Development of a Sensitive and Specific RPA-CRISPR/Cas12a Assay for Intrahepatic Quantification of HBV cccDNA
Abstract
1. Introduction
2. Results
2.1. Design and Selection of cccDNA-Specific crRNAs
2.2. Optimization of the RPA and Cas12a-Based Assays
2.3. Specificity of Cas12a-Based Detection
2.4. Comparison of RPA-CRISPR/Cas12a with qPCR and ddPCR for cccDNA Quantification
2.5. Application to Clinical Liver Samples
3. Discussion
4. Materials and Methods
4.1. Patient Samples
4.2. Plasmids
4.3. HBsAg, Anti-HBc, and Anti-HBs Testing
4.4. Genomic DNA Extraction from Serum and Plasma
4.5. Protein-Free DNA Extraction from Liver Tissue
4.6. cccDNA Enrichment by Enzymatic Digestion
4.7. Quantification of HBV cccDNA by qPCR
4.8. Quantification of HBV cccDNA by ddPCR
4.9. Recombinase Polymerase Amplification (RPA)
4.10. CRISPR/Cas12a Fluorescence Assay
4.11. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AFP | Alpha-fetoprotein |
| ALP | Alkaline phosphatase |
| ALT | Alanine aminotransferase |
| AST | Aspartate aminotransferase |
| Cas12a | CRISPR-associated protein 12a |
| cccDNA | Covalently closed circular DNA |
| CHB | Chronic HBV infection |
| CRISPR | Clustered regularly interspaced short palindromic repeats |
| CRLM | Colorectal liver metastasis |
| crRNA | CRISPR RNA |
| CV | Coefficient of variation |
| ddPCR | Droplet digital PCR |
| DR | Direct repeat |
| dsDNA | Double-stranded DNA |
| HBsAg | Hepatitis B surface antigen |
| HBV | Hepatitis B virus |
| HCC | Hepatocellular carcinoma |
| HCV | Hepatitis C virus |
| IFNs | Interferons |
| INR | International normalized ratio |
| LOD | Limit of detection |
| MMNCs | Bone marrow mononuclear cells |
| NAs | Nucleos(t)ide analogues |
| NTC | Non-template control |
| OBI | Occult hepatitis B infection |
| PAM | Protospacer adjacent motif |
| PBMCs | Peripheral blood mononuclear cells |
| pf-rcDNA | Protein-free rcDNA |
| pgRNA | Pregenomic RNA |
| POCT | Point-of-care testing |
| PSAD | Plasmid-Safe ATP-Dependent DNase |
| qPCR | Quantitative PCR |
| rcDNA | Relaxed circular DNA |
| RIs | Replicative intermediates |
| RPA | Recombinase polymerase amplification |
| SB | Southern blotting |
| SD | Standard deviations |
| ssDNA | Single-stranded DNA |
| WHO | World Health Organization |
References
- World Health Organization. Global Hepatitis Report 2024: Action for Access in Low-and Middle-Income Countries; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Hsu, Y.-C.; Huang, D.Q.; Nguyen, M.H. Global burden of hepatitis B virus: Current status, missed opportunities and a call for action. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 524–537. [Google Scholar] [CrossRef] [PubMed]
- Dandri, M.; Petersen, J. cccDNA Maintenance in Chronic Hepatitis B—Targeting the Matrix of Viral Replication. Infect. Drug Resist. 2020, 13, 3873–3886. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.H.; Wong, G.; Gane, E.; Kao, J.-H.; Dusheiko, G. Hepatitis B Virus: Advances in Prevention, Diagnosis, and Therapy. Clin. Microbiol. Rev. 2020, 33, e00046-19. [Google Scholar] [CrossRef] [PubMed]
- From Fungus to Virus, a Phase 1b Clinical Trial Investigating the Safety and Efficacy of Terbinafine in Chronic Hepatitis B Patients. Available online: https://clinicaltrials.gov/study/NCT06295328 (accessed on 7 May 2025).
- A Phase 1, Open-Label, First-in-Human, Dose Escalation (Part 1) and Expansion (Part 2) Study to Evaluate the Safety, Tolerability, Pharmacokinetics, and Antiviral Activity of PBGENE-HBV in Participants with Chronic Hepatitis B (ELIMINATE-B). Available online: https://clinicaltrials.gov/study/NCT06680232 (accessed on 7 May 2025).
- Saitta, C.; Pollicino, T.; Raimondo, G. Occult Hepatitis B Virus Infection: An Update. Viruses 2022, 14, 1504. [Google Scholar] [CrossRef]
- Li, X.; Zhao, J.; Yuan, Q.; Xia, N. Detection of HBV Covalently Closed Circular DNA. Viruses 2017, 9, 139. [Google Scholar] [CrossRef]
- Allweiss, L.; Testoni, B.; Yu, M.; Lucifora, J.; Ko, C.; Qu, B.; Lütgehetmann, M.; Guo, H.; Urban, S.; Fletcher, S.P.; et al. Quantification of the hepatitis B virus cccDNA: Evidence-based guidelines for monitoring the key obstacle of HBV cure. Gut 2023, 72, 972–983. [Google Scholar] [CrossRef]
- Tu, T.; Zehnder, B.; Qu, B.; Ni, Y.; Main, N.; Allweiss, L.; Dandri, M.; Shackel, N.; George, J.; Urban, S. A novel method to precisely quantify hepatitis B virus covalently closed circular (ccc)DNA formation and maintenance. Antivir. Res. 2020, 181, 104865. [Google Scholar] [CrossRef]
- Zhang, H.; Tu, T. Approaches to quantifying hepatitis B virus covalently closed circular DNA. Clin. Mol. Hepatol. 2021, 28, 135. [Google Scholar] [CrossRef]
- Xia, Y.; Stadler, D.; Ko, C.; Protzer, U. Analyses of HBV cccDNA quantification and modification. In Hepatitis B Virus: Methods and Protocols; Springer: New York, NY, USA, 2016; pp. 59–72. [Google Scholar]
- Luo, J.; Cui, X.; Gao, L.; Hu, J. Identification of an intermediate in hepatitis B virus covalently closed circular (CCC) DNA formation and sensitive and selective CCC DNA detection. J. Virol. 2017, 91, e00539-17. [Google Scholar] [CrossRef]
- Werle–Lapostolle, B.; Bowden, S.; Locarnini, S.; Wursthorn, K.; Petersen, J.; Lau, G.; Trepo, C.; Marcellin, P.; Goodman, Z.; Delaney, W.E., IV. Persistence of cccDNA during the natural history of chronic hepatitis B and decline during adefovir dipivoxil therapy. Gastroenterology 2004, 126, 1750–1758. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Y.; Deng, H.; Zhen, X.; Xiong, J.; Hu, Y. Quantification of intrahepatic cccDNA in HBV associated hepatocellular carcinoma by improved ddPCR method. J. Virol. Methods 2022, 299, 114334. [Google Scholar] [CrossRef] [PubMed]
- Qu, B.; Ni, Y.; Lempp, F.A.; Vondran, F.W.R.; Urban, S. T5 Exonuclease Hydrolysis of Hepatitis B Virus Replicative Intermediates Allows Reliable Quantification and Fast Drug Efficacy Testing of Covalently Closed Circular DNA by PCR. J. Virol. 2018, 92, e01117-18. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, S.; Isogawa, M.; Kawashima, K.; Ito, K.; Chuaypen, N.; Morine, Y.; Shimada, M.; Higashi-Kuwata, N.; Watanabe, T.; Tangkijvanich, P.; et al. Droplet digital PCR assay provides intrahepatic HBV cccDNA quantification tool for clinical application. Sci. Rep. 2022, 12, 2133. [Google Scholar] [CrossRef] [PubMed]
- Kojabad, A.A.; Farzanehpour, M.; Galeh, H.E.G.; Dorostkar, R.; Jafarpour, A.; Bolandian, M.; Nodooshan, M.M. Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J. Med. Virol. 2021, 93, 4182–4197, Erratum in J. Med. Virol. 2024, 96, e29632. https://doi.org/10.1002/jmv.29632. [Google Scholar] [CrossRef]
- Sorek, R.; Kunin, V.; Hugenholtz, P. CRISPR—A widespread system that provides acquired resistance against phages in bacteria and archaea. Nat. Rev. Microbiol. 2008, 6, 181–186. [Google Scholar] [CrossRef]
- Horvath, P.; Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010, 327, 167–170. [Google Scholar] [CrossRef]
- Datsenko, K.A.; Pougach, K.; Tikhonov, A.; Wanner, B.L.; Severinov, K.; Semenova, E. Molecular memory of prior infections activates the CRISPR/Cas adaptive bacterial immunity system. Nat. Commun. 2012, 3, 945. [Google Scholar] [CrossRef]
- Yuan, B.; Yuan, C.; Li, L.; Long, M.; Chen, Z. Application of the CRISPR/Cas system in pathogen detection: A review. Molecules 2022, 27, 6999. [Google Scholar] [CrossRef]
- Li, P.; Wang, L.; Yang, J.; Di, L.-J.; Li, J. Applications of the CRISPR-Cas system for infectious disease diagnostics. Expert Rev. Mol. Diagn. 2021, 21, 723–732. [Google Scholar] [CrossRef]
- Zhou, B.; Yang, R.; Sohail, M.; Kong, X.; Zhang, X.; Fu, N.; Li, B. CRISPR/Cas14 provides a promising platform in facile and versatile aptasensing with improved sensitivity. Talanta 2023, 254, 124120. [Google Scholar] [CrossRef]
- Agha, A.S.A.; Al-Samydai, A.; Aburjai, T. New frontiers in CRISPR: Addressing antimicrobial resistance with Cas9, Cas12, Cas13, and Cas14. Heliyon 2025, 11, e42013. [Google Scholar] [CrossRef] [PubMed]
- Aman, R.; Mahas, A.; Mahfouz, M. Nucleic acid detection using CRISPR/Cas biosensing technologies. ACS Synth. Biol. 2020, 9, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, H.; Li, K.; Li, X.; Wang, X.; Wang, Z. Review of CRISPR/Cas systems on detection of nucleotide sequences. Foods 2023, 12, 477. [Google Scholar] [CrossRef] [PubMed]
- Varble, A.; Marraffini, L.A. Three new Cs for CRISPR: Collateral, communicate, cooperate. Trends Genet. 2019, 35, 446–456. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Z.; Olajide, J.S.; Wang, G. CRISPR/Cas-based nucleic acid detection strategies: Trends and challenges. Heliyon 2024, 10, e26179. [Google Scholar] [CrossRef]
- Fozouni, P.; Son, S.; de León Derby, M.D.; Knott, G.J.; Gray, C.N.; D’Ambrosio, M.V.; Zhao, C.; Switz, N.A.; Kumar, G.R.; Stephens, S.I. Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell 2021, 184, 323–333. e329. [Google Scholar] [CrossRef]
- Ali, Z.; Sánchez, E.; Tehseen, M.; Mahas, A.; Marsic, T.; Aman, R.; Sivakrishna Rao, G.; Alhamlan, F.S.; Alsanea, M.S.; Al-Qahtani, A.A. Bio-SCAN: A CRISPR/dCas9-based lateral flow assay for rapid, specific, and sensitive detection of SARS-CoV-2. ACS Synth. Biol. 2021, 11, 406–419. [Google Scholar] [CrossRef]
- Wang, B.; Wang, R.; Wang, D.; Wu, J.; Li, J.; Wang, J.; Liu, H.; Wang, Y. Cas12aVDet: A CRISPR/Cas12a-Based Platform for Rapid and Visual Nucleic Acid Detection. Anal. Chem. 2019, 91, 12156–12161. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Q.; Zhou, M.; Li, C.; Yan, C.; Huang, L.; Qin, P. Development of a CRISPR/Cas9-integrated lateral flow strip for rapid and accurate detection of Salmonella. Food Control 2022, 142, 109203. [Google Scholar] [CrossRef]
- Samanta, D.; Ebrahimi, S.B.; Ramani, N.; Mirkin, C.A. Enhancing CRISPR-Cas-Mediated Detection of Nucleic Acid and Non-nucleic Acid Targets Using Enzyme-Labeled Reporters. J. Am. Chem. Soc. 2022, 144, 16310–16315. [Google Scholar] [CrossRef]
- Liu, H.; Chang, S.; Chen, S.; Du, Y.; Wang, H.; Wang, C.; Xiang, Y.; Wang, Q.; Li, Z.; Wang, S. Highly sensitive and rapid detection of SARS-CoV-2 via a portable CRISPR-Cas13a-based lateral flow assay. J. Med. Virol. 2022, 94, 5858–5866. [Google Scholar] [CrossRef]
- Li, P.-R.; Wang, Z.-X.; Xu, Z.-K.; Wang, J.; Li, B.; Shen, X.; Xu, Z.-L. An RPA-assisted CRISPR/Cas12a assay combining fluorescence and lateral flow strips for the rapid detection of enterotoxigenic Bacillus cereus. J. Agric. Food Chem. 2024, 72, 14000–14010. [Google Scholar] [CrossRef]
- Yin, L.; Duan, N.; Chen, S.; Yao, Y.; Liu, J.; Ma, L. Ultrasensitive pathogenic bacteria detection by a smartphone-read G-quadruplex-based CRISPR-Cas12a bioassay. Sens. Actuators B Chem. 2021, 347, 130586. [Google Scholar] [CrossRef]
- Du, Y.; Ji, S.; Dong, Q.; Wang, J.; Han, D.; Gao, Z. Amplification-free detection of HBV DNA mediated by CRISPR-Cas12a using surface-enhanced Raman spectroscopy. Anal. Chim. Acta 2023, 1245, 340864. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Du, L.; Hu, J.; Hou, X. Recombinase polymerase amplification and target-triggered CRISPR/Cas12a assay for sensitive and selective Hepatitis B virus DNA analysis based on lanthanide tagging and inductively coupled plasma mass spectrometric detection. Anal. Chem. 2024, 96, 15059–15065. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Tian, Y.; Xu, L.; Fan, Z.; Cao, Y.; Ma, Y.; Li, H.; Ren, F. CRISPR/Cas13-assisted hepatitis B virus covalently closed circular DNA detection. Hepatol. Int. 2022, 16, 306–315. [Google Scholar] [CrossRef]
- Concordet, J.-P.; Haeussler, M. CRISPOR: Intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 2018, 46, W242–W245. [Google Scholar] [CrossRef]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef]
- Qiao, J.; Zhang, J.; Jiang, Q.; Jin, S.; He, R.; Qiao, B.; Liu, Y. Boosting CRISPR/Cas12a intrinsic RNA detection capability through pseudo hybrid DNA–RNA substrate design. Nucleic Acids Res. 2025, 53, gkaf510. [Google Scholar] [CrossRef]
- Raimondo, G.; Locarnini, S.; Pollicino, T.; Levrero, M.; Zoulim, F.; Lok, A.S.; Allain, J.-P.; Berg, T.; Bertoletti, A.; Brunetto, M.R. Update of the statements on biology and clinical impact of occult hepatitis B virus infection. J. Hepatol. 2019, 71, 397–408. [Google Scholar] [CrossRef]
- Tantiwetrueangdet, A.; Panvichian, R.; Sornmayura, P.; Sueangoen, N.; Leelaudomlipi, S. Reduced HBV cccDNA and HBsAg in HBV-associated hepatocellular carcinoma tissues. Med. Oncol. 2018, 35, 127. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Sheng, S.; Nie, B.; Tu, Z. Development of magnetic capture hybridization and quantitative polymerase chain reaction for hepatitis B virus covalently closed circular DNA. Hepat. Mon. 2015, 15, e23729. [Google Scholar] [CrossRef] [PubMed]
- He, M.-L.; Wu, J.; Chen, Y.; Lin, M.C.; Lau, G.K.; Kung, H.-f. A new and sensitive method for the quantification of HBV cccDNA by real-time PCR. Biochem. Biophys. Res. Commun. 2002, 295, 1102–1107. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.-T.; Yang, Y.; Hu, Y.-M.; Liu, X.-H.; Liao, M.-Y.; Morgan, R.; Yuan, E.-F.; Li, X.; Liu, S.-M. A Highly Sensitive and Robust Method for Hepatitis B Virus Covalently Closed Circular DNA Detection in Single Cells and Serum. J. Mol. Diagn. 2018, 20, 334–343. [Google Scholar] [CrossRef]
- Mu, D.; Yan, L.; Tang, H.; Liao, Y. A sensitive and accurate quantification method for the detection of hepatitis B virus covalently closed circular DNA by the application of a droplet digital polymerase chain reaction amplification system. Biotechnol. Lett. 2015, 37, 2063–2073. [Google Scholar] [CrossRef]
- Kumar, A.; Combe, E.; Mougené, L.; Zoulim, F.; Testoni, B. Applications of CRISPR/Cas as a toolbox for hepatitis B virus detection and therapeutics. Viruses 2024, 16, 1565. [Google Scholar] [CrossRef]
- Pan, Z.; Xu, L.; Fan, Z.; Ren, F. CRISPR-Cas for hepatitis virus: A systematic review and meta-analysis of diagnostic test accuracy studies. Front. Microbiol. 2025, 16, 1509890. [Google Scholar] [CrossRef]
- Chen, J.S.; Ma, E.; Harrington, L.B.; Da Costa, M.; Tian, X.; Palefsky, J.M.; Doudna, J.A. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 2018, 360, 436–439, Erratum in Science 2021, 371, eabh0317. https://doi.org/10.1126/science.abh0317. [Google Scholar] [CrossRef]
- Li, S.-Y.; Cheng, Q.-X.; Wang, J.-M.; Li, X.-Y.; Zhang, Z.-L.; Gao, S.; Cao, R.-B.; Zhao, G.-P.; Wang, J. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 2018, 4, 20, Erratum in Cell Discov. 2019, 5, 17. https://doi.org/10.1038/s41421-019-0083-0. [Google Scholar] [CrossRef]
- De Puig, H.; Lee, R.A.; Najjar, D.; Tan, X.; Soenksen, L.R.; Angenent-Mari, N.M.; Donghia, N.M.; Weckman, N.E.; Ory, A.; Ng, C.F. Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. Sci. Adv. 2021, 7, eabh2944. [Google Scholar] [CrossRef]
- Velkov, S.; Ott, J.J.; Protzer, U.; Michler, T. The global hepatitis B virus genotype distribution approximated from available genotyping data. Genes 2018, 9, 495. [Google Scholar] [CrossRef]
- Singh, M.; Dicaire, A.; Wakil, A.E.; Luscombe, C.; Sacks, S.L. Quantitation of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) in the liver of HBV-infected patients by LightCycler™ real-time PCR. J. Virol. Methods 2004, 118, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.-H.; Li, Z.-S.; Dai, J.-Y.; Zhu, H.-Y.; Yu, J.-W. Nested real-time quantitative polymerase chain reaction assay for detection of hepatitis B virus covalently closed circular DNA. Chin. Med. J. 2011, 124, 1513–1516. [Google Scholar] [PubMed]
- Takkenberg, R.; Menting, S.; Beld, M. Validation of a sensitive and specific real-time PCR for detection and quantitation of hepatitis B virus covalently closed circular DNA in plasma of chronic hepatitis B patients. In Diagnosis of Sexually Transmitted Diseases: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2012; pp. 113–128. [Google Scholar]
- He, P.; Zhang, P.; Fang, Y.; Han, N.; Yang, W.; Xia, Z.; Zhu, Y.; Zhang, Z.; Shen, J. The role of HBV cccDNA in occult hepatitis B virus infection. Mol. Cell. Biochem. 2023, 478, 2297–2307. [Google Scholar] [CrossRef] [PubMed]
- Pawłowska, M.; Flisiak, R.; Gil, L.; Horban, A.; Hus, I.; Jaroszewicz, J.; Lech-Marańda, E.; Styczyński, J. Prophylaxis of hepatitis B virus (HBV) infection reactivation–recommendations of the Working Group for prevention of HBV reactivation. Clin. Exp. Hepatol. 2019, 5, 195–202. [Google Scholar] [CrossRef]
- Bianca, C.; Sidhartha, E.; Tiribelli, C.; El-Khobar, K.E.; Sukowati, C.H. Role of hepatitis B virus in development of hepatocellular carcinoma: Focus on covalently closed circular DNA. World J. Hepatol. 2022, 14, 866. [Google Scholar] [CrossRef]
- Lu, L.; Zhang, H.; Lin, F.; Zhou, L.; Zhu, Z.; Yang, C. Sensitive and automated detection of bacteria by CRISPR/Cas12a-assisted amplification with digital microfluidics. Sens. Actuators B Chem. 2023, 381, 133409. [Google Scholar] [CrossRef]
- Chen, Y.; Zong, N.; Ye, F.; Mei, Y.; Qu, J.; Jiang, X. Dual-CRISPR/Cas12a-assisted RT-RAA for ultrasensitive SARS-CoV-2 detection on automated centrifugal microfluidics. Anal. Chem. 2022, 94, 9603–9609. [Google Scholar] [CrossRef]
- Xu, J.; Ma, Y.; Song, Z.; Sun, W.; Liu, Y.; Shu, C.; Hua, H.; Yang, M.; Liang, Q. Evaluation of an automated CRISPR-based diagnostic tool for rapid detection of COVID-19. Heliyon 2023, 9, e13190. [Google Scholar] [CrossRef]
- Chen, F.-E.; Lee, P.-W.; Trick, A.Y.; Park, J.S.; Chen, L.; Shah, K.; Mostafa, H.; Carroll, K.C.; Hsieh, K.; Wang, T.-H. Point-of-care CRISPR-Cas-assisted SARS-CoV-2 detection in an automated and portable droplet magnetofluidic device. Biosens. Bioelectron. 2021, 190, 113390. [Google Scholar] [CrossRef]
- Sugiyama, M.; Tanaka, Y.; Kato, T.; Orito, E.; Ito, K.; Acharya, S.K.; Gish, R.G.; Kramvis, A.; Shimada, T.; Izumi, N. Influence of hepatitis B virus genotypes on the intra-and extracellular expression of viral DNA and antigens. Hepatology 2006, 44, 915–924. [Google Scholar] [CrossRef]





| crRNA | Position/Strand | PAM a Guide Sequence (5′–3′) | Predicted Efficiency | Off-Targets for 0-1-2-3-4 Mismatched + next to PAM c | Location | Matched Genotypes |
|---|---|---|---|---|---|---|
| crRNA1 | 1539/fw | TTTA CGCGGTCTCCCCGTCTGTGCCTT b | 52 | 0-0-0-0-0 0-0-0-0-0 0 off-targets | 100 nt upstream of DR2 | A, C |
| crRNA2v1 (crRNA2) | 1764/rev | TTTA TGCCTACAGCCTCCTAGTACAAA b | 79 | 0-0-0-0-0 0-0-0-0-0 0 off-targets | 50 nt upstream of the terminal | B, D |
| crRNA2v2 | TTTA TGCCTACAGCCTCCCAGTACAAA b | C | ||||
| Negative | - | Not applicable CGTTAATCGCGTATAATACGG | - | - | - | - |
| Characteristics | HBV (n = 10) | Non-HBV (n = 6) | p |
|---|---|---|---|
| Age (Years) | 61.7 ± 8.5 | 62.3 ± 15.9 | 0.9181 |
| Female (%) | 3 (30) | 3 (50) | 0.6066 |
| Hemoglobin (g/dL) | 11.2 ± 1.7 | 11.4 ± 1.8 | 0.7973 |
| Platelet count (103/µL) | 155.4 ± 120.5 | 180.8 ± 45.2 | 0.631 |
| Total bilirubin (mg/dL) | 1.2 ± 0.7 | 1.0 ± 0.4 | 0.5878 |
| AST (IU/L) | 177.3 ± 174.3 | 428.2 ± 410.6 | 0.1074 |
| ALT (IU/L) | 163.8 ± 148.8 | 260.3 ± 271.8 | 0.3693 |
| ALP (IU/L) | 83.8 ± 45.3 | 97.7 ± 30.0 | 0.5181 |
| Albumin (mg/dL) | 3.3 ± 0.5 | 3.4 ± 0.7 | 0.5852 |
| INR | 1.3 ± 0.2 | 1.1 ± 0.1 | 0.1914 |
| AFP (ng/mL) | 15.5 ± 28.8 | 6.0 ± 5.6 | 0.6713 |
| Cirrhosis (Yes) | 7 (77.78) | 0 (0) | 0.0070 * |
| Samples | Overt/Occult | HBV Viral Load (IU/mL) | HBsAg | HBsAg Quantitative (IU/mL) | Anti-HBc | Anti-HBs | qPCR (Copies/1000 ng gDNA) | RPA-CRISPR/Cas12a (Copies/1000 ng gDNA) |
|---|---|---|---|---|---|---|---|---|
| HBV 1 | Overt | 337,391 | + | 58 | + | + | 69.35 | 64.15 |
| HBV 2 | Overt | 34,419 | + | 1691.10 | + | − | 63.47 | 56.68 |
| HBV 3 | Overt | 1325 | + | 32.93 | + | − | 57.57 | 45.47 |
| HBV 4 | Overt | <10 | + | 62.57 | + | − | 38.11 | 14.99 |
| HBV 5 | Occult | 398 | − | <0.02 | + | − | 46.54 | 34.61 |
| HBV 6 | Overt | 376 | + | 35.97 | + | − | 41.66 | 30.3 |
| HBV 7 | Overt | 216 | + | 1130.97 | + | − | 40.61 | 24.65 |
| HBV 8 | Overt | 1340 | + | 2316.45 | + | − | 59.91 | 48.62 |
| HBV 9 | Occult | <10 | − | 0.04 | + | + | 37.49 | 11.47 |
| HBV 10 | Overt | <10 | + | 0.13 | + | + | 28.43 | UD |
| Non-HBV 1 | ND | ND | − | <0.02 | − | − | UD | UD |
| Non-HBV 2 | ND | ND | − | <0.02 | − | − | UD | UD |
| Non-HBV 3 | ND | ND | − | <0.02 | − | − | UD | UD |
| Non-HBV 4 | ND | ND | − | <0.02 | − | − | UD | UD |
| Non-HBV 5 | ND | ND | − | <0.02 | − | − | UD | UD |
| Non-HBV 6 | ND | ND | − | <0.02 | − | − | UD | UD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kongsomboonchoke, P.; Ariyachet, C.; Kaewsapsak, P.; Sirichindakul, P.; Tangkijvanich, P. Development of a Sensitive and Specific RPA-CRISPR/Cas12a Assay for Intrahepatic Quantification of HBV cccDNA. Int. J. Mol. Sci. 2026, 27, 551. https://doi.org/10.3390/ijms27010551
Kongsomboonchoke P, Ariyachet C, Kaewsapsak P, Sirichindakul P, Tangkijvanich P. Development of a Sensitive and Specific RPA-CRISPR/Cas12a Assay for Intrahepatic Quantification of HBV cccDNA. International Journal of Molecular Sciences. 2026; 27(1):551. https://doi.org/10.3390/ijms27010551
Chicago/Turabian StyleKongsomboonchoke, Pattida, Chaiyaboot Ariyachet, Pornchai Kaewsapsak, Pongserath Sirichindakul, and Pisit Tangkijvanich. 2026. "Development of a Sensitive and Specific RPA-CRISPR/Cas12a Assay for Intrahepatic Quantification of HBV cccDNA" International Journal of Molecular Sciences 27, no. 1: 551. https://doi.org/10.3390/ijms27010551
APA StyleKongsomboonchoke, P., Ariyachet, C., Kaewsapsak, P., Sirichindakul, P., & Tangkijvanich, P. (2026). Development of a Sensitive and Specific RPA-CRISPR/Cas12a Assay for Intrahepatic Quantification of HBV cccDNA. International Journal of Molecular Sciences, 27(1), 551. https://doi.org/10.3390/ijms27010551

