Optimization of Gene Gun-Mediated Transient Transformation and Explant Suitability in Coconut
Abstract
1. Introduction
2. Results
2.1. Selection of Reporter Genes
2.2. Optimization of Gene Gun Parameters
2.3. Selection of Explant Type
2.3.1. Callus
2.3.2. Zygotic Embryos
2.3.3. Rachilla
2.3.4. Leaves
3. Discussion
3.1. Evaluation of Reporter Genes for Transient Detection in Coconut Transformation
3.2. Explant Transformation Potential
3.3. Constraints on Transformation
4. Materials and Methods
4.1. Plant Materials
4.2. Strains and Plasmids
4.3. Gene Gun-Mediated Transient Genetic Transformation
4.4. Pre-Treatment of the Hyperosmotic Medium and Post-Bombardment Recovery
4.5. Determination of GFP Fluorescence
4.6. GUS Assay
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PDS | Phytoene desaturase |
| CRISPR | Clustered regularly interspaced short palindromic repeats |
| GFP | Green fluorescent protein |
| GUS | β-glucuronidase |
| UBQ | Ubiquitin |
| SD | Standard deviation |
| LSD | Least significant difference |
| X-Gluc | 5-bromo-4-chloro-3-indolyl β-D-glucuronide |
| 2,4-D | 2,4-Dichlorophenoxyacetic acid) |
References
- Pham, L.J. Coconut (Cocos nucifera). In Industrial Oil Crops; McKeon, T.A., Hayes, D.G., Hildebrand, D.F., Weselake, R.J., Eds.; AOCS Press: Urbana, IL, USA, 2016; pp. 231–242. ISBN 978-1-893997-98-1. [Google Scholar]
- Ratnambal, M.J. Coconut Cultivars and Hybrids; Central Plantation Crops Research Institute (CPCRI): Kasaragod, India, 2001. [Google Scholar]
- Thomas, R.J.; Shareefa, M.; Nair, R.V. Varietal Resistance in Coconut. In The Coconut Palm (Cocos nucifera L.)-Research and Development Perspectives; Krishnakumar, V., Thampan, P.K., Nair, M.A., Eds.; Springer: Singapore, 2018; pp. 157–190. ISBN 978-981-13-2753-7. [Google Scholar]
- Arhin, L.; Abdullah, S.N.A.; Jaafar, J.N.; Izan Ramlee, S.I. Conventional and Modern Breeding Technologies for Improving Dwarf Coconut Cultivars: A Review. J. Hortic. Sci. Biotechnol. 2023, 98, 551–562. [Google Scholar] [CrossRef]
- Ramesh, S.V.; Josephrajkumar, A.; Babu, M.; Prathibha, V.H.; Aparna, V.; Muralikrishna, K.S.; Hegde, V.; Rajesh, M.K. Genomic Designing for Biotic Stress Resistance in Coconut. In Genomic Designing for Biotic Stress Resistant Technical Crops; Kole, C., Ed.; Springer: Cham, Switzerland, 2022; pp. 115–157. ISBN 978-3-031-09292-3. [Google Scholar]
- Nanditha, R.J.; Ravi, C.S. Breeding for Biotic and Abiotic Stresses in Coconut (Cocos nucifera L.). Just Agric. 2023, 3, 48–54. [Google Scholar]
- Abdullah, S.N.A.; Hatta, M.A.M. The Application of CRISPR Technology for Functional Genomics in Oil Palm and Coconut. In CRISPR and Plant Functional Genomics; CRC Press: Boca Raton, FL, USA, 2024; pp. 313–331. [Google Scholar]
- Batool, S.; Li, Z.; Zhang, D.; Shi, P.; Htwe, Y.M.; Nie, H.; Ma, M.; Su, H.; Fang, X.; Ahmed, M.A. PEG-Mediated Transformation and CRISPR/Cas9 Gene Editing of CnPDS in Coconut Protoplast. Ind. Crops Prod. 2025, 235, 121674. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, W.; Mao, J.; Chen, R.; Xu, R.; Wang, Y.; Song, R.; Lao, Z.; Yang, Z.; Mu, Z.; et al. Genetic Characterization of SWEET Genes in Coconut Palm. Plants 2025, 14, 686. [Google Scholar] [CrossRef]
- Kalaipandian, S.; Mu, Z.; Kong, E.Y.Y.; Biddle, J.; Cave, R.; Bazrafshan, A.; Wijayabandara, K.; Beveridge, F.C.; Nguyen, Q.; Adkins, S.W. Cloning Coconut via Somatic Embryogenesis: A Review of the Current Status and Future Prospects. Plants 2021, 10, 2050. [Google Scholar] [CrossRef]
- Verdeil, J.-L.; Huet, C.; Grosdemange, F.; Buffard-Morel, J. Plant Regeneration from Cultured Immature Inflorescences of Coconut (Cocos nucifera L.): Evidence for Somatic Embryogenesis. Plant Cell Rep. 1994, 13, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.L.; Saénz, L.; Talavera, C.; Hornung, R.; Robert, M.; Oropeza, C. Regeneration of Coconut (Cocos nucifera L.) from Plumule Explants through Somatic Embryogenesis. Plant Cell Rep. 1998, 17, 515–521. [Google Scholar] [CrossRef]
- Perera, P.I.P.; Hocher, V.; Verdeil, J.L.; Doulbeau, S.; Yakandawala, D.M.D.; Weerakoon, L.K. Unfertilized Ovary: A Novel Explant for Coconut (Cocos nucifera L.) Somatic Embryogenesis. Plant Cell Rep. 2007, 26, 21–28. [Google Scholar] [CrossRef]
- Sandoval-Cancino, G.; Sáenz, L.; Chan, J.L.; Oropeza, C. Improved Formation of Embryogenic Callus from Coconut Immature Inflorescence Explants. In Vitro Cell. Dev. Biol.-Plant 2016, 52, 367–378. [Google Scholar] [CrossRef]
- Andrade-Torres, A.; Oropeza, C.; Sáenz, L.; González-Estrada, T.; Ramírez-Benítez, J.; Becerril, K.; Chan, J.; Rodríguez-Zapata, L. Transient Genetic Transformation of Embryogenic Callus of Cocos nucifera. Biologia 2011, 66, 790–800. [Google Scholar] [CrossRef]
- Wang, P.; Si, H.; Li, C.; Xu, Z.; Guo, H.; Jin, S.; Cheng, H. Plant Genetic Transformation: Achievements, Current Status and Future Prospects. Plant Biotechnol. J. 2025, 23, 2034–2058. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Z.; Htwe, Y.M.; Shi, P.; Wei, X.; Nie, H.; Nin, J.; Wu, L.; Khan, F.S.; Yu, Q. Insights into the Developmental Trajectories of Zygotic Embryo, Embryogenic Callus and Somatic Embryo in Coconut by Single-Cell Transcriptomic Analysis. Ind. Crops Prod. 2024, 212, 118338. [Google Scholar] [CrossRef]
- Zhou, L.; Zeng, X.; Yang, Y.; Li, R.; Zhao, Z. Applications and Prospects of CRISPR/Cas9 Technology in the Breeding of Major Tropical Crops. Plants 2024, 13, 3388. [Google Scholar] [CrossRef]
- Yu, J.; Deng, S.; Huang, H.; Mo, J.; Xu, Z.-F.; Wang, Y. Exploring the Potential Applications of the Noninvasive Reporter Gene RUBY in Plant Genetic Transformation. Forests 2023, 14, 637. [Google Scholar] [CrossRef]
- Hu, Z.; Shen, S.; Zhang, X. Unlocking the Potential of the RUBY Reporter System: How to Address Its Challenges in Plant-Environment Interaction Research? Plant Cell Environ. 2025, 48, 5250–5253. [Google Scholar] [CrossRef]
- Anbu, P.; Arul, L. Beta Glucuronidase Activity in Early Stages of Rice Seedlings and Callus—A Comparison with Escherichia coli Beta Glucuronidase Expressed in the Transgenic Rice. Glob. J. Cell. Mol. Biol. 2013, 1, 61–68. [Google Scholar]
- Fior, S.; Gerola, P.D. Impact of Ubiquitous Inhibitors on the GUS Gene Reporter System: Evidence from the Model Plants Arabidopsis, Tobacco and Rice and Correction Methods for Quantitative Assays of Transgenic and Endogenous GUS. Plant Methods 2009, 5, 19. [Google Scholar] [CrossRef] [PubMed]
- Parveez, G.K.A.; Chowdhury, M.K.U.; Saleh, N.M. Biological Parameters Affecting Transient GUS Gene Expression in Oil Palm (Elaeis Guineensis Jacq.) Embryogenic Calli via Microprojectile Bombardment. Ind. Crops Prod. 1998, 8, 17–27. [Google Scholar] [CrossRef]
- Nguyen, Q.T.; Bandupriya, H.D.D.; López-Villalobos, A.; Sisunandar, S.; Foale, M.; Adkins, S.W. Tissue Culture and Associated Biotechnological Interventions for the Improvement of Coconut (Cocos nucifera L.): A Review. Planta 2015, 242, 1059–1076. [Google Scholar] [CrossRef]
- Sáenz, L.; Azpeitia, A.; Chuc-Armendariz, B.; Chan, J.L.; Verdeil, J.-L.; Hocher, V.; Oropeza, C. Morphological and Histological Changes during Somatic Embryo Formation from Coconut Plumule Explants. In Vitro Cell. Dev. Biol.-Plant 2006, 42, 19–25. [Google Scholar] [CrossRef]
- Jayaraj, K.L.; Bhavyashree, U.; Fayas, T.P.; Sajini, K.K.; Rajesh, M.K.; Karun, A. Histological Studies of Cellular Differentiation during Somatic Embryogenesis of Coconut Plumule-Derived Calli. J. Plant. Crops 2015, 43, 196–203. [Google Scholar] [CrossRef]
- Kong, E.Y.Y.; Biddle, J.; Kalaipandian, S.; Adkins, S.W. Coconut Callus Initiation for Cell Suspension Culture. Plants 2023, 12, 968. [Google Scholar] [CrossRef]
- Amritha, K.T.K.; Muralikrishna, K.S.; Habeeb, J.; Chandran, K.P.; Paulraj, S.; Rajesh, M.K. 5-Azacytidine promotes the induction of embryogenic calli and somatic embryos from transverse thin cell layer (tTCL) cultures in coconut. Chil. J. Agric. Res. 2025, 85, 77–87. [Google Scholar] [CrossRef]
- Verdeil, J.L.; Hocher, V.; Huet, C.; Grosdemange, F.; Escoute, J.; Ferrière, N.; Nicole, M. Ultrastructural Changes in Coconut Calli Associated with the Acquisition of Embryogenic Competence. Ann. Bot. 2001, 88, 9–18. [Google Scholar] [CrossRef]
- Karunaratne, S.; Periyapperuma, K. Culture of Immature Embryos of Coconut, Cocos nucifera L: Callus Proliferation and Somatic Embryogenesis. Plant Sci. 1989, 62, 247–253. [Google Scholar] [CrossRef]
- Mu, Z.; Tran, B.-M.; Wang, X.; Yang, S.; Pham, T.T.-T.; Le, M.-A.; Indrachapa, M.T.N.; Nguyen, P.T.; Luo, J. Optimized In Vitro Method for Conservation and Exchange of Zygotic Embryos of Makapuno Coconut (Cocos nucifera). Horticulturae 2025, 11, 816. [Google Scholar] [CrossRef]
- Chakraborty, N.; Chakraborty, P.; Sen, M.; Bandopadhyay, R. Choice of Explant for Plant Genetic Transformation. In Biolistic DNA Delivery in Plants; Rustgi, S., Luo, H., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2020; Volume 2124, pp. 107–123. ISBN 978-1-0716-0355-0. [Google Scholar]
- Ozyigit, I.I.; Yucebilgili Kurtoglu, K. Particle Bombardment Technology and Its Applications in Plants. Mol. Biol. Rep. 2020, 47, 9831–9847. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Shi, P.; Htwe, Y.M.; Li, Z.; Ihase, L.O.; Mason, A.S.; Sun, X.; Xiao, Y.; Wang, Y. Caffeate May Play an Important Role in the Somatic Embryogenesis of Oil Palm (Elaeis guineensis Jacq.). Ind. Crops Prod. 2021, 174, 114143. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Ma, M.; Su, H.; Nie, H.; Fang, X.; Rauf, S.; Batool, S.; Htwe, Y.M.; Zhang, D.; Shi, P.; Li, Z.; et al. Optimization of Gene Gun-Mediated Transient Transformation and Explant Suitability in Coconut. Plants 2026, 15, 150. https://doi.org/10.3390/plants15010150
Ma M, Su H, Nie H, Fang X, Rauf S, Batool S, Htwe YM, Zhang D, Shi P, Li Z, et al. Optimization of Gene Gun-Mediated Transient Transformation and Explant Suitability in Coconut. Plants. 2026; 15(1):150. https://doi.org/10.3390/plants15010150
Chicago/Turabian StyleMa, Mingjun, Hanlu Su, Hao Nie, Xiaomeng Fang, Saeed Rauf, Saira Batool, Yin Min Htwe, Dapeng Zhang, Peng Shi, Zhiying Li, and et al. 2026. "Optimization of Gene Gun-Mediated Transient Transformation and Explant Suitability in Coconut" Plants 15, no. 1: 150. https://doi.org/10.3390/plants15010150
APA StyleMa, M., Su, H., Nie, H., Fang, X., Rauf, S., Batool, S., Htwe, Y. M., Zhang, D., Shi, P., Li, Z., Yu, Q., He, X., & Wang, Y. (2026). Optimization of Gene Gun-Mediated Transient Transformation and Explant Suitability in Coconut. Plants, 15(1), 150. https://doi.org/10.3390/plants15010150

