Genetic Variation and Adaptation in Crops: Unraveling Molecular Mechanisms of Stress Tolerance

A special issue of Plants (ISSN 2223-7747). This special issue belongs to the section "Crop Physiology and Crop Production".

Deadline for manuscript submissions: 20 October 2025 | Viewed by 805

Special Issue Editor


E-Mail Website
Guest Editor
College of Life Sciences, Northwest A&F University, Yangling, China
Interests: rice functional genomics; molecular cell biology; stress tolerance; crops
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Crops face challenges from climate change, soil degradation, and emerging pests and diseases. In recent decades, significant progress has been made in genetics through genome sequencing and extensive re-sequencing of crop germplasm resources. These advancements have played a pivotal role in understanding the molecular mechanisms underlying environmental adaptability in crops.

Therefore, we are pleased to announce this Special Issue on "Genetic Variation and Adaptation in Crops: Unraveling Molecular Mechanisms of Stress Tolerance". We invite original research articles and comprehensive reviews addressing key themes such as genomic diversity, evolutionary dynamics, gene regulation networks, and biotechnological innovations related to enhancing stress resilience in crops.

We hope to provide a great chance to present cutting-edge research elucidating the genetic intricacies that underpin adaptation and stress tolerance mechanisms in crops.

Dr. Wenqiang Li

Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Plants is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • crops

  • functional genomics
  • stress tolerance
  • molecular mechanism

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 4776 KiB  
Article
Exploring the Role of TaERF4a in Enhancing Drought Tolerance and Regulating Dehydrin WZY1-2 Gene Expression in Wheat
by Ying Yang, Xinfei Li, Qinying Li, Wenqiang Li, Aina Wang and Hao Liu
Plants 2025, 14(8), 1214; https://doi.org/10.3390/plants14081214 - 15 Apr 2025
Viewed by 357
Abstract
Dehydrins (DHNs) belong to the second family of late embryogenesis abundant (LEA) proteins, which are widely distributed in plants. We cloned a SK3-type DHN gene named WZY1-2 in Zheng yin 1 cultivar of Triticum aestivum. An ERF-type transcription factor TaERF4a [...] Read more.
Dehydrins (DHNs) belong to the second family of late embryogenesis abundant (LEA) proteins, which are widely distributed in plants. We cloned a SK3-type DHN gene named WZY1-2 in Zheng yin 1 cultivar of Triticum aestivum. An ERF-type transcription factor TaERF4a was found to be involved in the regulation of the dehydrin WZY1-2 gene in our last report. The stress-responsive ability and dual-luciferase assay demonstrated that TaERF4a positively regulates WZY1-2 gene transcription under stress conditions. In this study, we further characterized the role of the transcription factor TaERF4a in plant drought tolerance. Arabidopsis thaliana heterologously overexpressing TaERF4a exhibited higher survival rate, increased superoxide dismutase (SOD) activity, elevated proline and chlorophyll content, and reduced malondialdehyde (MDA) content under drought conditions. Conversely, silencing TaERF4a in Chinese spring wheat using the virus-induced gene silencing (VIGS) method increased the sensitivity of plants to drought stress. Furthermore, we identified the specific binding site of TaERF4a in the WZY1-2 promoter. Electrophoretic mobility shift assay (EMSA) and dual-luciferase reporter assay demonstrated that TaERF4a activates the expression of the WZY1-2 dehydrin gene through binding to the DRE cis-element in its promoter. Taken together, the results of our study indicate that TaERF4a positively regulates the expression of the dehydrin WZY1-2 gene and enhances drought tolerance in plants. Full article
Show Figures

Figure 1

Back to TopTop