized and incorporated into a plasmid, which was then introduced into an E. coli reporter strain to assess mutation profiles induced by both oxoA and oxoA–G ICLs. Our results show that oxoA–G ICLs cause A-to-C/T and G-to-C transversion mutations at the oxoA-G cross-link site, demonstrating highly promutagenic nature of the lesion in bacterial cells. We propose that the oxoA–G ICL may promote transversion mutations, likely driven by a syn conformer of unhooked oxoA-G ICL repair intermediates during translesion synthesis. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

21 pages, 4953 KB  
Article
Efficiency and Fidelity of Site-Directed Mutagenesis with Complementary Primer Pairs
by Paulina Varela-Castillo, Arezousadat Razavi, Negar Mousavi, Nicole Robinson and Xiang-Jiao Yang
Cells 2026, 15(2), 138; https://doi.org/10.3390/cells15020138 - 13 Jan 2026
Viewed by 241
Abstract
Based on PCR with complementary primer pairs and Pfu DNA polymerase, QuickChange site-directed mutagenesis has been widely employed, but its efficiency varies from mutation to mutation. An alternative strategy relies on partially overlapping primer pairs with 3′-overhangs, and this strategy has led to [...] Read more.
Based on PCR with complementary primer pairs and Pfu DNA polymerase, QuickChange site-directed mutagenesis has been widely employed, but its efficiency varies from mutation to mutation. An alternative strategy relies on partially overlapping primer pairs with 3′-overhangs, and this strategy has led to the recent development of P3a and P3b site-directed mutagenesis, in which the use of SuperFi II and Q5 polymerases raises the mutagenesis efficiency to ~100%. It is unclear whether these two DNA polymerases also improve the QuickChange method. Herein, we have evaluated this possibility by engineering 46 mutations on seven expression plasmids, two of which possess extremely GC-rich sequences. As Pfu DNA polymerase is a slow enzyme, its replacement with SuperFi II and Q5 polymerases reduced PCR length. Moreover, the average efficiency for each of the seven plasmids ranged from 48% to 69%, thereby outperforming the original QuickChange method. However, this efficiency is still lower than that from the P3a and P3b methods, supporting the superiority of primer pairs with 3′-overhangs. Analysis of the incorrect plasmids from the improved QuickChange method revealed frequent insertions at primer sites. The insertions were derived from primers and varied from mutation to mutation, with certain sites much more prone to such insertions. In comparison, these insertions occurred at a much lower frequency with the P3a and P3b methods, suggesting that primer pairs with 3′-overhangs enhance mutagenesis efficiency by reducing the likelihood to introduce insertions at primer sites. Thus, this study improves the QuickChange mutagenesis method, supports the superiority of the P3a and P3b methods, and uncovers a novel molecular mechanism by which the efficiency of PCR-based mutagenesis with completely overlapping primer pairs is negatively affected. Full article
(This article belongs to the Section Cell Methods)
Show Figures

Figure 1

30 pages, 2582 KB  
Article
Efficacy of Plasmid DNA Delivery into Mice by Intradermal Injections Alone and Facilitated by Sonoporation or Electroporation
by Daria Avdoshina, Vladimir Valuev-Elliston, Maria Belikova, Alla Zhitkevich, Anastasia Latanova, Galina Frolova, Oleg Latyshev, Ilya Gordeychuk and Ekaterina Bayurova
Vaccines 2026, 14(1), 82; https://doi.org/10.3390/vaccines14010082 - 12 Jan 2026
Viewed by 112
Abstract
Background/Objectives: A key disadvantage of DNA vaccines is ineffective uptake of plasmid DNA, resulting in low immunogenicity. A way to overcome it is forced DNA delivery, which requires specialized equipment and/or reagents. Effective delivery of plasmids without specialized devices or using commonly [...] Read more.
Background/Objectives: A key disadvantage of DNA vaccines is ineffective uptake of plasmid DNA, resulting in low immunogenicity. A way to overcome it is forced DNA delivery, which requires specialized equipment and/or reagents. Effective delivery of plasmids without specialized devices or using commonly available ones would significantly increase DNA vaccine applicability. Here, we delivered DNA by intradermal injections, facilitating them by optimized sonoporation (SP) or electroporation (EP), and we compared these methods by their capacity to support the production of foreign proteins in mice. Methods: DNA delivery was optimized using the plasmid encoding firefly luciferase (Luc) (pVaxLuc). Luc production was assessed by bioluminescence imaging (BLI) (IVIS, PerkinElmer, Shelton, CT, USA; LumoTrace Fluo, Abisense, Dolgoprudny, Russia). Female BALB/c mice were injected intradermally (id) with pVaxLuc in phosphate buffers of varying ionic strengths. Injection sites were subjected to SP (Intelect Mobile, Chattanooga, UK) or EP (CUY21EDITII, BEX Co., Tokyo, Japan) or left untreated. Optimal delivery protocols were selected based on the highest in vivo levels of photon flux according to BLI. Optimal protocols for id injections with/without EP were applied to DNA-immunized mice with HIV-1 clade A reverse transcriptase. Antibody response induced by DNA immunization was assessed by ELISA. Results: The optimal phosphate buffers for id delivery had ionic strengths from 81 to 163 mmol/L. The optimal SP regimen included an acoustic pressure of 2.4 W/cm2 applied in a duty cycle of 2%. The optimal EP regimen included bipolar driving pulses of 100 V, a pulse duration of 10 ms, and an interval between the pulses of 20 ms. Optimized DNA delivery by id/SP injection was inferior to both id/EP and id alone. DNA immunization with HIV-1 RT by id injections induced anti-RT antibodies in a titer of 104 and by id/EP in a titer of 105. Conclusions: Electroporation of the sites of id DNA injection provided the highest levels of production of luciferase reporters and induced a strong antibody response against HIV-1 RT. Full article
(This article belongs to the Special Issue Advances in DNA Vaccine Research)
Show Figures

Figure 1

39 pages, 1558 KB  
Review
Rewriting Tumor Entry Rules: Microfluidic Polyplexes and Tumor-Penetrating Strategies—A Literature Review
by Simona Ruxandra Volovat, Iolanda Georgiana Augustin, Constantin Volovat, Ingrid Vasilache, Madalina Ostafe, Diana Ioana Panaite, Alin Burlacu and Cristian Constantin Volovat
Pharmaceutics 2026, 18(1), 84; https://doi.org/10.3390/pharmaceutics18010084 - 9 Jan 2026
Viewed by 272
Abstract
Cancer immunotherapy increasingly relies on nucleic acid-based vaccines, yet achieving efficient and safe delivery remains a critical limitation. Polyplexes—electrostatic complexes of cationic polymers and nucleic acids—have emerged as versatile carriers offering greater chemical tunability and multivalent targeting capacity compared to lipid nanoparticles, with [...] Read more.
Cancer immunotherapy increasingly relies on nucleic acid-based vaccines, yet achieving efficient and safe delivery remains a critical limitation. Polyplexes—electrostatic complexes of cationic polymers and nucleic acids—have emerged as versatile carriers offering greater chemical tunability and multivalent targeting capacity compared to lipid nanoparticles, with lower immunogenicity than viral vectors. This review summarizes key design principles governing polyplex performance, including polymer chemistry, architecture, and assembly route—emphasizing microfluidic fabrication for improved size control and reproducibility. Mechanistically, effective systems support stepwise delivery: tumor targeting, cellular uptake, endosomal escape (via proton-sponge, membrane fusion, or photochemical disruption), and compartment-specific cargo release. We discuss therapeutic applications spanning plasmid DNA, siRNA, miRNA, mRNA, and CRISPR-based editing, highlighting preclinical data across multiple tumor types and early clinical evidence of on-target knockdown in human cancers. Particular attention is given to physiological barriers and engineering strategies—including size-switching systems, charge-reversal polymers, and tumor-penetrating peptides—that improve intratumoral distribution. However, significant challenges persist, including cationic toxicity, protein corona formation, manufacturing variability, and limited clinical responses to date. Current evidence supports polyplexes as a modular platform complementary to lipid nanoparticles in selected oncology indications, though realizing this potential requires continued optimization alongside rigorous translational development. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

21 pages, 2879 KB  
Article
Overcoming Target Drift: Development and Validation of a One-Step TaqMan qPCR Assay for Epidemiological Surveillance of Carpione rhabdovirus Circulating in Southern China
by Yucong Huang, Zhiyuan Huang, Haoyu Wang, Xiaojuan Li, Xin Liu, Huajian Lin, Zhi Zhang, Xiaofeng Chen, Jichang Jian and Heng Sun
Microorganisms 2026, 14(1), 126; https://doi.org/10.3390/microorganisms14010126 - 7 Jan 2026
Viewed by 198
Abstract
Carpione rhabdovirus (CAPRV) is an emerging virus within the family Rhabdoviridae, posing potential threats to aquaculture species such as golden pompano (Trachinotus anak). However, since the 21st century, and for CAPRV strains isolated from marine fish, only a single CAPRV2023 [...] Read more.
Carpione rhabdovirus (CAPRV) is an emerging virus within the family Rhabdoviridae, posing potential threats to aquaculture species such as golden pompano (Trachinotus anak). However, since the 21st century, and for CAPRV strains isolated from marine fish, only a single CAPRV2023 sequence has previously been available in public databases, with no additional sequences reported. Because the virus undergoes genetic variation, relying on this single sequence likely introduced mismatches or off-target risks in earlier detection assay designs. Notably, the previously developed two-step N-targeting detection assay was designed based solely on that single CAPRV2023 sequence. Consequently, this study involved determining and analyzing the N gene sequences from CAPRV isolates gathered from 2023 to 2025, with the aim of pinpointing conserved regions for assay development, and sequence comparisons subsequently verified the existence of mismatches in the primer–probe binding sites of the previous assay. Since quantitative assays in aquatic virology often define copy numbers utilizing either plasmid DNA templates or RNA templates produced via in vitro transcription, which may lead to variations in amplification kinetics and sensitivity, this study compared both standards to ensure reliable quantification across different nucleic acid types. Based on these findings, a one-step TaqMan quantitative PCR (qPCR) assay was developed and validated using dual nucleic acid standards, namely plasmid DNA and in vitro–transcribed RNA. Compared with conventional two-step qPCR, the one-step format combines cDNA synthesis and subsequent DNA amplification in a single sealed tube, thereby effectively preventing cross-contamination, simplifying the workflow, and improving detection efficiency. The assay exhibited strong linearity (R2 > 0.99) and consistent amplification efficiencies between 90% and 110%, demonstrating excellent quantitative performance. The detection limits were 2 copies per reaction for plasmid DNA and 20 copies for in vitro–transcribed RNA templates. No cross-reactivity was observed with other aquatic pathogens, and the assay showed strong repeatability and reproducibility (coefficients of variation below 2.0%), providing a sensitive and reliable tool for epidemiological surveillance and the analysis of CAPRV distribution in marine aquaculture systems of southern China. Full article
Show Figures

Figure 1

18 pages, 4322 KB  
Article
Genomic Insights into Marinovum sedimenti sp. nov., Isolated from Okhotsk Sea Bottom Sediments, Suggest Plasmid-Mediated Strain-Specific Motility
by Lyudmila Romanenko, Viacheslav Eremeev, Evgeniya Bystritskaya, Peter Velansky, Valeriya Kurilenko and Marina Isaeva
Microorganisms 2026, 14(1), 125; https://doi.org/10.3390/microorganisms14010125 - 7 Jan 2026
Viewed by 173
Abstract
Two Gram-negative aerobic halophilic bacteria, designated KMM 9989T and KMM 9879, were isolated from a bottom sediment sample of the Okhotsk Sea, Russia. The novel strains grew in 0.5–4% NaCl, at 5–35 °C and pH 5.5–10.0. Phylogenetic analyses based on 16S rRNA [...] Read more.
Two Gram-negative aerobic halophilic bacteria, designated KMM 9989T and KMM 9879, were isolated from a bottom sediment sample of the Okhotsk Sea, Russia. The novel strains grew in 0.5–4% NaCl, at 5–35 °C and pH 5.5–10.0. Phylogenetic analyses based on 16S rRNA gene and whole genome sequences placed strains KMM 9989T and KMM 9879 within the family Roseobacteraceae, where they were clustered with their closest relative Marinovum algicola KCTC 22095T. The average nucleotide identity (ANI) between strain KMM 9989T and Marinovum algicola KCTC 22095T was 81.4%. The level of digital DNA–DNA hybridization (dDDH) between the novel isolates KMM 9989T and KMM 9879 was 97%, while between strain KMM 9989T and Marinovum algicola KCTC 22095T, it was 27%. Strains KMM 9989T and KMM 9879 contained Q-10 as the predominant ubiquinone and C18:1ω7c as the major fatty acid. The polar lipids were phosphatidylcholine, phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol, an unidentified aminolipid, two unidentified phospholipids, and three unidentified lipids. The genomic size of strains KMM 9989T and KMM 9879 was determined to be 4,040,543 bp and 3,969,839 bp with a DNA GC content of 61.3 and 61.4 mol%, respectively. Both strains contained a common plasmid of 238,277 bp and a strain-specific plasmid (188,734 bp for KMM 9989T and 118,029 bp for KMM 9879). It is suggested that the motility of KMM 9879 may be mediated by the presence of a complete fla2-type operon in the strain-specific chromid. Thus, based on the phylogenetic analyses and distinctive phenotypic characteristics, the novel marine strains KMM 9989T and KMM 9879 are proposed to be classified as a novel species Marinovum sedimenti sp. nov. with the strain KMM 9989T (=KCTC 8835T) as the type strain of the species. Full article
(This article belongs to the Collection Feature Papers in Environmental Microbiology)
Show Figures

Figure 1

12 pages, 5349 KB  
Communication
Mammary Intraductal Gene Electroporation (MIGE): A Novel Non-Viral Gene Delivery Method Targeting Murine Mammary Epithelial Cells
by Kazunori Morohoshi, Miho Ohba, Masahiro Sato and Shingo Nakamura
Appl. Sci. 2026, 16(1), 557; https://doi.org/10.3390/app16010557 - 5 Jan 2026
Viewed by 169
Abstract
The mammary gland is a valuable model in cancer research and developmental biology. Gene delivery techniques are crucial for mammary tissue research to understand how genes function and study on diseases such as cancer. Viral vector-based approaches provide a high degree of transduction [...] Read more.
The mammary gland is a valuable model in cancer research and developmental biology. Gene delivery techniques are crucial for mammary tissue research to understand how genes function and study on diseases such as cancer. Viral vector-based approaches provide a high degree of transduction efficiency, but they raise safety and immunogenicity concerns, whereas non-viral vector-based approaches are considered safer and have lower immunogenicity than viral methods. Unfortunately, non-viral gene delivery has rarely been applied to the mammary glands because it is technically challenging. Here, we developed a novel method for in vivo transfection of epithelial cells lining murine mammary glands via intraductal injection of plasmid DNA using a breath-controlled glass capillary and subsequent electroporation (EP) of the injected area. Female mice were transfected with plasmids harboring the enhanced green fluorescent protein (EGFP) gene. Widespread EGFP fluorescence was observed in the mammary epithelial cells of the ducts and adipocytes adjacent to the ducts. As this in vivo gene delivery method is simple, safe, and efficient for gene transfer to the mammary glands, we named this technique “Mammary Intraductal Gene Electroporation” (MIGE). The MIGE method is a useful experimental tool for studies on mammary gland development and differentiation as well as breast cancer research. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

16 pages, 3732 KB  
Article
Development of a Sensitive and Specific RPA-CRISPR/Cas12a Assay for Intrahepatic Quantification of HBV cccDNA
by Pattida Kongsomboonchoke, Chaiyaboot Ariyachet, Pornchai Kaewsapsak, Pongserath Sirichindakul and Pisit Tangkijvanich
Int. J. Mol. Sci. 2026, 27(1), 551; https://doi.org/10.3390/ijms27010551 - 5 Jan 2026
Viewed by 232
Abstract
Hepatitis B virus (HBV) persists in infected hepatocytes through covalently closed circular DNA (cccDNA), a stable episomal form that serves as the transcriptional template for viral replication. Accurate and sensitive quantification of intrahepatic cccDNA is crucial for evaluating antiviral therapies, particularly those targeting [...] Read more.
Hepatitis B virus (HBV) persists in infected hepatocytes through covalently closed circular DNA (cccDNA), a stable episomal form that serves as the transcriptional template for viral replication. Accurate and sensitive quantification of intrahepatic cccDNA is crucial for evaluating antiviral therapies, particularly those targeting a functional cure. Here, we report the development of a novel, cccDNA-specific detection system combining recombinase polymerase amplification (RPA) with CRISPR/Cas12a-based fluorescence detection. We designed and validated CRISPR RNAs (crRNAs) targeting HBV cccDNA-specific regions conserved across genotypes A–D. Reaction conditions for both RPA and Cas12a detection were optimized to enhance sensitivity, specificity, and accuracy. The system reliably detected as few as 10 copies of cccDNA-containing plasmid per reaction and showed no cross-reactivity with non-cccDNA forms in serum or plasma, indicating assay specificity. When applied to liver tissue samples from 10 HBV-infected and 6 non-HBV patients, the RPA-CRISPR/Cas12a assay exhibited a high sensitivity (90%) and a strong correlation with qPCR results (R2 = 0.9155), confirming its accuracy. In the conclusion, the RPA-CRISPR/Cas12a system provides a robust, cost-effective, and scalable platform for sensitive and specific quantification of intrahepatic HBV cccDNA. This method holds promises for research and high-throughput therapeutic screening applications targeting cccDNA clearance. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

19 pages, 8050 KB  
Article
Optimization of Gene Gun-Mediated Transient Transformation and Explant Suitability in Coconut
by Mingjun Ma, Hanlu Su, Hao Nie, Xiaomeng Fang, Saeed Rauf, Saira Batool, Yin Min Htwe, Dapeng Zhang, Peng Shi, Zhiying Li, Qun Yu, Xiangman He and Yong Wang
Plants 2026, 15(1), 150; https://doi.org/10.3390/plants15010150 - 4 Jan 2026
Viewed by 205
Abstract
Coconut genetic improvement remains challenging due to low regeneration efficiency and limited transformation success. We optimized major components of a gene gun-mediated transient transformation system and evaluated explant types to support future establishment of a stable transformation pipeline. Three reporter genes (eGFP, GUS [...] Read more.
Coconut genetic improvement remains challenging due to low regeneration efficiency and limited transformation success. We optimized major components of a gene gun-mediated transient transformation system and evaluated explant types to support future establishment of a stable transformation pipeline. Three reporter genes (eGFP, GUS, and RUBY) were compared in coconut callus, and eGFP was selected as the most suitable due to its strong and non-destructive fluorescence. Background interference in GUS staining was reduced by adjusting the methanol–GUS ratio to 4:10. Single-factor optimization using callus tissue identified 0.4 M mannitol, 300–500 μg gold particles, 1.5 μg plasmid DNA, a 6.5 cm target distance, and 7 MPa pressure as effective parameters for biolistic delivery. Among the callus types, spongy callus showed strong transient eGFP expression but displayed loose and watery morphology consistent with non-embryogenic callus. In contrast, crumbly and smooth callus exhibited compact structures previously associated with embryogenic competence, although transient expression levels were lower. Among differentiated tissues, germinated zygotic embryo plumules and distal young leaflets exhibited moderate transient expression, supporting their suitability as transformation targets. These findings provide practical guidance on reporter selection, parameter refinement, and explant choice for future establishment of an efficient genetic transformation system in coconut. Full article
Show Figures

Figure 1

15 pages, 2081 KB  
Article
Clinical and Environmental Plasmids: Antibiotic Resistance, Virulence, Mobility, and ESKAPEE Pathogens
by Célia P. F. Domingues, João S. Rebelo, Francisco Dionisio and Teresa Nogueira
Antibiotics 2026, 15(1), 29; https://doi.org/10.3390/antibiotics15010029 - 31 Dec 2025
Viewed by 243
Abstract
Background/Objectives: Plasmids are autonomous DNA molecules that can replicate independently and transfer horizontally between bacterial cells. They play a key role in disseminating adaptive traits, such as antimicrobial resistance and virulence. Our study investigates the fundamental differences between plasmid populations originating from clinical/isolates [...] Read more.
Background/Objectives: Plasmids are autonomous DNA molecules that can replicate independently and transfer horizontally between bacterial cells. They play a key role in disseminating adaptive traits, such as antimicrobial resistance and virulence. Our study investigates the fundamental differences between plasmid populations originating from clinical/isolates and environmental/metagenomes. Methods: We compare three distinct plasmid genome datasets—the NCBI Reference Sequence Database (RefSeq), the Integrated Microbial Genomes & Microbiomes system (IMG/PR) from bacterial isolates (I) and microbiomes (M)—to assess how plasmid origin shapes their characteristics, including mobility types, antimicrobial resistance genes (ARGs), virulence genes (VGs) and host taxonomy. Results: We show that plasmids originating from bacterial isolates, more enriched in clinical samples, are fundamentally distinct from recovered from metagenomic data. Plasmids from isolates are larger, enriched in conjugative plasmids and display a higher frequency of ARGs and VGs than the ones assembled from metagenomes. Furthermore, ARGs are more frequently associated with highly mobile plasmids, particularly pCONJ. Conclusions: These findings highlight the importance of plasmid origins in studies of plasmid epidemiology, functional potential and mobility. Full article
Show Figures

Figure 1

13 pages, 1584 KB  
Article
A Visual and Rapid PCR Test Strip Method for the Authentication of Sika Deer Meat (Cervus nippon)
by Lijun Gao, Yuxin Xie, Yating Zhang, Yi Yang, Guangxin Yuan and Wei Xia
Int. J. Mol. Sci. 2026, 27(1), 191; https://doi.org/10.3390/ijms27010191 - 24 Dec 2025
Viewed by 244
Abstract
The rising price of sika deer meat is increasing the risk of economic adulteration, highlighting the need for rapid and reliable authentication methods to protect both market integrity and consumers. This work presents a novel countermeasure: a polymerase chain reaction (PCR)-based nucleic acid [...] Read more.
The rising price of sika deer meat is increasing the risk of economic adulteration, highlighting the need for rapid and reliable authentication methods to protect both market integrity and consumers. This work presents a novel countermeasure: a polymerase chain reaction (PCR)-based nucleic acid test strip designed for the specific and visual identification of sika deer meat. Our approach commenced with the design of specific primers targeting the cytochrome C oxidase subunit I (COI) gene. To guarantee the reliability of the assay, a DNA standard plasmid was constructed to serve as an unambiguous positive control for the PCR. Under optimized conditions, results showed that authentic sika deer meat generated both test and control lines on the strip, while adulterated and negative samples produced only the control line. The assay demonstrated flawless specificity and a detection sensitivity of 1.0 ng·μL−1 for target DNA, representing a tenfold enhancement over gel electrophoresis. Furthermore, the method demonstrated a detection limit of 1% for sika deer meat in admixed samples, with a faint but visible signal observed down to 0.1% under optimized conditions. In conclusion, the developed test strip method is not only specific and sensitive but also user-friendly, positioning it as a practical and powerful tool for rapid, on-site meat authentication. Full article
Show Figures

Graphical abstract

24 pages, 3196 KB  
Article
Development of RALA-Based Mannosylated Nanocarriers for Targeted Delivery of Minicircle DNA Vaccines Encoding HPV-16 Oncogenes
by Andressa Giusti, Dalinda Eusébio, Matilde Costa, Inês Silveira, Swati Biswas, Diana Costa and Ângela Sousa
Vaccines 2026, 14(1), 18; https://doi.org/10.3390/vaccines14010018 - 23 Dec 2025
Viewed by 387
Abstract
Background/Objectives: Cervical cancer is a leading cause of cancer-related mortality among women, primarily driven by persistent infections with high-risk human papillomavirus (HPV), particularly HPV-16. Vaccines based on plasmid DNA encoding the viral oncogenes E6 and E7 represent a promising immunotherapeutic strategy, but their [...] Read more.
Background/Objectives: Cervical cancer is a leading cause of cancer-related mortality among women, primarily driven by persistent infections with high-risk human papillomavirus (HPV), particularly HPV-16. Vaccines based on plasmid DNA encoding the viral oncogenes E6 and E7 represent a promising immunotherapeutic strategy, but their efficacy remains limited due to poor cellular uptake. Cell-penetrating peptides such as RALA improve intracellular delivery, and functionalization with octa-arginine peptide conjugated to mannose (R8M) further enhances targeting of antigen-presenting cells (APCs). This study aimed to obtain the minicircle DNA (mcDNA) encoding mutant HPV-16 E6 and/or E7 antigens, and optimize its complexation with mannosylated RALA-based nanoparticles to improve vector delivery and consequently antigen presentation. Methods: Nanoparticles were formulated at different concentrations of RALA, with and without R8M functionalization. Their characterization included hydrodynamic diameter, polydispersity index, zeta potential, complexation efficiency (CE), stability, morphology, and Fourier-Transform Infrared Spectroscopy. In vitro assays in JAWS II dendritic cells (DCs) assessed biocompatibility, transfection efficiency and target gene expression. Results: Optimal conditions were obtained at 72.5 µg/mL of RALA, producing nanoparticles smaller than 150 nm with high CE (>97%) and uniform size distribution. Functionalization with R8M at 58 µg/mL preserved these characteristics when complexed with all mcDNA vectors. The formulations were biocompatible and effectively transfected DCs. Mannosylated formulations enhanced antigenic expression compared to non-mannosylated counterparts, evidencing a mannose-receptor-mediated uptake, while increasing the production of pro-inflammatory cytokines. Conclusions: Nanoparticles based on the RALA peptide and functionalized with R8M significantly improved mcDNA transfection and gene expression in APCs. These findings support further investigation of this system as a targeted DNA vector delivery platform against HPV-16. Full article
(This article belongs to the Special Issue New Approaches to Vaccine Development and Delivery)
Show Figures

Figure 1

31 pages, 2605 KB  
Article
Engineering Enhanced Immunogenicity of Surface-Displayed Immunogens in a Killed Whole-Cell Genome-Reduced Bacterial Vaccine Platform Using Class I Viral Fusion Peptides
by Juan Sebastian Quintero-Barbosa, Yufeng Song, Frances Mehl, Shubham Mathur, Lauren Livingston, Xiaoying Shen, David C. Montefiori, Joshua Tan and Steven L. Zeichner
Vaccines 2026, 14(1), 14; https://doi.org/10.3390/vaccines14010014 - 22 Dec 2025
Viewed by 548
Abstract
Background/Objectives: New vaccine platforms that rapidly yield low-cost, easily manufactured vaccines are highly desired, yet current approaches lack key features. We developed the Killed Whole-Cell/Genome-Reduced Bacteria (KWC/GRB) platform, which uses a genome-reduced Gram-negative chassis to enhance antigen exposure and modularity via an [...] Read more.
Background/Objectives: New vaccine platforms that rapidly yield low-cost, easily manufactured vaccines are highly desired, yet current approaches lack key features. We developed the Killed Whole-Cell/Genome-Reduced Bacteria (KWC/GRB) platform, which uses a genome-reduced Gram-negative chassis to enhance antigen exposure and modularity via an autotransporter (AT) system. Integrated within a Design–Build–Test–Learn (DBTL) framework, KWC/GRB enables rapid iteration of engineered antigens and immunomodulatory elements. Here, we applied this platform to the HIV-1 fusion peptide (FP) and tested multiple antigen engineering strategies to enhance its immunogenicity. Methods: For a new vaccine, we synthesized DNA encoding the antigen together with selected immunomodulators and cloned the constructs into a plasmid. The plasmids were transformed into genome-reduced bacteria (GRB), which were grown, induced for antigen expression, and then inactivated to produce the vaccines. We tested multiple strategies to enhance antigen immunogenicity, including multimeric HIV-1 fusion peptide (FP) designs separated by different linkers and constructs incorporating immunomodulators such as TLR agonists, mucosal-immunity-promoting peptides, and a non-cognate T-cell agonist. Vaccines were selected based on structure prediction and confirmed surface expression by flow cytometry. Mice were vaccinated, and anti-FP antibody responses were measured by ELISA. Results: ELISA responses increased nearly one order of magnitude across design rounds, with the top-performing construct showing an ~8-fold improvement over the initial 1mer vaccine. Multimeric antigens separated by an α-helical linker were the most immunogenic. The non-cognate T-cell agonist increased responses context-dependently. Flow cytometry showed that increased anti-FP-mAb binding to GRB was associated with greater induction of antibody responses. Although anti-FP immune responses were greatly increased, the sera did not neutralize HIV. Conclusions: Although none of the constructs elicited detectable neutralizing activity, the combination of uniformly low AlphaFold pLDDT scores and the functional data suggests that the FP region may not adopt a stable native-like structure in this display context. Importantly, the results demonstrate that the KWC/GRB platform can generate highly immunogenic vaccines, and when applied to antigens with well-defined native tertiary structures, the approach should enable rapidly produced, high-response, very low-cost vaccines. Full article
(This article belongs to the Section Vaccine Design, Development, and Delivery)
Show Figures

Graphical abstract

13 pages, 388 KB  
Article
Occurrence of Antibiotic Resistance in Lacticaseibacillus paracasei and Lactiplantibacillus plantarum Strains Isolated from Traditional Sardinian Fermented Food
by Gavino Carboni, Maria E. Mura, Margherita Chessa, Giuseppe Blaiotta, Anna Nudda and Nicoletta P. Mangia
Antibiotics 2026, 15(1), 18; https://doi.org/10.3390/antibiotics15010018 - 22 Dec 2025
Viewed by 358
Abstract
Background: This study investigated the phenotypic and genotypic antibiotic resistance profiles of 50 Lactic Acid Bacteria (LAB) strains—25 Lactiplantibacillus plantarum and 25 Lacticaseibacillus paracasei—isolated from traditional Sardinian fermented foods of animal origin. Methods: The sensitivity of the isolates to antibiotics such as [...] Read more.
Background: This study investigated the phenotypic and genotypic antibiotic resistance profiles of 50 Lactic Acid Bacteria (LAB) strains—25 Lactiplantibacillus plantarum and 25 Lacticaseibacillus paracasei—isolated from traditional Sardinian fermented foods of animal origin. Methods: The sensitivity of the isolates to antibiotics such as β-lactams, tetracyclines, aminoglycosides, macrolides, phenicols, and glycopeptides was initially assessed using disc diffusion and minimum inhibitory concentration (MIC) tests. Subsequently, PCR analyses were performed on both genomic DNA and plasmid DNA to detect blaZ, tet(W), strA, aac(6′)-Ie–aph(2″)-Ia, and vanX genes associated with resistance to ampicillin, tetracycline, streptomycin, gentamicin, and vancomycin. Results: The analysis revealed that L. plantarum strains frequently carried the tet(W) gene on the chromosome and strA on plasmids, while vanX was detected in most strains as a chromosomal determinant. By contrast, L. paracasei strains exhibited a predominantly plasmid-mediated distribution of resistance genes. For example, strA, aac(6′)-Ie–aph(2″)-Ia and blaZ were often found on plasmids, whereas vanX remained chromosomally encoded. Phenotypic assays confirmed high intrinsic resistance to vancomycin in both species, with L. plantarum showing a higher overall frequency and diversity of resistant phenotypes compared to L. paracasei. Conclusions: The co-occurrence of multiple resistance determinants, including plasmid-encoded ones, in most strains suggests that even autochthonous isolates from artisanal products may represent potential reservoirs for transmissible resistance genes. Full article
Show Figures

Graphical abstract

Back to TopTop