Occurrence of Antibiotic Resistance in Lacticaseibacillus paracasei and Lactiplantibacillus plantarum Strains Isolated from Traditional Sardinian Fermented Food
Abstract
1. Introduction
2. Results
2.1. Phenotypic Antibiotic Susceptibility of L. plantarum Strains
2.2. Phenotypic Antibiotic Susceptibility of L. paracasei Strains
2.3. Resistance Genes in Genomic and Plasmid DNA
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates and Growth Conditions
4.2. Phenotypic Antibiotics Susceptibility Testing
4.2.1. Assessment by Agar Overlay Disc Diffusion
4.2.2. Determination of the Minimum Inhibitory Concentration (MIC)
4.3. Detection of Antibiotic Resistance Genes in Genomic and Plasmid DNA
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dhingra, S.; Rahman, N.A.A.; Peile, E.; Rahman, M.; Sartelli, M.; Hassali, M.A.; Islam, T.; Islam, S.; Haque, M. Microbial resistance movements: An overview of global public health threats posed by antimicrobial resistance, and how best to counter. Front. Public Health 2020, 8, 535668. [Google Scholar] [CrossRef] [PubMed]
- Palma, E.; Tilocca, B.; Roncada, P. Antimicrobial Resistance in Veterinary Medicine: An Overview. Int. J. Mol. Sci. 2020, 21, 1914. [Google Scholar] [CrossRef] [PubMed]
- Rhouma, M.; Soufi, L.; Cenatus, S.; Archambault, M.; Butaye, P. Current Insights Regarding the Role of Farm Animals in the Spread of Antimicrobial Resistance from a One Health Perspective. Vet. Sci. 2022, 9, 480. [Google Scholar] [CrossRef]
- Klein, E.Y.; Van Boeckel, T.P.; Martinez, E.M.; Pant, S.; Gandra, S.; Levin, S.A.; Goossens, H.; Laxminarayan, R. Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. Proc. Natl. Acad. Sci. USA 2018, 115, E3463–E3470. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control (ECDC); World Health Organization (WHO) Regional Office for Europe. Antimicrobial Resistance Surveillance in Europe 2023–2021 Data; ECDC: Stockholm, Sweden, 2023; ISBN 978-92-890-5853-7. Available online: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2023-2021-data (accessed on 15 April 2025).
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef]
- Munita, J.M.; Arias, C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 2018, 31, e00088-17. [Google Scholar] [CrossRef]
- Meng, M.; Li, Y.; Yao, H. Plasmid-Mediated Transfer of Antibiotic Resistance Genes in Soil. Antibiotics 2022, 11, 525. [Google Scholar] [CrossRef]
- Mathur, S.; Singh, R. Antibiotic resistance in lactic acid bacteria: A review. Int. J. Food Microbiol. 2005, 105, 281–295. [Google Scholar] [CrossRef]
- Toomey, N.; Bolton, D.; Fanning, S. Characterization and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Res. Microbiol. 2010, 161, 127–135. [Google Scholar] [CrossRef]
- Gueimonde, M.; Sánchez, B.; de los Reyes-Gavilán, C.G.; Margolles, A. Antibiotic resistance in probiotic bacteria. Front. Microbiol. 2013, 4, 202. [Google Scholar] [CrossRef] [PubMed]
- Baynes, R.E.; Dedonder, K.; Kissell, L.; Mzyk, D.; Marmulak, T.; Smith, G.; Tell, L.; Gehring, R.; Davis, J.; Riviere, J.E. Health Concerns and Management of Select Veterinary Drug Residues. Food Chem. Toxicol. 2016, 88, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global Trends in Antimicrobial Use in Food Animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control (ECDC); European Food Safety Authority (EFSA); European Medicines Agency (EMA). Third joint inter-agency report on integrated analysis of consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals in the EU/EEA: JIACRA III 2016-2018. EFSA J. 2021, 19, e06712. [Google Scholar] [CrossRef]
- Ali, A.A. Use of Starter Cultures of Lactic Acid Bacteria and Yeasts in the Preparation of Kisra, a Sudanese Fermented Food. Pak. J. Nutr. 2009, 8, 1349–1353. [Google Scholar] [CrossRef]
- Talon, R.; Leroy, S. Diversity and safety hazards of bacteria involved in meat fermentations. Meat Sci. 2011, 89, 303–309. [Google Scholar] [CrossRef]
- Devirgiliis, C.; Zinno, P.; Perozzi, G. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Front. Microbiol. 2013, 4, 301. [Google Scholar] [CrossRef]
- Singer, R.S.; Finch, R.; Wegener, H.C.; Bywater, R.; Walters, J.; Lipsitch, M. Antibiotic resistance—The interplay between antibiotic use in animals and human beings. Lancet Infect. Dis. 2003, 3, 47–51. [Google Scholar] [CrossRef]
- Morel, C. Transmission of Antimicrobial Resistance from Livestock Agriculture to Humans and from Humans to Animals; OECD Food, Agriculture and Fisheries Papers; OECD Publishing: Paris, France, 2019; Volume 133, pp. 1–43. [Google Scholar] [CrossRef]
- Stefańska, I.; Jóźwiak-Piasecka, K.; Garbowska, M.; Binek, M.; Kwiecień, E.; Rzewuska, M. Antimicrobial Susceptibility of Lactic Acid Bacteria Strains of Potential Use as Feed Additives—The Basic Safety and Usefulness Criterion. Front. Vet. Sci. 2021, 8, 687071. [Google Scholar] [CrossRef]
- Vinayamohan, P.G.; Viju, L.S.; Joseph, D.; Venkitanarayanan, K. Fermented foods as a potential vehicle of antimicrobial-resistant bacteria and genes. Fermentation 2023, 9, 688. [Google Scholar] [CrossRef]
- Rezac, S.; Kok, C.R.; Heermann, M.; Hutkins, R. Fermented Foods as a Dietary Source of Live Organisms. Front. Microbiol. 2018, 9, 1785. [Google Scholar] [CrossRef] [PubMed]
- McMahon, M.A.S.; Blair, I.S.; Moore, J.E.; McDowell, D.A. The rate of horizontal transmission of antibiotic resistance plasmids is increased in food-preservation-stressed bacteria. J. Appl. Microbiol. 2007, 103, 1883–1888. [Google Scholar] [CrossRef]
- Giacometti, F.; Shirzad-Aski, H.; Ferreira, S. Antimicrobials and Food-Related Stresses as Selective Factors for Antibiotic Resistance along the Farm to Fork Continuum. Antibiotics 2021, 10, 671. [Google Scholar] [CrossRef]
- Floris, I.; Battistini, R.; Tramuta, C.; Garcia-Vozmediano, A.; Musolino, N.; Scardino, G.; Masotti, C.; Brusa, B.; Orusa, R.; Serracca, L.; et al. Antibiotic resistance in lactic acid bacteria from dairy products in Northern Italy. Antibiotics 2025, 14, 375. [Google Scholar] [CrossRef]
- Huys, G.; D’Haene, K.; Swings, J. Influence of the culture medium on antibiotic susceptibility testing of food-associated lactic acid bacteria with the agar overlay disc diffusion method. Lett. Appl. Microbiol. 2002, 34, 402–406. [Google Scholar] [CrossRef]
- Cui, Y.; Hu, T.; Qu, X.; Zhang, L.; Ding, Z.; Dong, A. Plasmids from Food Lactic Acid Bacteria: Diversity, Similarity, and New Developments. Int. J. Mol. Sci. 2015, 16, 13172–13202. [Google Scholar] [CrossRef] [PubMed]
- Li, A.-D.; Li, L.-G.; Zhang, T. Exploring antibiotic resistance genes and metal resistance genes in plasmid metagenomes from wastewater treatment plants. Front. Microbiol. 2015, 6, 1025. [Google Scholar] [CrossRef]
- Heuer, H.; Binh, C.T.T.; Jechalke, S.; Kopmann, C.; Zimmerling, U.; Kröger-Recklenfort, E.; Ledger, T.; González, B.; Top, E.; Smalla, K. IncP-1ε plasmids are important vectors of antibiotic resistance genes in agricultural systems: Diversification driven by class 1 integron gene cassettes. Front. Microbiol. 2012, 3, 2. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Cisneros, Y.M.; Ponce-Alquicira, E. Antibiotic Resistance in Lactic Acid Bacteria. Antimicrobial Resistance—A Global Threat; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef]
- Campedelli, I.; Mathur, H.; Salvetti, E.; Clarke, S.; Rea, M.C.; Torriani, S.; Ross, R.P.; Hill, C.; O’Toole, P.W. Genus-Wide Assessment of Antibiotic Resistance in Lactobacillus spp. Appl. Environ. Microbiol. 2019, 85, e01738-18. [Google Scholar] [CrossRef]
- Ammor, M.S.; Flórez, A.B.; van Hoek, A.H.A.M.; de los Reyes-Gavilán, C.G.; Aarts, H.J.M.; Margolles, A.; Mayo, B. Molecular Characterization of Intrinsic and Acquired Antibiotic Resistance in Lactic Acid Bacteria and Bifidobacteria. J. Mol. Microbiol. Biotechnol. 2008, 14, 6–15. [Google Scholar] [CrossRef]
- Bergkessel, M.; Guthrie, C. Colony PCR. In Laboratory Methods in Enzymology: DNA; Lorsch, J., Ed.; Methods in Enzymology; Academic Press: San Diego, CA, USA, 2013; Volume 529, pp. 299–309. [Google Scholar] [CrossRef]
- Aquilanti, L.; Garofalo, C.; Osimani, A.; Silvestri, G.; Vignaroli, C.; Clementi, F. Isolation and Molecular Characterization of Antibiotic-Resistant Lactic Acid Bacteria from Poultry and Swine Meat Products. J. Food Prot. 2007, 70, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Oh, J.-H.; Alexander, L.M.; Özçam, M.; van Pijkeren, J.P. D-Alanyl-D-Alanine Ligase as a Broad-Host-Range Counterselection Marker in Vancomycin-Resistant Lactic Acid Bacteria. J. Bacteriol. 2018, 200, e00607-17. [Google Scholar] [CrossRef]
- Duche, R.T.; Singh, A.; Wandhare, A.G.; Sangwan, V.; Sihag, M.K.; Nwagu, T.N.T.; Panwar, H.; Ezeogu, L.I. Antibiotic Resistance in Potential Probiotic Lactic Acid Bacteria of Fermented Foods and Human Origin from Nigeria. BMC Microbiol. 2023, 23, 142. [Google Scholar] [CrossRef] [PubMed]
- Rossi, F.; Di Renzo, T.; Preziuso, M.; Zotta, T.; Iacumin, L.; Coppola, R.; Reale, A. Survey of Antibiotic Resistance Traits in Strains of Lactobacillus casei/paracasei/rhamnosus Isolated from Foods. Ann. Microbiol. 2015, 65, 1763–1769. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 2012, 10, 2740. [Google Scholar] [CrossRef]
- Abriouel, H.; Casado Muñoz, M.D.C.; Lavilla Lerma, L.; Pérez Montoro, B.; Bockelmann, W.; Pichner, R.; Kabisch, J.; Cho, G.-S.; Franz, C.M.A.P.; Gálvez, A.; et al. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res. Int. 2015, 78, 465–481. [Google Scholar] [CrossRef]
- Valan Arasu, M.; Jung, M.W.; Kim, D.H.; Park, H.S.; Ilavenil, S.; Al-Dhabi, N.A.; Choi, K.C. Identification and Phylogenetic Characterization of Novel Lactobacillus plantarum Species and Their Metabolite Profiles in Grass Silage. Ann. Microbiol. 2015, 65, 15–25. [Google Scholar] [CrossRef]
- Mangia, N.P.; Murgia, M.A.; Garau, G.; Sanna, M.P.; Deiana, P. Influence of selected LAB cultures on the evolution of free amino acids, free fatty acids and Fiore Sardo cheese microflora during ripening. Food Microbiol. 2008, 25, 366–377. [Google Scholar] [CrossRef]
- Garcia-Gonzalez, N.; Battista, N.; Prete, R.; Corsetti, A. Health-Promoting Role of Lactiplantibacillus plantarum Isolated from Fermented Foods. Microorganisms 2021, 9, 349. [Google Scholar] [CrossRef]
- Moiseenko, K.V.; Begunova, A.V.; Savinova, O.S.; Bairamashvili, D.I.; Dlusskaya, E.A.; Zelenkova, N.F.; Cepeda, A.; Ivanova, E.P. Biochemical and Genomic Characterization of Two New Strains of Lacticaseibacillus paracasei Isolated from the Traditional Corn-Based Beverage of South Africa, Mahewu, and Their Comparison with Strains Isolated from Kefir Grains. Foods 2023, 12, 223. [Google Scholar] [CrossRef]
- Mangia, N.P.; Cottu, M.; Mura, M.E.; Murgia, M.A.; Blaiotta, G. Technological parameters, anti-Listeria activity, biogenic amines formation and degradation ability of Lactiplantibacillus plantarum strains isolated from sheep-fermented sausage. Microorganisms 2021, 9, 1895. [Google Scholar] [CrossRef]
- Mangia, N.P.; Fancello, F.; Deiana, P. Microbiological characterization using combined culture dependent and independent approaches of Casizolu pasta filata cheese. J. Appl. Microbiol. 2016, 120, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Charteris, W.P.; Kelly, P.M.; Morelli, L.; Collins, J.K. Antibiotic Susceptibility of Potentially Probiotic Lactobacillus Species. J. Food Prot. 1998, 61, 1636–1643. [Google Scholar] [CrossRef] [PubMed]
- Vakulenko, S.B.; Donabedian, S.M.; Voskresenskiy, A.M.; Zervos, M.J.; Lerner, S.A.; Chow, J.W. Multiplex PCR for detection of aminoglycoside resistance genes in enterococci. Antimicrob. Agents Chemother. 2003, 47, 1423–1426. [Google Scholar] [CrossRef]
- Ouoba, L.I.I.; Lei, V.; Jensen, L.B. Resistance of Potential Probiotic Lactic Acid Bacteria and Bifidobacteria of African and European Origin to Antimicrobials: Determination and Transferability of the Resistance Genes to Other Bacteria. Int. J. Food Microbiol. 2008, 121, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Villedieu, A.; Diaz-Torres, M.L.; Hunt, N.; McNab, R.; Spratt, D.A.; Wilson, M.; Mullany, P. Prevalence of Tetracycline Resistance Genes in Oral Bacteria. Antimicrob. Agents Chemother. 2003, 4, 878–882. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, Z.-Y.; Dong, K.; Yuan, J.-P.; Guo, X.-K. Antibiotic Resistance of Probiotic Strains of Lactic Acid Bacteria Isolated from Marketed Foods and Drugs. Biomed. Environ. Sci. 2009, 22, 401–412. [Google Scholar] [CrossRef]

| Chloranphenicol | Erytromycin | Ampicillin | Tetracycline | Streptomycin | Gentamicin | Vancomycin | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| L. Plantarum Strains | a ADD | b MIC (mg/L) | a ADD | b MIC (mg/L) | a ADD | b MIC (mg/L) | a ADD | b MIC (mg/L) | a ADD | b MIC (mg/L) | a ADD | b MIC (mg/L) | a ADD | b MIC (mg/L) |
| PT 0-2 | (S) | n.p. | (S) | n.p. | (S) | 0.38 | (MS) | >256 | (S) | 96 | (R) | >256 | (R) | >256 |
| PT 0-4 | (S) | n.p. | (S) | n.p. | (S) | 0.38 | (MS) | >256 | (S) | 128 | (R) | >256 | (R) | >256 |
| PT 1-7 | (S) | n.p. | (S) | n.p. | (R) | >256 | (R) | >256 | (R) | 96 | (R) | >256 | (R) | >256 |
| PT 1-8 | (S) | n.p. | (S) | n.p. | (R) | >256 | (R) | >256 | (S) | >256 | (S) | >256 | (R) | >256 |
| PT 2-3 | (S) | n.p. | (S) | n.p. | (MS) | 1.5 | (R) | 12 | (MS) | >256 | (S) | >256 | (R) | >256 |
| PT 3-9 | (S) | n.p. | (S) | n.p. | (MS) | 1.5 | (MS) | 16 | (R) | >256 | (S) | >256 | (R) | >256 |
| PT 5-5 | (S) | n.p. | (S) | n.p. | (R) | >256 | (R) | >256 | (R) | >256 | (R) | >256 | (R) | >256 |
| PT 5-6 | (S) | n.p. | (S) | n.p. | (R) | >256 | (R) | >256 | (R) | >256 | (R) | >256 | (R) | >256 |
| PT 5-9 | (S) | n.p. | (S) | n.p. | (R) | >256 | (R) | >256 | (R) | >256 | (R) | >256 | (R) | >256 |
| PT 5-10 | (S) | n.p. | (S) | n.p. | (R) | >256 | (R) | >256 | (R) | >256 | (R) | >256 | (R) | >256 |
| PT 7-3 | (S) | n.p. | (S) | n.p. | (R) | >256 | (R) | 1.5 | (R) | >256 | (R) | >256 | (R) | >256 |
| PT 9-1 | (S) | n.p. | (S) | n.p. | (R) | >256 | (R) | >256 | (MS) | >256 | (R) | >256 | (R) | >256 |
| PT 9-2 | (S) | n.p. | (S) | n.p. | (R) | >256 | (R) | 1 | (R) | >256 | (R) | >256 | (R) | >256 |
| PT 9-3 | (S) | n.p. | (S) | n.p. | (MS) | 0.94 | (R) | 1.5 | (MS) | >256 | (S) | >256 | (R) | >256 |
| PT 9-8 | (S) | n.p. | (S) | n.p. | (MS) | 0.94 | (R) | >256 | (S) | >256 | (S) | >256 | (R) | >256 |
| PT 9-11 | (S) | n.p. | (S) | n.p. | (MS) | 0.94 | (MS) | 0.75 | (S) | >256 | (S) | >256 | (R) | >256 |
| PT 13-3 | (S) | n.p. | (S) | n.p. | (MS) | 0.38 | (MS) | >256 | (S) | >256 | (S) | >256 | (R) | >256 |
| PT 18-1 | (S) | n.p. | (S) | n.p. | (MS) | 0.38 | (R) | >256 | (MS) | >256 | (R) | >256 | (R) | >256 |
| PT 18-2 | (S) | n.p. | (S) | n.p. | (MS) | 0.38 | (R) | >256 | (MS) | >256 | (R) | >256 | (R) | >256 |
| PT 18-3 | (S) | n.p. | (S) | n.p. | (MS) | 0.38 | (R) | >256 | (MS) | >256 | (R) | >256 | (R) | >256 |
| PT 18-6 | (S) | n.p. | (S) | n.p. | (MS) | 0.125 | (MS) | 1.5 | (S) | >256 | (S) | >256 | (R) | >256 |
| PT 18-8 | (S) | n.p. | (S) | n.p. | (S) | 0.38 | (MS) | >256 | (MS) | >256 | (S) | >256 | (R) | >256 |
| PT 18-9 | (S) | n.p. | (S) | n.p. | (R) | >256 | (R) | 8 | (MS) | 128 | (R) | >256 | (R) | >256 |
| PT 23-1 | (S) | n.p. | (S) | n.p. | (MS) | 0.5 | (R) | >256 | (R) | >256 | (S) | >256 | (R) | >256 |
| PT 23-2 | (S) | n.p. | (S) | n.p. | (MS) | 0.38 | (MS) | 4 | (S) | >256 | (S) | >256 | (R) | >256 |
| Chloranphenicol | Erytromycin | Ampicillin | Tetracycline | Streptomycin | Gentamicin | Vancomicin | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| L. paracasei Strains | a ADD | b MIC (mg/L) | a ADD | b MIC (mg/L) | a ADD | b MIC (mg/L) | a ADD | b MIC (mg/L) | a ADD | b MIC (mg/L) | a ADD | b MIC (mg/L) | a ADD | b MIC (mg/L) |
| 18AC1 | (S) | n.p. | (S) | n.p. | (S) | >256 | (S) | >256 | (R) | >256 | (R) | >256 | (R) | >256 |
| 19AC2 | (S) | n.p. | (S) | n.p. | (R) | 2 | (S) | 0.25 | (R) | >256 | (R) | >256 | (R) | >256 |
| 20AC1 | (S) | n.p. | (S) | n.p. | (R) | 1.5 | (S) | 0.19 | (R) | >256 | (R) | >256 | (R) | >256 |
| 22AC2 | (S) | n.p. | (S) | n.p. | (R) | >256 | (S) | >256 | (R) | >256 | (R) | >256 | (R) | >256 |
| 23AC3 | (S) | n.p. | (S) | n.p. | (R) | 1.5 | (S) | 0.25 | (R) | >256 | (R) | >256 | (R) | >256 |
| 25AC3 | (S) | n.p. | (S) | n.p. | (R) | 0.75 | (S) | 0.38 | (R) | >256 | (R) | >256 | (R) | >256 |
| 26AC3 | (S) | n.p. | (S) | n.p. | (MS) | >256 | (S) | >256 | (R) | >256 | (R) | >256 | (R) | >256 |
| 29AC3 | (S) | n.p. | (S) | n.p. | (R) | 2 | (S) | 0.25 | (R) | >256 | (R) | >256 | (R) | >256 |
| 38BC1 | (S) | n.p. | (S) | n.p. | (R) | >256 | (S) | >256 | (R) | >256 | (R) | >256 | (R) | >256 |
| 39BC1 | (S) | n.p. | (S) | n.p. | (R) | 2 | (S) | 0.5 | (R) | >256 | (R) | >256 | (R) | >256 |
| 32AC4 | (S) | n.p. | (S) | n.p. | (R) | 1.5 | (S) | 0.25 | (R) | >256 | (R) | >256 | (R) | >256 |
| 7BC3 | (S) | n.p. | (S) | n.p. | (R) | 2 | (S) | 0.5 | (R) | >256 | (R) | >256 | (R) | >256 |
| 34AC3 | (S) | n.p. | (S) | n.p. | (R) | 1.5 | (S) | 0.25 | (R) | >256 | (R) | >256 | (R) | >256 |
| 35AC3 | (S) | n.p. | (S) | n.p. | (R) | 0.38 | (S) | 0.25 | (R) | >256 | (R) | >256 | (R) | >256 |
| 36AC3 | (S) | n.p. | (S) | n.p. | (R) | 3 | (S) | 0.25 | (R) | >256 | (R) | >256 | (R) | >256 |
| 2AM1 | (S) | n.p. | (S) | n.p. | (R) | 2 | (S) | 0.5 | (R) | >256 | (R) | >256 | (R) | >256 |
| 5AM1 | (S) | n.p. | (S) | n.p. | (R) | 1.5 | (S) | 0.19 | (R) | >256 | (R) | >256 | (R) | >256 |
| 3AM1 | (S) | n.p. | (S) | n.p. | (R) | 1.5 | (S) | 0.38 | (R) | >256 | (R) | >256 | (R) | >256 |
| 6ACu2 | (S) | n.p. | (S) | n.p. | (R) | 3 | (S) | 0.25 | (R) | >256 | (R) | >256 | (R) | >256 |
| 7ACu2 | (S) | n.p. | (S) | n.p. | (R) | >256 | (S) | 0.5 | (R) | >256 | (R) | >256 | (R) | >256 |
| 9BC3 | (S) | n.p. | (S) | n.p. | (MS) | >256 | (MS) | 3 | (R) | >256 | (R) | >256 | (R) | >256 |
| 10AM3 | (S) | n.p. | (S) | n.p. | (R) | 2 | (S) | 0.25 | (R) | >256 | (R) | >256 | (R) | >256 |
| 11AM3 | (S) | n.p. | (S) | n.p. | (R) | 1.5 | (S) | 0.19 | (R) | >256 | (R) | >256 | (R) | >256 |
| 12AM3 | (S) | n.p. | (S) | n.p. | (R) | >256 | (S) | 1 | (R) | >256 | (R) | >256 | (R) | >256 |
| 13AM3 | (S) | n.p. | (S) | n.p. | (R) | >256 | (S) | 0.19 | (R) | >256 | (R) | >256 | (R) | >256 |
| L. plantarum Strains | Genomics | Plasmids |
|---|---|---|
| PT 0-2 | tet(W), vanX | aac(6′)-Ie–aph(2″)-Ia, strA |
| PT 0-4 | tet(W), vanX | aac(6′)-Ie–aph(2″)-Ia, strA |
| PT 1-7 | tet(W), vanX | strA |
| PT 1-8 | tet(W), vanX | - |
| PT 2-3 | tet(W) | aac(6′)-Ie–aph(2″)-Ia, strA |
| PT 3-9 | tet(W), vanX | blaZ, aac(6′)-Ie–aph(2″)-Ia, strA |
| PT 5-5 | tet(W), vanX | aac(6′)-Ie–aph(2″)-Ia, strA |
| PT 5-6 | tet(W) | aac(6′)-Ie–aph(2″)-Ia, strA |
| PT 5-9 | tet(W) | blaZ, strA |
| PT 5-10 | tet(W) | blaZ, strA |
| PT 7-3 | tet(W), vanX | blaZ, strA |
| PT 9-1 | aac(6′)-Ie–aph(2″)-Ia, tet(W), vanX | strA |
| PT 9-2 | tet(W) | blaZ, aac(6′)-Ie–aph(2″)-Ia, strA, vanX |
| PT 9-3 | tet(W) | - |
| PT 9-8 | tet(W) | strA |
| PT 9-11 | tet(W) | strA |
| PT 13-3 | tet(W) | strA |
| PT 18-1 | tet(W), vanX | aac(6′)-Ie–aph(2″)-Ia, strA |
| PT 18-2 | tet(W), vanX | aac(6′)-Ie–aph(2″)-Ia, strA |
| PT 18-3 | tet(W), vanX | aac(6′)-Ie–aph(2″)-Ia, strA |
| PT 18-6 | tet(W), vanX | blaZ |
| PT 18-8 | tet(W), vanX | aac(6′)-Ie–aph(2″)-Ia, strA |
| PT 18-9 | tet(W), vanX | aac(6′)-Ie–aph(2″)-Ia, strA |
| PT 23-1 | tet(W), vanX | - |
| PT 23-2 | tet(W), vanX | - |
| L. paracasei Strains | Genomics | Plasmids |
|---|---|---|
| 18AC1 | - | aac(6′)-Ie–aph(2″)-Ia, strA |
| 19AC2 | strA | - |
| 20AC1 | strA | - |
| 22AC1 | - | strA |
| 23AC3 | - | aac(6′)-Ie–aph(2″)-Ia, strA |
| 23AC3 | vanX | blaZ, strA |
| 26AC3 | vanX | strA |
| 29AC3 | strA | - |
| 38BC1 | strA, vanX | blaZ, aac(6′)-Ie–aph(2″)-Ia |
| 39BC1 | vanX | blaZ, aac(6′)-Ie–aph(2″)-Ia, strA |
| 32AC4 | vanX | aac(6′)-Ie–aph(2″)-Ia, strA |
| 7BC3 | strA, vanX | - |
| 34AC3 | strA | - |
| 35AC3 | vanX | blaZ, strA |
| 36AC3 | strA, vanX | - |
| 2AM1 | vanX | blaZ, aac(6′)-Ie–aph(2″)-Ia, strA |
| 5AM1 | vanX | blaZ, aac(6′)-Ie–aph(2″)-Ia, strA |
| 3AM1 | vanX | blaZ, aac(6′)-Ie–aph(2″)-Ia, strA |
| 6ACu2 | vanX | aac(6′)-Ie–aph(2″)-Ia, strA |
| 7ACu2 | vanX | blaZ, aac(6′)-Ie–aph(2″)-Ia, strA |
| 9BC3 | vanX | blaZ, strA |
| 10AM3 | vanX | aac(6′)-Ie–aph(2″)-Ia, strA |
| 11AM3 | vanX | blaZ, aac(6′)-Ie–aph(2″)-Ia, strA |
| 12AM3 | vanX | aac(6′)-Ie–aph(2″)-Ia, strA |
| 13AM3 | vanX | blaZ, strA |
| Classes | Antibiotics | Inhibition Halo Diameter (mm) | ||
|---|---|---|---|---|
| R | MS | S | ||
| β-lactams | Ampicillin (10 μg) | 12 | 13–15 | 16 |
| Tetracyclines | Tetracycline (30 μg) | 14 | 15–18 | 19 |
| Aminoglycosides | Streptomycin (10 μg) | 11 | 12–14 | 15 |
| Aminoglycosides | Gentamicin (10 μg) | 12 | - | 13 |
| Glycopeptides | Vancomycin (30 μg) | 14 | 15–16 | 17 |
| Phenicols | Chloramphenicol (30 μg) | 13 | 14–17 | 18 |
| Macrolides | Erythromycin (15 μg) | 13 | 14–17 | 18 |
| Resistence Gene | Target Antibiotic | Forward Primer | Reverse Primer | T (°C) | bp | Reference |
|---|---|---|---|---|---|---|
| aac(6′)-Ie–aph(2″)-Ia | gentamicin | 5′CAGAGCCTTGGGAAGATGAAG3′ | 5′CCTCGTGTAATTCATGTTCTGGC3′ | 50 | 348 | [49] |
| strA | streptomycin | 5′ATCCTTCGGCGCGATTTTG3′ | 5′GCAGCGCAATGACATTCTTG3′ | 50 | 282 | [50] |
| blaZ | ampicillin | 5′TAGGTTCAGATTGGCCCTTAG3′ | 5′ACTTCAACACCTGCTGCTTTC3′ | 50 | 240 | [36] |
| tet(W) | tetracycline | 5′GAGAGCCTGCTATATGCCAGC5′ | 5′GGGCGTATCCACAATGTTAAC3′ | 55 | 168 | [51] |
| vanX | vancomycin | 5′TCGCGGTAGTCCCACCATTCGTT3′ | 5′AAATCATCGTTGACCTGCGTTAT3′ | 55 | 454 | [52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Carboni, G.; Mura, M.E.; Chessa, M.; Blaiotta, G.; Nudda, A.; Mangia, N.P. Occurrence of Antibiotic Resistance in Lacticaseibacillus paracasei and Lactiplantibacillus plantarum Strains Isolated from Traditional Sardinian Fermented Food. Antibiotics 2026, 15, 18. https://doi.org/10.3390/antibiotics15010018
Carboni G, Mura ME, Chessa M, Blaiotta G, Nudda A, Mangia NP. Occurrence of Antibiotic Resistance in Lacticaseibacillus paracasei and Lactiplantibacillus plantarum Strains Isolated from Traditional Sardinian Fermented Food. Antibiotics. 2026; 15(1):18. https://doi.org/10.3390/antibiotics15010018
Chicago/Turabian StyleCarboni, Gavino, Maria E. Mura, Margherita Chessa, Giuseppe Blaiotta, Anna Nudda, and Nicoletta P. Mangia. 2026. "Occurrence of Antibiotic Resistance in Lacticaseibacillus paracasei and Lactiplantibacillus plantarum Strains Isolated from Traditional Sardinian Fermented Food" Antibiotics 15, no. 1: 18. https://doi.org/10.3390/antibiotics15010018
APA StyleCarboni, G., Mura, M. E., Chessa, M., Blaiotta, G., Nudda, A., & Mangia, N. P. (2026). Occurrence of Antibiotic Resistance in Lacticaseibacillus paracasei and Lactiplantibacillus plantarum Strains Isolated from Traditional Sardinian Fermented Food. Antibiotics, 15(1), 18. https://doi.org/10.3390/antibiotics15010018

