Rewriting Tumor Entry Rules: Microfluidic Polyplexes and Tumor-Penetrating Strategies—A Literature Review
Abstract
1. Introduction
2. Structure of Polyplexes
2.1. Cargo-Dependent Structural Differences
2.2. Structural Determinants of Tumor Penetration
3. Types of Polymers in Polyplexes
3.1. Polyethylenimine (PEI): Historical Benchmark and Contemporary Limitations
3.2. Poly(L-lysine) (PLL) and Polypeptide Systems
3.3. Poly(amidoamine) Dendrimers (PAMAM)
3.4. Biodegradable Cationic Polymers
3.5. Nature-Derived Polymers
3.6. Sequence-Defined Polymers
4. Formation of Polyplexes
4.1. Principles Governing Complexation
4.2. Polymer-Specific Determinants
4.3. Cargo-Specific Complexation Requirements
4.3.1. Plasmid DNA Requirements
4.3.2. siRNA Requirements
4.3.3. mRNA Requirements
4.3.4. Other Nucleic Acid Cargos
4.3.5. Integration: Matching Cargo Properties to Design Decisions
4.4. Assembly Methods: Impact on Polyplex Properties
4.5. Kinetic Versus Thermodynamic Assembly Regimes
4.6. Hierarchy of Complexation Determinants
5. Mechanisms of Cellular Entry and Intracellular Trafficking
5.1. Cell Surface Binding and Internalization
5.2. Endocytic Pathways and Their Implications
5.3. Endosomal Escape: The Principal Bottleneck
5.3.1. Proton Sponge Effect
5.3.2. Membrane Destabilization and Pore Formation
5.3.3. Safety Considerations for Endosomolytic Agents
5.4. Cytosolic Trafficking and Cargo Dissociation
5.5. Nuclear Entry: The Additional Barrier for pDNA
6. Molecular Therapeutic Strategies with Polyplexes
6.1. Plasmid DNA Polyplexes
6.2. Small Interfering RNA Polyplexes
6.3. MicroRNA Polyplexes
6.4. Messenger RNA Polyplexes
6.5. CRISPR/Cas Gene Editing
6.6. Short Hairpin RNA Polyplexes
7. Barriers to Intratumoral Delivery
7.1. Blood Circulation: Protein Corona and Systemic Clearance
7.2. Hemotoxicity and Complement Activation
7.3. Vascular Barrier
7.4. Tumor Interstitium and Stromal Barriers
7.5. Strategies to Overcome Delivery Barriers
7.5.1. Size-Switching Nanoparticles
7.5.2. Charge-Reversal Systems
7.5.3. Tumor-Penetrating Peptides: iRGD Versus Classical RGD
7.5.4. Extracellular Matrix Modification
8. Safety Considerations and Toxicities
8.1. The Central Role of Cationic Charge in Toxicity
8.2. Structural Determinants of Polymer Toxicity
8.3. PEI Toxicity: Detailed Mechanistic Analysis
8.4. Immunogenicity and Repeat-Dose Considerations
9. Clinical Development Status
9.1. CALAA-01: The Most Advanced Polyplex Program
9.2. EGEN-001: Intraperitoneal IL-12 Plasmid Delivery
10. Discussions
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Thun, M.J.; DeLancey, J.O.; Center, M.M.; Jemal, A.; Ward, E.M. The global burden of cancer: Priorities for prevention. Carcinogenesis 2010, 31, 100–110. [Google Scholar] [CrossRef]
- Li, Y.; Dai, Y.; Zhang, X.; Chen, J. Three-layered polyplex as a microRNA targeted delivery system for breast cancer gene therapy. Nanotechnology 2017, 28, 285101. [Google Scholar] [CrossRef] [PubMed]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef] [PubMed]
- Kotterman, M.A.; Schaffer, D.V. Engineering adeno-associated viruses for clinical gene therapy. Nat. Rev. Genet. 2014, 15, 445–451. [Google Scholar] [CrossRef] [PubMed]
- Alameh, M.G.; Tombácz, I.; Bettini, E.; Lederer, K.; Ndeupen, S.; Sittplangkoon, C.; Wilmore, J.R.; Gaudette, B.T.; So-liman, O.Y.; Pine, M.; et al. Lipid nanoparticles enhance the efficacy of mRNA and protein subunit vaccines by inducing robust T follicular helper cell and humoral responses. Immunity 2021, 54, 2877–2892.e7. [Google Scholar] [CrossRef]
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef]
- Vetter, V.C.; Wagner, E. Targeting nucleic acid-based therapeutics to tumors: Challenges and strategies for polyplexes. J Control. Release 2022, 346, 110–135. [Google Scholar] [CrossRef]
- Wells, C.M.; Harris, M.; Choi, L.; Murali, V.P.; Guerra, F.D.; Jennings, J.A. Stimuli-Responsive Drug Release from Smart Polymers. J. Funct. Biomater. 2019, 10, 34. [Google Scholar] [CrossRef]
- Bellotti, M.; Chiesa, E.; Conti, B.; Genta, I.; Conti, M.; Auricchio, F.; Caimi, A. Computational-Aided Approach for the Optimization of Microfluidic-Based Nanoparticles Manufacturing Process. Ann. Biomed. Eng. 2024, 52, 3240–3252. [Google Scholar] [CrossRef]
- Mitchell, M.J.; Billingsley, M.M.; Haley, R.M.; Wechsler, M.E.; Peppas, N.A.; Langer, R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021, 20, 101–124. [Google Scholar]
- Winkeljann, B.; Keul, D.C.; Merkel, O.M. Engineering poly- and micelleplexes for nucleic acid delivery—A reflection on their endosomal escape. J. Control. Release 2023, 353, 518–534. [Google Scholar] [CrossRef] [PubMed]
- Numata, K. The Biology of Natural Polymers Accelerates and Expands the Science of Biomacromolecules: A Focus on Structural Proteins. Biomacromolecules 2025, 26, 1393–1403. [Google Scholar] [CrossRef] [PubMed]
- Kawish, S.M.; Rahman, M.; Beg, S.; Alhakamy, N.A.; Choudhry, H.; Ahmad, F.J. Chapter 9—Polyplexes-Based Delivery Systems for Cancer Vaccine Delivery. In Nanotherapeutics in Cancer Vaccination and Challenges; Academic Press: London, UK, 2022; pp. 167–191. Available online: https://www.sciencedirect.com/science/article/pii/B9780128236864000094 (accessed on 20 September 2025).
- Niederkofler, S.; Parkkila, P.; Aliakbarinodehi, N.; Sasanian, N.; Emilsson, G.; Ulkoski, D.; Ferreira, C.J.O.; Galen-kamp, N.S.; Silva, B.F.B.; Lundberg, D.; et al. Effects of Serum Incubation on Lipid Nanoparticle PEG Shedding, mRNA Retention, and Membrane Interactions. ACS Appl. Mater. Interfaces 2025, 17, 64219–64231. [Google Scholar] [CrossRef]
- Piperno, A.; Sciortino, M.T.; Giusto, E.; Montesi, M.; Panseri, S.; Scala, A. Recent Advances and Challenges in Gene Delivery Mediated by Polyester-Based Nanoparticles. Int. J. Nanomed. 2021, 16, 5981–6002. [Google Scholar] [CrossRef]
- Kumar, P.; Capasso Palmiero, U.; Kowalski, P.S. Engineering Biomaterials for Nucleic Acid-Based Therapies. In Biomaterials and Biopolymers; Domb, A., Mizrahi, B., Farah, S., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 95–117. [Google Scholar] [CrossRef]
- Casadidio, C.; Hartman, J.E.M.; Mesquita, B.S.; Haegebaert, R.; Remaut, K.; Neumann, M.; Hak, J.; Censi, R.; Di Mar-tino, P.; Hennink, W.E.; et al. Effect of Polyplex Size on Penetration into Tumor Spheroids. Mol Pharm. 2023, 20, 5515–5531. [Google Scholar] [CrossRef] [PubMed]
- Shtykalova, S.; Deviatkin, D.; Freund, S.; Egorova, A.; Kiselev, A. Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life 2023, 13, 903. [Google Scholar] [CrossRef]
- Haladjova, E.; Panseri, S.; Montesi, M.; Rossi, A.; Skandalis, A.; Pispas, S.; Rangelov, S. Influence of DNA Type on the Physicochemical and Biological Properties of Polyplexes Based on Star Polymers Bearing Different Amino Functionalities. Polymers 2023, 15, 894. [Google Scholar] [CrossRef]
- Wagner, E. Polymers for nucleic acid transfer-an overview. Adv. Genet. 2014, 88, 231–261. [Google Scholar]
- Kalam, M.A.; Khan, A.A.; Alshamsan, A. Non-invasive administration of biodegradable nano-carrier vaccines. Am. J. Transl. Res. 2017, 9, 15–35. [Google Scholar]
- Scholz, C.; Wagner, E. Therapeutic plasmid DNA versus siRNA delivery: Common and different tasks for synthetic carriers. J. Control. Release 2012, 161, 554–565. [Google Scholar] [CrossRef] [PubMed]
- Hafeez, M.N.; Celia, C.; Petrikaite, V. Challenges towards Targeted Drug Delivery in Cancer Nanomedicines. Processes 2021, 9, 1527. [Google Scholar] [CrossRef]
- Joubert, F.; Munson, M.J.; Sabirsh, A.; England, R.M.; Hemmerling, M.; Alexander, C.; Ashford, M.B. Precise and systematic end group chemistry modifications on PAMAM and poly(l-lysine) dendrimers to improve cytosolic delivery of mRNA. J. Control. Release 2023, 356, 580–594. [Google Scholar] [CrossRef]
- Ulkoski, D.; Scholz, C. Impact of Cationic Charge Density and PEGylated Poly(amino acid) Tercopolymer Architecture on Their Use as Gene Delivery Vehicles. Part 1: Synthesis, Self-Assembly, and DNA Complexation. Macromol. Biosci. 2018, 18, 1800108. [Google Scholar] [CrossRef]
- Wightman, L.; Kircheis, R.; Rössler, V.; Carotta, S.; Ruzicka, R.; Kursa, M.; Wagner, E. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med. 2001, 3, 362–372. [Google Scholar] [CrossRef]
- Mojarad-Jabali, S.; Farshbaf, M.; Hemmati, S.; Sarfraz, M.; Motasadizadeh, H.; Shahbazi Mojarrad, J.; Atyabi, F.; Dehghan Kelishady, P.; Nokhodchi, A. Comparison of three synthetic transferrin mimetic small peptides to promote the blood–brain barrier penetration of vincristine liposomes for improved glioma targeted therapy. Int. J. Pharm. 2022, 613, 121395. [Google Scholar] [CrossRef]
- Kang, M.S.; Kwon, M.; Jang, H.J.; Jeong, S.J.; Han, D.W.; Kim, K.S. Biosafety of inorganic nanomaterials for theranostic applications. Emergent Mater. 2022, 5, 1995–2029. [Google Scholar] [CrossRef]
- Akinc, A.; Langer, R. Measuring the pH environment of DNA delivered using nonviral vectors: Implications for lysosomal trafficking. Biotechnol. Bioeng. 2002, 78, 503–508. [Google Scholar] [CrossRef] [PubMed]
- Cordeiro, R.A.; Mendonça, P.V.; Coelho, J.; Faneca, H. Engineering silica-polymer hybrid nanosystems for dual drug and gene delivery. Biomater. Adv. 2022, 135, 212742. [Google Scholar] [CrossRef] [PubMed]
- Ren, W. Analysis of the role of RNA regulatory networks in cancer treatment: Mechanisms, applications and future prospects (Review). Mol. Clin. Oncol. 2025, 23, 114. [Google Scholar] [CrossRef]
- Lv, M.; Li, S.; Zhao, H.; Wang, K.; Chen, Q.; Guo, Z.; Liu, Z.; Xue, W. Redox-responsive hyperbranched poly(amido amine) and polymer dots as a vaccine delivery system for cancer immunotherapy. J. Mater. Chem. B 2017, 5, 9532–9545. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.P.; da Silva Santos, S.; da Silva, J.V.; Parise-Filho, R.; Igne Ferreira, E.; Seoud, O.E.; Giarolla, J. Dendrimers in the context of nanomedicine. Int. J. Pharm. 2020, 573, 118814. [Google Scholar] [CrossRef] [PubMed]
- Rui, Y.; Wilson, D.R.; Tzeng, S.Y.; Yamagata, H.M.; Sudhakar, D.; Conge, M.; Berlioz-Seux, C.A.; Kozielski, K.L.; Wober, J.; Green, J.J. High-throughput and high-content bioassay enables tuning of polyester nanoparticles for cellular uptake, endosomal escape, and systemic in vivo delivery of mRNA. Sci. Adv. 2022, 8, eabk2855. [Google Scholar] [CrossRef]
- Horn, J.M.; Obermeyer, A.C. Genetic and Covalent Protein Modification Strategies to Facilitate Intracellular Delivery. Biomacromolecules 2021, 22, 4883–4904. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, M.D.; Bambharoliya, K.; Tiwari, V.; Vaishnav, P.B.; Bhatt, D. Exploring the Influence of Nanotechnology on Medicinal Plants: Leveraging Nanoscale Marvels for Targeted Drug Delivery and Enhanced Therapeutic Efficacy. In Ethnopharmacology and OMICS Advances in Medicinal Plants Volume 2: Revealing the Secrets of Medicinal Plants; Nandave, M., Joshi, R., Upadhyay, J., Eds.; Springer Nature: Singapore, 2024; pp. 251–274. [Google Scholar] [CrossRef]
- Son, I.; Lee, Y.; Baek, J.; Park, M.; Han, D.; Min, S.K.; Lee, S.S.; Lee, H.i. pH-Responsive Amphiphilic Polyether Micelles with Superior Stability for Smart Drug Delivery. Biomacromolecules 2021, 22, 2043–2056. [Google Scholar] [CrossRef]
- Chang, K.L.; Higuchi, Y.; Kawakami, S.; Yamashita, F.; Hashida, M. Efficient Gene Transfection by Histidine-Modified Chitosan through Enhancement of Endosomal Escape. Bioconjug. Chem. 2010, 21, 1087–1095. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, Z.; Sun, L.; Lin, Y.; Yang, Y.; Cui, X.; Wang, C. Herb Polysaccharide-Based Drug Delivery System: Fabrication, Properties, and Applications for Immunotherapy. Pharmaceutics 2022, 14, 1703. [Google Scholar] [CrossRef]
- Ping, Y.; Hu, Q.; Tang, G.; Li, J. FGFR-targeted gene delivery mediated by supramolecular assembly between β-cyclodextrin-crosslinked PEI and redox-sensitive PEG. Biomaterials 2013, 34, 6482–6494. [Google Scholar] [CrossRef]
- Takeshita, F.; Minakuchi, Y.; Nagahara, S.; Honma, K.; Sasaki, H.; Hirai, K.; Teratani, T.; Namatame, N.; Yamamoto, Y.; Hanai, K.; et al. Efficient delivery of small interfering RNA to bone-metastatic tumors by using atelocollagen in vivo. Proc. Natl. Acad. Sci. USA 2005, 102, 12177–12182. [Google Scholar]
- Mendes, B.B.; Conniot, J.; Avital, A.; Yao, D.; Jiang, X.; Zhou, X.; Sharf-Pauker, N.; Xiao, Y.; Aber, O.; Satchi-Fainaro, R.; et al. Nanodelivery of nucleic acids. Nat. Rev. Methods Primer. 2022, 2, 24. [Google Scholar] [CrossRef]
- Hartmann, L.; Börner, H.G. Precision Polymers: Monodisperse, Monomer-Sequence-Defined Segments to Target Future Demands of Polymers in Medicine. Adv. Mater. 2009, 21, 3425–3431. [Google Scholar]
- Byun, M.J.; Lim, J.; Kim, S.N.; Park, D.H.; Kim, T.H.; Park, W.; Park, C.G. Advances in Nanoparticles for Effective Delivery of RNA Therapeutics. BioChip J. 2022, 16, 128–145. [Google Scholar] [CrossRef]
- Wang, Y.; Wagner, E. Non-Viral Targeted Nucleic Acid Delivery: Apply Sequences for Optimization. Pharmaceutics 2020, 12, 888. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, D.; Cao, J.; Zhao, F.; Feng, G.; Xu, C.; Liu, Z.; Zhang, W.; Zhang, Z. Development of high-throughput wet-chemical synthesis techniques for material research. Mater. Genome Eng. Adv. 2023, 1, e5. [Google Scholar] [CrossRef]
- Sung, Y.; Kim, S. Recent advances in the development of gene delivery systems. Biomater. Res. 2019, 23, 8. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qi, J.; Wang, J.; Hu, W.; Zhou, W.; Wang, Y.; Li, T. Nanoparticle technology for mRNA: Delivery strategy, clinical application and developmental landscape. Theranostics 2024, 14, 738–760. [Google Scholar] [CrossRef]
- Bus, T.; Englert, C.; Reifarth, M.; Borchers, P.; Hartlieb, M.; Vollrath, A.; Hoeppener, S.; Traeger, A.; Schubert, U.S. 3rd generation poly(ethylene imine)s for gene delivery. J. Mater. Chem. B 2017, 5, 1258–1274. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.J.; Kozielski, K.L.; Green, J.J. Exploring the role of polymer structure on intracellular nucleic acid delivery via polymeric nanoparticles. J. Control. Release 2015, 219, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.; Lächelt, U.; Bartek, J.; Wagner, E.; Moghimi, S.M. Polyplex Evolution: Understanding Biology, Optimizing Performance. Mol. Ther. 2017, 25, 1476–1490. [Google Scholar] [CrossRef]
- Floyd, T.G.; Song, J.I.; Hapeshi, A.; Laroque, S.; Hartlieb, M.; Perrier, S. Bottlebrush copolymers for gene delivery: Influence of architecture, charge density, and backbone length on transfection efficiency. J. Mater. Chem. B 2022, 10, 3696–3704. [Google Scholar] [CrossRef]
- Joshi, R.; Paliwal, T.; Sharma, S.; Kapoor, D.U.; Prajapati, B.G. Chitosan polyplexes for targeted gene delivery: From mechanisms to clinical applications. Carbohydr. Polym. 2025, 368, 124080. [Google Scholar] [CrossRef] [PubMed]
- Raup, A.; Stahlschmidt, U.; Jérôme, V.; Synatschke, C.V.; Müller, A.H.E.; Freitag, R. Influence of Polyplex Formation on the Performance of Star-Shaped Polycationic Transfection Agents for Mammalian Cells. Polymers 2016, 8, 224. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Jiang, Y.; Zhang, D.; Li, J.; Shen, Y.; Zhou, R. Role of Charge Density of Polycations in DNA Complexation and Condensation. Biomolecules 2025, 15, 983. [Google Scholar] [CrossRef]
- Supe, S.; Upadhya, A.; Dighe, V.; Singh, K. Development and Characterization of Modified Chitosan Lipopolyplex for an Effective siRNA Delivery. AAPS PharmSciTech 2024, 25, 13. [Google Scholar] [CrossRef] [PubMed]
- Grimme, C.J.; Hanson, M.G.; Corcoran, L.G.; Reineke, T.M. Polycation Architecture Affects Complexation and Delivery of Short Antisense Oligonucleotides: Micelleplexes Outperform Polyplexes. Biomacromolecules 2022, 23, 3257–3271. [Google Scholar] [CrossRef]
- Hagedorn, L.; Jürgens, D.C.; Merkel, O.M.; Winkeljann, B. Endosomal escape mechanisms of extracellular vesicle-based drug carriers: Lessons for lipid nanoparticle design. Extracell. Vesicles Circ. Nucleic. Acids 2024, 5, 344–357. [Google Scholar] [CrossRef]
- Wadhwa, A.; Aljabbari, A.; Lokras, A.; Foged, C.; Thakur, A. Opportunities and Challenges in the Delivery of mRNA-Based Vaccines. Pharmaceutics 2020, 12, 102. [Google Scholar] [CrossRef]
- Lechanteur, A.; Sanna, V.; Duchemin, A.; Evrard, B.; Mottet, D.; Piel, G. Cationic Liposomes Carrying siRNA: Impact of Lipid Composition on Physicochemical Properties, Cytotoxicity and Endosomal Escape. Nanomaterials 2018, 8, 270. [Google Scholar] [CrossRef]
- Schlich, M.; Palomba, R.; Costabile, G.; Mizrahy, S.; Pannuzzo, M.; Peer, D.; Decuzzi, P. Cytosolic delivery of nucleic acids: The case of ionizable lipid nanoparticles. Bioeng. Transl. Med. 2021, 6, e10213. [Google Scholar] [CrossRef]
- Jiang, Y.; Lu, Q.; Wang, Y.; Xu, E.; Ho, A.; Singh, P.; Wang, Y.; Jiang, Z.; Yang, F.; Peng, L.; et al. Quantitating Endosomal Escape of a Library of Polymers for mRNA Delivery. Nano Lett. 2020, 20, 1117–1123. [Google Scholar] [CrossRef]
- Dirisala, A.; Uchida, S.; Li, J.; Van Guyse, J.F.R.; Hayashi, K.; Vummaleti, S.V.C.; Bhattacharya, S.; Toh, K.; Walken-horst, M.; Fukushima, S.; et al. Effective mRNA Protection by Poly(l-ornithine) Synergizes with Endosomal Escape Functionality of a Charge-Conversion Polymer toward Maximizing mRNA Introduction Efficiency. Macromol. Rapid Commun. 2022, 43, 2100754. [Google Scholar] [CrossRef]
- Debus, H.; Beck-Broichsitter, M.; Kissel, T. Optimized preparation of pDNA/poly(ethylene imine) polyplexes using a microfluidic system. Lab Chip 2012, 12, 2498–2506. [Google Scholar]
- Protopapa, G.; Bono, N.; Visone, R.; D’Alessandro, F.; Rasponi, M.; Candiani, G. A new microfluidic platform for the highly reproducible preparation of non-viral gene delivery complexes. Lab Chip 2022, 23, 136–145. [Google Scholar] [CrossRef]
- Shepherd, S.J.; Warzecha, C.C.; Yadavali, S.; El-Mayta, R.; Alameh, M.G.; Wang, L.; Weissman, D.; Wilson, J.M.; Is-sadore, D.; Mitchell, M.J. Scalable mRNA and siRNA Lipid Nanoparticle Production Using a Parallelized Microfluidic Device. Nano Lett. 2021, 21, 5671–5680. [Google Scholar] [CrossRef]
- Hwang, Y.H.; Shepherd, S.J.; Kim, D.; Mukalel, A.J.; Mitchell, M.J.; Issadore, D.A.; Kim, J. Robust, Scalable Microfluidic Manufacturing of RNA–Lipid Nanoparticles Using Immobilized Antifouling Lubricant Coating. ACS Nano 2025, 19, 1090–1102. [Google Scholar]
- Feng, Z.; Nasu, M.; Devendra, G.; Abdul-Ghani, A.A.; Chan, O.T.M.; Borgia, J.A.; Bharat, A.; Bhardwaj, N.; Bhardwaj, P.; Fu, Y.X.; et al. Liquid biopsy diagnostics for non-small cell lung cancer via elucidation of tRNA signatures. Commun. Med. 2025, 5, 364. [Google Scholar] [CrossRef]
- Bao, Y.; Deng, Q.; Li, Y.; Zhou, S. Engineering docetaxel-loaded micelles for non-small cell lung cancer: A comparative study of microfluidic and bulk nanoparticle preparation. RSC Adv. 2018, 8, 31950–31966. [Google Scholar]
- Ghahremani, H.; Ourang, Z.; Izadidehkordi, S.; Zandi, S.; Ebadi, M.; Ebrahimzade, M. Paclitaxel-Loaded PBCA Nanoparticles for Targeted Drug Delivery in Ovarian Cancer. Asian Pac. J. Cancer Biol. 2025, 10, 679–687. [Google Scholar] [CrossRef]
- Gdowski, A.; Johnson, K.; Shah, S.; Gryczynski, I.; Vishwanatha, J.; Ranjan, A. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials. J. Nanobiotechnol. 2018, 16, 12. [Google Scholar]
- Yanez Arteta, M.; Kjellman, T.; Bartesaghi, S.; Wallin, S.; Wu, X.; Kvist, A.J.; Dabkowska, A.; Székely, N.; Radulescu, A.; Bergenholtz, J.; et al. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc. Natl. Acad. Sci. USA 2018, 115, E3351–E3360. [Google Scholar]
- Ouranidis, A.; Davidopoulou, C.; Tashi, R.K.; Kachrimanis, K. Pharma 4.0 Continuous mRNA Drug Products Manufacturing. Pharmaceutics 2021, 13, 1371. [Google Scholar] [CrossRef]
- Agrawal, S.; Stokes, A.L.; Nelson, C.E. Standardizing a Protocol for Streamlined Synthesis and Characterization of Lipid Nanoparticles to Enable Preclinical Research and Education. bioRxiv 2025. [Google Scholar] [CrossRef]
- Sun, M.; Dang, U.J.; Yuan, Y.; Psaras, A.M.; Osipitan, O.; Brooks, T.A.; Lu, F.; Di Bhatta, P. Optimization of DOTAP/chol Cationic Lipid Nanoparticles for mRNA, pDNA, and Oligonucleotide Delivery. AAPS PharmSciTech 2022, 23, 135. [Google Scholar] [PubMed]
- Kulkarni, J.A.; Thomson, S.B.; Zaifman, J.; Leung, J.; Wagner, P.K.; Hill, A.; Tam, Y.K.; Cullis, P.R.; Bhakta, V. Spontaneous, solvent-free entrapment of siRNA within lipid nanoparticles. Nanoscale 2020, 12, 23959–23966. [Google Scholar] [CrossRef]
- Evers, M.J.W.; Kulkarni, J.A.; van der Meel, R.; Cullis, P.R.; Vader, P.; Schiffelers, R.M. State-of-the-Art Design and Rapid-Mixing Production Techniques of Lipid Nanoparticles for Nucleic Acid Delivery. Small Methods 2018, 2, 1700375. [Google Scholar] [CrossRef]
- Lu, Z.R.; Shi, G.H. Nucleic Acid Delivery. Pharm. Res. 2023, 40, 1–2. [Google Scholar]
- Gilleron, J.; Querbes, W.; Zeigerer, A.; Borodovsky, A.; Marsico, G.; Schubert, U.; Manygoats, K.; Seifert, S.; Andree, C.; Stöter, M.; et al. Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 2013, 31, 638–646. [Google Scholar]
- Christianson, H.C.; Belting, M. Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol. 2014, 35, 51–55. [Google Scholar] [CrossRef]
- Park, H.; Kim, M.; Kim, H.J.; Lee, Y.; Seo, Y.; Pham, C.D.; Lee, J.H.; Byun, S.J.; Kwon, M.H. Heparan sulfate proteoglycans (HSPGs) and chondroitin sulfate proteoglycans (CSPGs) function as endocytic receptors for an internalizing anti-nucleic acid antibody. Sci. Rep. 2017, 7, 14373. [Google Scholar] [CrossRef]
- Beals, N.; Ramirez, C.; Hauser, A.; Davies, F.E.; Bar-Sagi, D.; Morgan, G.J. Macropinocytosis as a Means of Selectively Targeting RAS-Mutant Multiple Myeloma. Blood 2023, 142, 54. [Google Scholar] [CrossRef]
- Kranz, L.M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K.C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H.; et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016, 534, 396–401. [Google Scholar] [CrossRef]
- Iqbal, S.; Luo, B.; Melamed, J.R.; Day, E.S. Critical Evaluation of Different Lysosomal Labeling Methods Used to Analyze RNA Nanocarrier Trafficking in Cells. Bioconjug. Chem. 2021, 32, 2245–2256. [Google Scholar]
- Stea, D.M.; D’Alessio, A. Caveolae: Metabolic Platforms at the Crossroads of Health and Disease. Int. J. Mol. Sci. 2025, 26, 2918. [Google Scholar] [CrossRef]
- Brown, C.R.; Gupta, S.; Qin, J.; Racie, T.; He, G.; Lentini, S.; Malone, R.; Yu, M.; Matsuda, S.; Shulga-Morskaya, S.; et al. Investigating the pharmacodynamic durability of GalNAc–siRNA conjugates. Nucleic Acids Res. 2020, 48, 11827–11844. [Google Scholar]
- Sonawane, N.D.; Szoka, F.C.; Verkman, A.S. Chloride Accumulation and Swelling in Endosomes Enhances DNA Transfer by Polyamine-DNA Polyplexes *. J. Biol. Chem. 2003, 278, 44826–44831. [Google Scholar]
- Midoux, P.; Pichon, C.; Yaouanc, J.J.; Jaffrès, P.A. Chemical vectors for gene delivery: A current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br. J. Pharmacol. 2009, 157, 166–178. [Google Scholar] [CrossRef]
- Routkevitch, D.; Sudhakar, D.; Conge, M.; Varanasi, M.; Tzeng, S.Y.; Wilson, D.R.; Green, J.J. Efficiency of Cytosolic Delivery with Poly(β-amino ester) Nanoparticles is Dependent on the Effective p Ka of the Polymer. ACS Biomater. Sci. Eng. 2020, 6, 3411–3421. [Google Scholar] [CrossRef]
- Benjaminsen, R.V.; Mattebjerg, M.A.; Henriksen, J.R.; Moghimi, S.M.; Andresen, T.L. The Possible “Proton Sponge” Effect of Polyethylenimine (PEI) Does Not Include Change in Lysosomal pH. Mol. Ther. 2013, 21, 149–157. [Google Scholar] [CrossRef]
- Pei, D.; Buyanova, M. Overcoming Endosomal Entrapment in Drug Delivery. Bioconjug. Chem. 2019, 30, 273–283. [Google Scholar] [CrossRef]
- Karlsson, J.; Rhodes, K.R.; Green, J.J.; Tzeng, S.Y. Poly(beta-amino ester)s as gene delivery vehicles: Challenges and opportunities. Expert Opin. Drug Deliv. 2020, 17, 1395–1410. [Google Scholar] [CrossRef]
- Dowdy, S.F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 2017, 35, 222–229. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, Y.R.; Kim, M.; Choi, J.; Shin, S.; Kim, H.O. Charge-Complementary Polymersomes for Enhanced mRNA Delivery. Pharmaceutics 2023, 15, 2781. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Satapathy, S.R.; Dutta, T. Delivery Strategies for mRNA Vaccines. Pharm. Med. 2022, 36, 11–20. [Google Scholar] [CrossRef]
- Lange, A.; Mills, R.E.; Lange, C.J.; Stewart, M.; Devine, S.E.; Corbett, A.H. Classical Nuclear Localization Signals: Definition, Function, and Interaction with Importin α. J. Biol. Chem. 2007, 282, 5101–5105. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Lester, G.M.S.; Petishnok, L.C.; Dean, D.A. Cytoplasmic transport and nuclear import of plasmid DNA. Biosci. Rep. 2017, 37, BSR20160616. [Google Scholar] [CrossRef]
- Haraguchi, T.; Koujin, T.; Shindo, T.; Bilir, Ş.; Osakada, H.; Nishimura, K.; Tsuchiya, Y.; Arai, K.; Kimura, A.; Tomim-itsu, H.; et al. Transfected plasmid DNA is incorporated into the nucleus via nuclear envelope reformation at telophase. Commun. Biol. 2022, 5, 78. [Google Scholar] [CrossRef] [PubMed]
- Nimesh, S.; Halappanavar, S.; Kaushik, N.K.; Kumar, P. Advances in Gene Delivery Systems. BioMed Res. Int. 2015, 2015, 610342. [Google Scholar] [CrossRef]
- Yuan, Z.; Syrkin, G.; Adem, A.; Geha, R.; Pastoriza, J.; Vrikshajanani, C.; Smith, T.; Almodovar, J.; Bhuta, S.; Brown, J.M. Blockade of inhibitors of apoptosis (IAPs) in combination with tumor-targeted delivery of tumor necrosis factor-α leads to synergistic antitumor activity. Cancer Gene Ther. 2013, 20, 46–56. [Google Scholar] [CrossRef]
- Durymanov, M.; Reineke, J. Non-viral Delivery of Nucleic Acids: Insight into Mechanisms of Overcoming Intracellular Barriers. Front. Pharmacol. 2018, 9, 971. [Google Scholar] [CrossRef]
- Dean, D.A.; Strong, D.D.; Zimmer, W.E. Nuclear entry of nonviral vectors. Gene Ther. 2005, 12, 881–890. [Google Scholar] [CrossRef]
- Bogacheva, M.; Egorova, A.; Slita, A.; Maretina, M.; Baranov, V.; Kiselev, A. Arginine-rich cross-linking peptides with different SV40 nuclear localization signal content as vectors for intranuclear DNA delivery. Bioorg. Med. Chem. Lett. 2017, 27, 4781–4785. [Google Scholar] [CrossRef]
- Davis, M.E.; Zuckerman, J.E.; Choi, C.H.J.; Seligson, D.; Tolcher, A.; Alabi, C.A.; Yen, Y.; Heidel, J.D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010, 464, 1067–1070. [Google Scholar] [CrossRef]
- Zuckerman, J.E.; Gritli, I.; Tolcher, A.; Heidel, J.D.; Lim, D.; Morgan, R.; Chmielowski, B.; Ribas, A.; Davis, M.E.; Yen, Y. Correlating animal and human phase Ia/Ib clinical data with CALAA-01, a targeted, polymer-based nanoparticle containing siRNA. Proc. Natl. Acad. Sci. USA 2014, 111, 11449–11454. [Google Scholar] [CrossRef]
- Sajid, M.I.; Moazzam, M.; Kato, S.; Yeseom Cho, K.; Tiwari, R.K. Overcoming Barriers for siRNA Therapeutics: From Bench to Bedside. Pharmaceuticals 2020, 13, 294. [Google Scholar] [CrossRef]
- Maurya, N.; Meena, A.; Luqman, S. Harnessing the therapeutic potential of MicroRNAs and phytochemicals in modulating miRNA regulation during carcinogenesis. Biochem. Biophys. Res. Commun. 2025, 778, 152381. [Google Scholar] [CrossRef]
- Pandey, S.; Yadav, P. Exploring the therapeutic potential of microRNAs: Targeted gene regulation strategies for enhanced cancer therapy. J. Genet. Eng. Biotechnol. 2025, 23, 100556. [Google Scholar] [CrossRef]
- Williams, M.M.; Christenson, J.L.; O’Neill, K.I.; Hafeez, S.A.; Ihle, C.L.; Spoelstra, N.S.; Slansky, J.E.; Richer, J.K. MicroRNA-200c restoration reveals a cytokine profile to enhance M1 macrophage polarization in breast cancer. Npj Breast Cancer 2021, 7, 64. [Google Scholar] [CrossRef] [PubMed]
- Grandinetti, G.; Ingle, N.P.; Reineke, T.M. Interaction of poly(ethylenimine)-DNA polyplexes with mitochondria: Implications for a mechanism of cytotoxicity. Mol. Pharm. 2011, 8, 1709–1719. [Google Scholar] [CrossRef] [PubMed]
- Witten, J.; Hu, Y.; Langer, R.; Anderson, D.G. Recent advances in nanoparticulate RNA delivery systems. Proc. Natl. Acad. Sci. USA 2024, 121, e2307798120. [Google Scholar] [CrossRef]
- Suzuki, Y.; Ishihara, H. Difference in the lipid nanoparticle technology employed in three approved siRNA (Patisiran) and mRNA (COVID-19 vaccine) drugs. Drug Metab. Pharmacokinet. 2021, 41, 100424. [Google Scholar] [CrossRef]
- Behr, M.; Zhou, J.; Xu, B.; Zhang, H. In vivo delivery of CRISPR-Cas9 therapeutics: Progress and challenges. Acta Pharm. Sin. B 2021, 11, 2150–2171. [Google Scholar] [CrossRef] [PubMed]
- Bolsoni, J.; Liu, D.; Mohabatpour, F.; Ebner, R.; Sadhnani, G.; Tafech, B.; Klein, O.J.; Bhavsar, R.; Shaji, R.; Bhatt, K.; et al. Lipid Nanoparticle-Mediated Hit-and-Run Approaches Yield Efficient and Safe In Situ Gene Editing in Human Skin. ACS Nano 2023, 17, 22046–22059. [Google Scholar] [CrossRef] [PubMed]
- Nemunaitis, J.; Stanbery, L.; Walter, A.; Wallraven, G.; Nemunaitis, A.; Horvath, S.; Pappen, B.O.; Nowakowski, G.S.; Manning, L. Gemogenovatucel-T (Vigil): Bi-shRNA plasmid-based targeted immunotherapy. Future Oncol. 2024, 20, 2149–2164. [Google Scholar]
- Zhang, W.; Hu, M.; Cai, R.; Chen, C. Chemical and biophysical characteristics of protein corona in nanomedicine and its regulatory strategies. Chin. Sci. Bull. 2023, 68, 4328–4345. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, J.; Liu, J.; Ling, D.; Xia, J. Functional Assembly of Protein Fragments Induced by Spatial Confinement. PLoS ONE 2015, 10, e0122101. [Google Scholar]
- Azizi, M.; Jahanban-Esfahlan, R.; Samadian, H.; Hamidi, M.; Seidi, K.; Dolatshahi-Pirouz, A.; Ferreira, L.; Nabavinia, M.; Brouki Milan, P.; Mozaffarian, M. Multifunctional nanostructures: Intelligent design to overcome biological barriers. Mater. Today Bio. 2023, 20, 100672. [Google Scholar] [CrossRef]
- Chou, W.C.; Lin, Z. Impact of protein coronas on nanoparticle interactions with tissues and targeted delivery. Curr. Opin. Biotechnol. 2024, 85, 103046. [Google Scholar] [CrossRef]
- Cheng, Y.H.; He, C.; Riviere, J.E.; Monteiro-Riviere, N.A.; Lin, Z. Meta-Analysis of Nanoparticle Delivery to Tumors Using a Physiologically Based Pharmacokinetic Modeling and Simulation Approach. ACS Nano 2020, 14, 3075–3095. [Google Scholar] [CrossRef]
- Chen, B.M.; Cheng, T.L.; Roffler, S.R. Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies. ACS Nano 2021, 15, 14022–14048. [Google Scholar] [CrossRef]
- Casper, J.; Schenk, S.H.; Parhizkar, E.; Detampel, P.; Dehshahri, A.; Huwyler, J. Polyethylenimine (PEI) in gene therapy: Current status and clinical applications. J. Control. Release 2023, 362, 667–691. [Google Scholar] [CrossRef] [PubMed]
- Kozma, G.T.; Mészáros, T.; Vashegyi, I.; Fülöp, T.; Örfi, E.; Dézsi, L.; Rosivall, L.; Szebeni, J.; Szénási, G. Pseudo-anaphylaxis to Polyethylene Glycol (PEG)-Coated Liposomes: Roles of Anti-PEG IgM and Complement Activation in a Porcine Model of Human Infusion Reactions. ACS Nano 2019, 13, 9315–9324. [Google Scholar] [PubMed]
- Jeong, H.; Hwang, J.; Lee, H.; Hammond, P.T.; Choi, J.; Hong, J. In vitro blood cell viability profiling of polymers used in molecular assembly. Sci. Rep. 2017, 7, 9481. [Google Scholar] [CrossRef]
- Montague, S.J.; Patel, P.; Martin, E.M.; Slater, A.; Quintanilla, L.G.; Perrella, G.; Schoenwaelder, S.M.; Thomas, S.G.; Watson, S.P. Platelet activation by charged ligands and nanoparticles: Platelet glycoprotein receptors as pattern recognition receptors. Platelets 2021, 32, 1018–1030. [Google Scholar] [CrossRef]
- Fang, J.; Nakamura, H.; Maeda, H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011, 63, 136–151. [Google Scholar] [CrossRef]
- Sindhwani, S.; Syed, A.M.; Ngai, J.; Kingston, B.R.; Maiorino, L.; Rothschild, J.; MacMillan, P.; Zhang, Y.; Rajesh, N.U.; Hoang, T.; et al. The entry of nanoparticles into solid tumours. Nat. Mater. 2020, 19, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Belyaev, I.B.; Griaznova OYu Yaremenko, A.V.; Deyev, S.M.; Zelepukin, I.V. Beyond the EPR effect: Intravital microscopy analysis of nanoparticle drug delivery to tumors. Adv. Drug Deliv. Rev. 2025, 219, 115550. [Google Scholar] [CrossRef] [PubMed]
- Dolai, J.; Mandal, K.; Jana, N.R. Nanoparticle Size Effects in Biomedical Applications. ACS Appl. Nano Mater. 2021, 4, 6471–6496. [Google Scholar] [CrossRef]
- Chen, J.; Jiang, Z.; Zhang, Y.S.; Ding, J.; Chen, X. Smart transformable nanoparticles for enhanced tumor theranostics. Appl. Phys. Rev. 2021, 8, 041321. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, D.; Li, L.; Sun, K. Charge reversal nano-systems for tumor therapy. J. Nanobiotechnol. 2022, 20, 31. [Google Scholar] [CrossRef]
- Zhou, Q.; Hou, Y.; Zhang, L.; Wang, J.; Qiao, Y.; Guo, S.; Fan, L.; Yang, T.; Zhu, L.; Wu, H. Dual-pH Sensitive Charge-reversal Nanocomplex for Tumor-targeted Drug Delivery with Enhanced Anticancer Activity. Theranostics 2017, 7, 1806–1819. [Google Scholar]
- Golombek, S.K.; May, J.N.; Theek, B.; Appold, L.; Drude, N.; Kiessling, F.; Lammers, T. Tumor Targeting via EPR: Strategies to Enhance Patient Responses. Adv. Drug Deliv. Rev. 2018, 130, 17–38. [Google Scholar] [CrossRef]
- Pang, H.B.; Braun, G.B.; Friman, T.; Aza-Blanc, P.; Ruidiaz, M.E.; Sugahara, K.N.; Teesalu, T.; Ruoslahti, E. An endocytosis pathway initiated through neuropilin-1 and regulated by nutrient availability. Nat. Commun. 2014, 5, 4904. [Google Scholar] [CrossRef]
- McCartin, C.; Blumberger, J.; Dussouillez, C.; Fernandez de Larrinoa, P.; Dontenwill, M.; Herold-Mende, C.; Martin, S.; Bec, N.; Larroque, C.; Carré, M. Evaluation of the Cytotoxicity of Cationic Polymers on Glioblastoma Cancer Stem Cells. J. Funct. Biomater. 2022, 14, 17. [Google Scholar] [CrossRef]
- Dehkordi, A.A.; Mollazadeh, S.; Talaie, A.; Yazdimamaghani, M. Engineering PAMAM dendrimers for optimized drug delivery. Nano Trends 2025, 9, 100094. [Google Scholar] [CrossRef]
- Kafil, V.; Omidi, Y. Cytotoxic Impacts of Linear and Branched Polyethylenimine Nanostructures in A431 Cells. BioImpacts BI 2011, 1, 23–30. [Google Scholar] [PubMed]
- Alamos-Musre, S.; Beltrán-Chacana, D.; Moyano, J.; Márquez-Miranda, V.; Duarte, Y.; Miranda-Rojas, S.; González-Nilo, F.D.; Sánchez-Nieto, S. From Structure to Function: The Promise of PAMAM Dendrimers in Biomedical Applications. Pharmaceutics 2025, 17, 927. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, R.D.; Sill, M.W.; Davidson, S.A.; Muller, C.Y.; Bender, D.P.; DeBernardo, R.L.; Burger, R.A.; Tillmanns, T.D.; Partridge, E.E. A phase II trial of intraperitoneal EGEN-001, an IL-12 plasmid formulated with PEG–PEI–cholesterol lipopolymer in the treatment of persistent or recurrent epithelial ovarian, fallopian tube or primary peritoneal cancer: A Gynecologic Oncology Group study. Gynecol. Oncol. 2014, 133, 433–438. [Google Scholar] [CrossRef]
- Chen, Q.; Osada, K.; Ishii, T.; Oba, M.; Uchida, S.; Tockary, T.A.; Endo, T.; Ge, Z.; Kinoh, H.; Kano, M.R.; et al. Homo-catiomer integration into PEGylated polyplex micelle from block-catiomer for systemic anti-angiogenic gene therapy for fibrotic pancreatic tumors. Biomaterials 2012, 33, 4722–4730. [Google Scholar]
- Furugaki, K.; Cui, L.; Kunisawa, Y.; Osada, K.; Shinkai, K.; Tanaka, M.; Kataoka, K.; Nakano, K. Intraperitoneal Administration of a Tumor-Associated Antigen SART3, CD40L, and GM-CSF Gene-Loaded Polyplex Micelle Elicits a Vaccine Effect in Mouse Tumor Models. PLoS ONE 2014, 9, e101854. [Google Scholar]
- Cui, L.; Osada, K.; Imaizumi, A.; Kataoka, K.; Nakano, K. Feasibility of a subcutaneously administered block/homo-mixed polyplex micelle as a carrier for DNA vaccination in a mouse tumor model. J. Control. Release 2015, 206, 220–231. [Google Scholar]
- Piña, M.J.; Girotti, A.; Santos, M.; Rodríguez-Cabello, J.C.; Arias, F.J. Biocompatible ELR-Based Polyplexes Coated with MUC1 Specific Aptamers and Targeted for Breast Cancer Gene Therapy. Mol. Pharm. 2016, 13, 795–808. [Google Scholar] [CrossRef]
- Ye, Z.; Abdelmoaty, M.M.; Ambardekar, V.V.; Curran, S.M.; Dyavar, S.R.; Arnold, L.L.; Cohen, S.M.; Kumar, D.; Al-nouti, Y.; Coulter, D.W. Preliminary preclinical study of Chol-DsiRNA polyplexes formed with PLL [30]-PEG [5K] for the RNAi-based therapy of breast cancer. Nanomed. Nanotechnol. Biol. Med. 2021, 33, 102363. [Google Scholar]
- Gao, X.; Jin, Z.; Tan, X.; Zhang, C.; Zou, C.; Zhang, W.; Ding, J.; Das, B.C.; Severinov, K.; Hitzeroth, I.I.; et al. Hyperbranched poly(β-amino ester) based polyplex nanopaticles for delivery of CRISPR/Cas9 system and treatment of HPV infection associated cervical cancer. J. Control. Release 2020, 321, 654–668. [Google Scholar]
- Tsai, S.J.; Andorko, J.I.; Zeng, X.; Gammon, J.M.; Jewell, C.M. Polyplex interaction strength as a driver of potency during cancer immunotherapy. Nano Res. 2018, 11, 5642–5656. [Google Scholar] [CrossRef]
- Husseini, R.A.; Fukuta, T.; Ozono, M.; Hasan, A.A.; Megrab, N.A.E.; Kogure, K. The Effect of Iontophoretic-Delivered Polyplex Vaccine on Melanoma Regression. Biol. Pharm. Bull. 2023, 46, 494–504. [Google Scholar] [CrossRef] [PubMed]
- Abbasi Dezfouli, S.; Rajendran, A.P.; Claerhout, J.; Uludag, H. Designing Nanomedicines for Breast Cancer Therapy. Biomolecules 2023, 13, 1559. [Google Scholar] [CrossRef] [PubMed]
- Abourbeh, G.; Shir, A.; Mishani, E.; Ogris, M.; Rödl, W.; Wagner, E.; Levitzki, A. PolyIC GE11 polyplex inhibits EGFR-overexpressing tumors. IUBMB Life 2012, 64, 324–330. [Google Scholar] [CrossRef]
- Shah, H.; Schlüter, S.; Amin, M.U.; Abu Dayyih, A.; Engelhardt, K.H.; Pinnapireddy, S.R.; Jedelská, J.; Bakowsky, U. In Vitro Photoselective Gene Transfection of Hepatocellular Carcinoma Cells with Hypericin Lipopolyplexes. ACS Appl. Mater. Interfaces 2024, 16, 43416–43429. [Google Scholar] [CrossRef] [PubMed]
- Burks, J.; Nadella, S.; Mahmud, A.; Mankongpaisarnrung, C.; Wang, J.; Hahm, J.I.; Beers, M.F.; De Bhowmick, S.K.; Smith, J.P. Cholecystokinin Receptor-Targeted Polyplex Nanoparticle Inhibits Growth and Metastasis of Pancreatic Cancer. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 17–32. [Google Scholar] [CrossRef]
- Wang, D.; Wang, T.; Liu, J.; Yu, H.; Jiao, S.; Feng, B.; Zhou, F.; Fu, Y.; Yin, Q.; Zhang, P.; et al. Acid-Activatable Versatile Micelleplexes for PD-L1 Blockade-Enhanced Cancer Photodynamic Immunotherapy. Nano Lett. 2016, 16, 5503–5513. [Google Scholar]
- Leng, Q.; Scaria, P.; Lu, P.; Woodle, M.C.; Mixson, A.J. Systemic delivery of HK Raf-1 siRNA polyplexes inhibits MDA-MB-435 xenografts. Cancer Gene Ther. 2008, 15, 485–495. [Google Scholar] [CrossRef]
- Silva, I.; Domingues, C.; Jarak, I.; Carvalho, R.A.; Cordeiro, R.A.; Dourado, M.; Figueiras, A.; Veiga, F.; Paiva-Santos, A.C. Novel Non-Viral Vectors Based on Pluronic® F68PEI with Application in Oncology Field. Polymers 2022, 14, 5315. [Google Scholar]
- Raik, S.V.; Mashel, T.V.; Muslimov, A.R.; Epifanovskaya, O.S.; Trofimov, M.A.; Poshina, D.N.; Skorik, Y.A. N-[4-(N,N,N-Trimethylammonium)Benzyl]Chitosan Chloride as a Gene Carrier: The Influence of Polyplex Composition and Cell Type. Materials 2021, 14, 2467. [Google Scholar]
- Sirsi, S.R.; Hernandez, S.L.; Zielinski, L.; Blomback, H.; Koubaa, A.; Synder, M.; Homma, S.; Bhattacharya, J.Y.; Bhattacharya, S. Polyplex-microbubble hybrids for ultrasound-guided plasmid DNA delivery to solid tumors. J. Control. Release 2012, 157, 224–234. [Google Scholar]
- Siefker-Radtke, A.; Zhang, X.; Guo, C.C.; Shen, Y.; Pirollo, K.F.; Sabir, S.; Leung, C.; Leong-Wu, C.; Ling, C.M.; Chang, E.H.; et al. A Phase l Study of a Tumor-targeted Systemic Nanodelivery System, SGT-94, in Genitourinary Cancers. Mol. Ther. 2016, 24, 1484–1491. [Google Scholar] [CrossRef]
- Lu, C.; Stewart, D.J.; Lee, J.J.; Ji, L.; Ramesh, R.; Jayachandran, G.; Nunez, M.I.; Wistuba, I.I.; Erasmus, J.J.; Hicks, M.E.; et al. Phase I Clinical Trial of Systemically Administered TUSC2(FUS1)-Nanoparticles Mediating Functional Gene Transfer in Humans. PLoS ONE 2012, 7, e34833. [Google Scholar] [CrossRef]
- Swetha, K.; Kotla, N.G.; Tunki, L.; Jayaraj, A.; Bhargava, S.K.; Hu, H.; Bonam, S.R.; Kurapati, R. Recent Advances in the Lipid Nanoparticle-Mediated Delivery of mRNA Vaccines. Vaccines 2023, 11, 658. [Google Scholar]



| Polymer | Size (nm) | ζ-Potential (mV) | Endosomal Escape | Biodegradable | Toxicity | Key Limitations |
|---|---|---|---|---|---|---|
| PEI (branched, 25 kDa) | 50–200 | +25 to +40 | Excellent | No | High | Mitochondrial toxicity; accumulation |
| PLL | 80–300 | +20 to +35 | Poor | Yes | Moderate | Requires endosomolytic agents |
| PAMAM (G5–G7) | 100–250 | +15 to +30 | Good | Moderate | Moderate-High | Cost; generation-dependent toxicity |
| PBAE | 100–300 | +10 to +25 | Good | Excellent | Low | Batch variability; storage instability |
| Chitosan | 150–400 | +5 to +20 | Moderate | Excellent | Low | pH-dependent solubility |
| Sequence-defined | 50–150 | Tunable | Tunable | Tunable | Low | Synthetic complexity; cost |
| Parameter | Bulk Mixing | Microfluidic Assembly |
|---|---|---|
| Operational complexity | Simple; minimal equipment | Requires specialized devices and pumps |
| Polydispersity index (PDI) | 0.2–0.4 (typical) | <0.1 (optimized systems) |
| Batch reproducibility | Variable; operator-dependent | High; defined by device geometry |
| Size tunability | Limited; primarily via formulation | Adjustable via flow rate ratios |
| Scalability | Direct scale-up challenging | Parallelization strategies available |
| GMP compatibility | Requires extensive validation | Compatible with PAT and continuous manufacturing |
| Cargo compatibility | Suitable for all nucleic acids | May require optimization for sensitive cargos |
| Evidence for superior efficacy | Established preclinical track record | Manufacturing advantages clear; efficacy advantage unproven |
| Parameter | Toxicity Mechanism | Quantitative Data | Mitigation Strategy | Reference |
|---|---|---|---|---|
| Molecular Weight | Higher MW → stronger multivalent membrane binding, greater mitochondrial accumulation, reduced renal clearance, prolonged tissue exposure | IC50: 25 kDa PEI = 5–20 μg/mL vs. 2 kDa PEI = 50–200 μg/mL (~10-fold difference) | Crosslink low-MW polymers via biodegradable bonds; use high-MW at reduced doses with targeting ligands | [123,136] |
| Architecture | Branched > linear toxicity at equivalent MW; higher local charge density at branch points; greater primary amine proportion; globular conformation concentrates surface charge | PAMAM dendrimers: G5 > G4 > G3 toxicity, correlating with surface amine count | Partial acetylation or hydroxylation of surface amines; linear polymer variants | [137,138] |
| Biodegradability | Non-degradable polymers (PEI, high-gen PAMAM) resist enzymatic degradation; accumulate in liver, kidney, spleen over weeks–months; trigger chronic inflammation and fibrosis | Fluorescent tracking: PEI persistence for weeks–months post-administration | Cleavable linkages: ester (PBAEs), disulfide (bioreducible), acetal/ketal (pH-sensitive), peptide bonds | [139,140] |
| Polyplex System | Cargo | Cancer Type | Key Findings | Reference |
|---|---|---|---|---|
| PEG-PAsp(DET) block/homo polyplex micelles | sFlt-1 mRNA | Pancreatic adenocarcinoma | Enhanced transfection with H integration; significant tumor suppression via anti-angiogenic effect | [141] |
| Block/homo polyplex micelles | SART3 + CD40L + GM-CSF pDNA | Solid tumors (peritoneal/s.c.) | DC activation; CD4+/CD8+ T cell infiltration; T cell-dependent antitumor efficacy | [142] |
| Mixed polyplex micelles | SART3 + CD40L pDNA | CT26 colon carcinoma | Subcutaneous tumor size reduction via DNA vaccine approach | [143] |
| ELR-MUC1 aptamer polyplexes | pDNA | Breast cancer | Self-assembling; MUC1-targeted; selective tumor cell delivery | [144] |
| PLL-PEG/Chol-DsiRNA | STAT3 siRNA | Breast cancer | Therapeutic activity in early-stage tumors; Phase I candidate | [145] |
| hPPCs/PBAE NPs | CRISPR/Cas9 (HPV E7) | Cervical cancer (HPV+) | E7 oncogene cleavage; tumor inhibition in SiHa/HeLa cells and xenografts | [146] |
| PBAE polyplexes | CpG ODN | Melanoma | Dose-dependent DC uptake; improved survival; reduced tumor burden (N:P 1:5 optimal) | [147] |
| PEG/FA-PEI-PCL | miR-210 | Breast cancer (MDA-MB-231) | FA-targeted; 3-layer structure; tumor growth inhibition; enhanced miR-210 expression | [3] |
| mPEG-pDMAEMA | pDNA (~162 nm)/siRNA (~25 nm) | Ovarian cancer spheroids | siRNA polyplexes penetrated deeper than pDNA; ~50% gene silencing; size-dependent distribution | [18] |
| gp100-RRRR/CpG-ODN polyplex | Peptide vaccine + adjuvant | Melanoma | Iontophoretic delivery; tumor regression; IFN-γ↑; CD8+ infiltration; prophylactic + therapeutic | [148] |
| PEI-GA-Lau7 | Survivin siRNA | Breast cancer (MDA-MB-231) | ~95% uptake; >90% gene silencing; up to 98% cell death | [149] |
| PEI-PEG-GE11 | polyIC | EGFR+ tumors | EGFR-targeted without receptor activation; submicromolar affinity; potent antitumor effects | [150] |
| Hypericin lipopolyplexes | pDNA (luciferase) | Hepatocellular carcinoma | Light-triggered (587 nm); 60–75× transfection increase; PCI-enhanced endosomal escape | [151] |
| CCK-BR-targeted PEG-PLL | KRAS G12D siRNA | Pancreatic cancer | Halted PanIN progression; reduced fibrosis/M2 macrophages; improved survival; no off-target toxicity | [152] |
| PCX-cholesterol polyplexes | NCOA3 siRNA + CXCR4 antagonist | Pancreatic cancer | Dual function; NCOA3 silencing + CXCR4 blockade; reduced metastasis; improved perfusion | [153] |
| H3K(+H)4b HK peptide | Raf-1 siRNA | MDA-MB-435 xenografts | ~50% tumor reduction (3× IV); decreased Raf-1; increased apoptosis; minimal normal tissue toxicity | [154] |
| F68-PEI polyplexes | pDNA | Oral cancer (SCC-9) | Pluronic-modified; <200 nm with F68 doping; outperformed 25 kDa PEI; best for local delivery | [155] |
| TMAB-chitosan | pDNA | HEK293T/K562 | 30–35% transfection (HEK293T); low cytotoxicity; potential for ex vivo applications | [156] |
| PEI-microbubble hybrids | pDNA (luciferase) | SKNEP-1 kidney tumors | Ultrasound-triggered; >10× in vivo bioluminescence; >40× ex vivo luciferase vs. controls | [157] |
| Agent | Phase | Cargo/Target | Cancer Type | N | Key Outcomes | Reference |
|---|---|---|---|---|---|---|
| CALAA-01 | Ia/Ib | siRNA targeting RRM2; Tf-targeted cyclodextrin polymer | Solid tumors (melanoma) | 24 | RNAi mechanism confirmed (mRNA cleavage); dose-dependent tumor accumulation; no objective responses; DLTs at higher doses (fatigue, hypersensitivity) | [106] |
| EGEN-001 | II | IL-12 pDNA; PEG-PEI-cholesterol lipopolymer | Platinum-resistant ovarian cancer | 20 | IP delivery; 0% objective response; 35% stable disease; median PFS 2.9 mo, OS 9.2 mo; manageable toxicity (fatigue, fever, chills) | [140] |
| SGT-94 | I | RB94 pDNA; anti-TfR scFv-targeted liposome | Metastatic genitourinary cancers | 11 | 1 CR (durable), 1 PR, SD; tumor-selective gene delivery confirmed; well tolerated; no DLTs up to 2.4 mg DNA | [158] |
| DOTAP:Chol-TUSC2 | I | TUSC2 (FUS1) pDNA; DOTAP:cholesterol lipoplex | Metastatic lung cancer | 31 | MTD 0.06 mg/kg; gene transfer confirmed (7/8 biopsies); 5 SD (2.6–10.8 mo); 2 minor regressions; DLTs: hypophosphatemia | [159] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Volovat, S.R.; Augustin, I.G.; Volovat, C.; Vasilache, I.; Ostafe, M.; Panaite, D.I.; Burlacu, A.; Volovat, C.C. Rewriting Tumor Entry Rules: Microfluidic Polyplexes and Tumor-Penetrating Strategies—A Literature Review. Pharmaceutics 2026, 18, 84. https://doi.org/10.3390/pharmaceutics18010084
Volovat SR, Augustin IG, Volovat C, Vasilache I, Ostafe M, Panaite DI, Burlacu A, Volovat CC. Rewriting Tumor Entry Rules: Microfluidic Polyplexes and Tumor-Penetrating Strategies—A Literature Review. Pharmaceutics. 2026; 18(1):84. https://doi.org/10.3390/pharmaceutics18010084
Chicago/Turabian StyleVolovat, Simona Ruxandra, Iolanda Georgiana Augustin, Constantin Volovat, Ingrid Vasilache, Madalina Ostafe, Diana Ioana Panaite, Alin Burlacu, and Cristian Constantin Volovat. 2026. "Rewriting Tumor Entry Rules: Microfluidic Polyplexes and Tumor-Penetrating Strategies—A Literature Review" Pharmaceutics 18, no. 1: 84. https://doi.org/10.3390/pharmaceutics18010084
APA StyleVolovat, S. R., Augustin, I. G., Volovat, C., Vasilache, I., Ostafe, M., Panaite, D. I., Burlacu, A., & Volovat, C. C. (2026). Rewriting Tumor Entry Rules: Microfluidic Polyplexes and Tumor-Penetrating Strategies—A Literature Review. Pharmaceutics, 18(1), 84. https://doi.org/10.3390/pharmaceutics18010084

