Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,874)

Search Parameters:
Keywords = plants transcription

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7865 KiB  
Article
FlbD: A Regulator of Hyphal Growth, Stress Resistance, Pathogenicity, and Chlamydospore Production in the Nematode-Trapping Fungus Arthrobotrys flagrans
by Yu Zhang, Shun-Qiao Peng, Wang-Ting He, Fei-Fei Gao, Qian-Fei Shi and Guo-Hong Li
Microorganisms 2025, 13(8), 1847; https://doi.org/10.3390/microorganisms13081847 (registering DOI) - 7 Aug 2025
Abstract
Arthrobotrys flagrans is a typical nematode-trapping fungus that captures nematodes by producing three-dimensional networks. FlbD is a DNA-binding protein containing a Myb domain, which plays a significant role in fungal development. However, the biological function of FlbD in nematode-trapping fungi remains unknown. In [...] Read more.
Arthrobotrys flagrans is a typical nematode-trapping fungus that captures nematodes by producing three-dimensional networks. FlbD is a DNA-binding protein containing a Myb domain, which plays a significant role in fungal development. However, the biological function of FlbD in nematode-trapping fungi remains unknown. In this study, we analyzed the physicochemical properties and conserved domains of AfFlbD and constructed the AfFlbD knockout strains (ΔAfFlbD) using homologous recombination. Our functional analysis revealed that the mutants produced more cottony aerial mycelia at the colony center. Additionally, the cell length of the mutants was reduced, indicating that AfFlbD regulates cell morphology in A. flagrans. Chemical stress tolerance assays of the mutants demonstrated reduced sensitivity to NaCl and sorbitol stresses but increased sensitivity to SDS and H2O2 stresses compared to the WT strain. Interestingly, the mutants spontaneously produced traps, and its pathogenicity to nematodes was significantly enhanced, suggesting that AfFlbD negatively regulates the pathogenicity of A. flagrans. Furthermore, the number of chlamydospores produced by the mutants was markedly reduced, though their morphology remained unchanged. Fluorescence localization analysis showed that AfFlbD localizes to the nuclei of chlamydospores, thereby regulating chlamydospore formation. This study provides important theoretical insights into the biological function of the FlbD transcription factor and offers new perspectives for the application of nematode-trapping fungi as a method of controlling plant-parasitic nematodes. Full article
(This article belongs to the Special Issue Microorganisms as Biocontrol Agents in Plant Pathology, 2nd Edition)
Show Figures

Figure 1

14 pages, 2857 KiB  
Article
Identification of the MADS-Box Gene Family and Development of Simple Sequence Repeat Markers in Chimonanthus praecox
by Huafeng Wu, Bin Liu, Yinzhu Cao, Guanpeng Ma, Xiaowen Zheng, Ximeng Yang, Qianli Dai, Hengxing Zhu, Haoxiang Zhu, Xingrong Song and Shunzhao Sui
Plants 2025, 14(15), 2450; https://doi.org/10.3390/plants14152450 - 7 Aug 2025
Abstract
Chimonanthus praecox, a traditional ornamental plant in China, is admired for its ability to bloom during the cold winter season and is recognized as an outstanding woody cut flower. MADS-box genes encode transcription factors essential for plant growth and development, with key [...] Read more.
Chimonanthus praecox, a traditional ornamental plant in China, is admired for its ability to bloom during the cold winter season and is recognized as an outstanding woody cut flower. MADS-box genes encode transcription factors essential for plant growth and development, with key functions in regulating flowering time and the formation of floral organs. In this study, 74 MADS-box genes (CpMADS1–CpMADS74) were identified and mapped across 11 chromosomes, with chromosome 1 harboring the highest number (13 genes) and chromosome 3 the fewest (3 genes). Physicochemical property analysis revealed that all CpMADS proteins are hydrophilic and predominantly nuclear-localized. Phylogenetic analysis classified these genes into Type I and Type II subfamilies, highlighting a clear divergence in domain structure. Eighty simple sequence repeat (SSR) loci were detected, with dinucleotide repeats being the most abundant, and the majority located in Type II MADS genes. From 23 C. praecox samples, 10 polymorphic SSR markers were successfully developed and PCR-validated, enabling a cluster analysis that grouped these cultivars into three distinct clusters. This study offers significant insights into the regulation of flowering, floral organ development, genetic linkage map construction, and the application of marker-assisted selection in C. praecox. Full article
Show Figures

Figure 1

13 pages, 7209 KiB  
Article
Evolutionary Analysis of the Land Plant-Specific TCP Interactor Containing EAR Motif Protein (TIE) Family of Transcriptional Corepressors
by Agustín Arce, Camila Schild, Delfina Maslein and Leandro Lucero
Plants 2025, 14(15), 2423; https://doi.org/10.3390/plants14152423 - 5 Aug 2025
Abstract
The plant-specific TCP transcription factor family originated before the emergence of land plants. However, the timing of the appearance of their specific transcriptional repressor family, the TCP Interactor containing EAR motif protein (TIE), remains unknown. Here, through phylogenetic analyses, we traced the origin [...] Read more.
The plant-specific TCP transcription factor family originated before the emergence of land plants. However, the timing of the appearance of their specific transcriptional repressor family, the TCP Interactor containing EAR motif protein (TIE), remains unknown. Here, through phylogenetic analyses, we traced the origin of the TIE family to the early evolution of the embryophyte, while an earlier diversification in algae cannot be ruled out. Strikingly, we found that the number of TIE members is highly constrained compared to the expansion of TCPs in angiosperms. We used co-expression data to identify potential TIE-TCP regulatory targets across Arabidopsis thaliana and rice. Notably, the expression pattern between these species is remarkably similar. TCP Class I and Class II genes formed two distinct clusters, and TIE genes cluster within the TCP Class I group. This study provides a comprehensive evolutionary analysis of the TIE family, shedding light on its conserved role in the regulation of gene transcription in flowering plant development. Full article
(This article belongs to the Special Issue Plant Molecular Phylogenetics and Evolutionary Genomics III)
Show Figures

Figure 1

20 pages, 8975 KiB  
Article
Transcriptome Analysis of Potato (Solanum tuberosum L.) Seedlings with Varying Resistance Levels Reveals Diverse Molecular Pathways in Early Blight Resistance
by Jiangtao Li, Jie Li, Hongfei Shen, Rehemutula Gulimila, Yinghong Jiang, Hui Sun, Yan Wu, Binde Xing, Ruwei Yang and Yi Liu
Plants 2025, 14(15), 2422; https://doi.org/10.3390/plants14152422 - 5 Aug 2025
Viewed by 74
Abstract
Early blight, caused by the pathogen Alternaria solani, is a major fungal disease impacting potato production globally, with reported yield losses of up to 40% in susceptible varieties. As one of the most common diseases affecting potatoes, its incidence has been steadily [...] Read more.
Early blight, caused by the pathogen Alternaria solani, is a major fungal disease impacting potato production globally, with reported yield losses of up to 40% in susceptible varieties. As one of the most common diseases affecting potatoes, its incidence has been steadily increasing year after year. This study aimed to elucidate the molecular mechanisms underlying resistance to early blight by comparing gene expression profiles in resistant (B1) and susceptible (D30) potato seedlings. Transcriptome sequencing was conducted at three time points post-infection (3, 7, and 10 dpi) to identify differentially expressed genes (DEGs). Weighted Gene Co-expression Network Analysis (WGCNA) and pathway enrichment analyses were performed to explore resistance-associated pathways and hub genes. Over 11,537 DEGs were identified, with the highest number observed at 10 dpi. Genes such as LOC102603761 and LOC102573998 were significantly differentially expressed across multiple comparisons. In the resistant B1 variety, upregulated genes were enriched in plant–pathogen interaction, MAPK signaling, hormonal signaling, and secondary metabolite biosynthesis pathways, particularly flavonoid biosynthesis, which likely contributes to biochemical defense against A. solani. WGCNA identified 24 distinct modules, with hub transcription factors (e.g., WRKY33, MYB, and NAC) as key regulators of resistance. These findings highlight critical molecular pathways and candidate genes involved in early blight resistance, providing a foundation for further functional studies and breeding strategies to enhance potato resilience. Full article
(This article belongs to the Special Issue Advances in Plant Genetics and Breeding Improvement)
Show Figures

Figure 1

21 pages, 4939 KiB  
Article
Nitrogen-Fixing Bacterium GXGL-4A Promotes the Growth of Cucumber Plant Under Nitrogen Stress by Altering the Rhizosphere Microbial Structure
by Ying-Ying Han, Yu-Qing Bao, Er-Xing Wang, Ya-Ting Zhang, Bao-Lin Liu and Yun-Peng Chen
Microorganisms 2025, 13(8), 1824; https://doi.org/10.3390/microorganisms13081824 - 5 Aug 2025
Viewed by 97
Abstract
The rhizosphere microbiome plays an important role in carbon- and nitrogen-cycling in soil and in the stress response of plants. It also affects the function of the ammonium transporter (AmtB) that senses nitrogen levels inside and outside the cells of the associative nitrogen-fixing [...] Read more.
The rhizosphere microbiome plays an important role in carbon- and nitrogen-cycling in soil and in the stress response of plants. It also affects the function of the ammonium transporter (AmtB) that senses nitrogen levels inside and outside the cells of the associative nitrogen-fixing bacterium GXGL-4A. However, the potential mechanism of the interaction between the AmtB deletion mutant of GXGL-4A (∆amtB) and microorganisms in the rhizosphere of plants under low-nitrogen stress is still unclear. As revealed by transcriptome analyses, mutation of the amtB gene in GXGL-4A resulted in a significant up-regulation of many functional genes associated with nitrogen fixation and transportation at transcription level. The application of ∆amtB changed the nitrogen level in the rhizosphere of cucumber seedlings and reshaped the microbial community structure in the rhizosphere, enriching the relative abundance of Actinobacteriota and Gemmatimonadota. Based on bacterial functional prediction analyses, the metabolic capacities of rhizobacteria were improved after inoculation of cucumber seedlings with the original strain GXGL-4A or the ∆amtB mutant, resulting in the enhancement of amino acids, lipids, and carbohydrates in the cucumber rhizosphere, which promoted the growth of cucumber plants under a low-nitrogen stress condition. The results contribute to understanding the biological function of gene amtB, revealing the regulatory role of the strain GXGL-4A on cucumber rhizosphere nitrogen metabolism and laying a theoretical foundation for the development of efficient nitrogen-fixing bacterial agents for sustainable agricultural production. Full article
Show Figures

Figure 1

19 pages, 7841 KiB  
Article
Co-Expression Network Analysis Suggests PacC Transcriptional Factor Involved in Botryosphaeria dothidea Pathogenicity in Chinese Hickory
by Dong Liang, Yiru Jiang, Wei Ai, Yu Zhang, Chengxing Mao, Tianlin Ma and Chuanqing Zhang
J. Fungi 2025, 11(8), 580; https://doi.org/10.3390/jof11080580 - 4 Aug 2025
Viewed by 138
Abstract
Botryosphaeria dothidea is the causative agent of Chinese hickory trunk canker, which poses significant threat to the production of Chinese hickory (Carya cathayensis Sarg.). Previous studies reported that endophytic–pathogenic phase transition, also referred to as latent infection, plays an important role in [...] Read more.
Botryosphaeria dothidea is the causative agent of Chinese hickory trunk canker, which poses significant threat to the production of Chinese hickory (Carya cathayensis Sarg.). Previous studies reported that endophytic–pathogenic phase transition, also referred to as latent infection, plays an important role in the interaction of Botryosphaeria dothidea with various host plants, including Chinese hickory. However, the mechanism underlying this phase transition is not well understood. Here, we employed RNA-Seq to investigate transcriptional changes in B. dothidea during its phase transition upon interaction with Chinese hickory. A co-expression network was generated based on 6391 differentially expressed genes (DEGs) identified from different infection stages and temperature treatments. One co-expressed module was found that highly correlated with temperature treatments which simulated conditions of B. dothidea latent infection in the field. Subsequently, 53 hub genes were detected, and gene ontology (GO) enrichment analysis revealed three categories of enriched GO terms: transmembrane transport or activity, ion homeostasis or transport, and carbohydrate metabolism. One PacC transcriptional factor (BDLA_00001555, an ambient pH regulator), and one endo-β-1,3-glucanase (BDLA_00010249) were specifically upregulated under temperature treatments that corresponded with the activation stage of B. dothidea’s pathogenic state. The knockout mutant strain of BDLA_00001555 demonstrated defective capability upon the activation of the pathogenic state. This confirmed that BDLA_00001555, the PacC transcriptional factor, plays an important role in the latent infection phase of B. dothidea. Our findings provide insights into the pathogenic mechanism of Chinese hickory trunk canker disease. Full article
(This article belongs to the Special Issue Fungal Metabolomics and Genomics, 2nd Edition)
Show Figures

Figure 1

21 pages, 6621 KiB  
Article
Genome-Wide Identification and Expression Pattern Analysis of the Late Embryogenesis Abundant (LEA) Family in Foxtail Millet (Setaria italica L.)
by Yingying Qin, Yiru Zhao, Xiaoyu Li, Ruifu Wang, Shuo Chang, Yu Zhang, Xuemei Ren and Hongying Li
Genes 2025, 16(8), 932; https://doi.org/10.3390/genes16080932 - 4 Aug 2025
Viewed by 123
Abstract
Background/Objectives: Late embryogenesis abundant (LEA) proteins regulate stress responses and contribute significantly to plant stress tolerance. As a model species for stress resistance studies, foxtail millet (Setaria italica) lacks comprehensive characterization of its LEA gene family. This study aimed to [...] Read more.
Background/Objectives: Late embryogenesis abundant (LEA) proteins regulate stress responses and contribute significantly to plant stress tolerance. As a model species for stress resistance studies, foxtail millet (Setaria italica) lacks comprehensive characterization of its LEA gene family. This study aimed to comprehensively identify SiLEA genes in foxtail millet and elucidate their functional roles and tissue-specific expression patterns. Methods: Genome-wide identification of SiLEA genes was conducted, followed by phylogenetic reconstruction, cis-acting element analysis of promoters, synteny analysis, and expression profiling. Results: Ninety-four SiLEA genes were identified and classified into nine structurally distinct subfamilies, which are unevenly distributed across all nine chromosomes. Phylogenetic analysis showed closer clustering of SiLEA genes with sorghum and rice orthologs than with Arabidopsis thaliana AtLEA genes. Synteny analysis indicated the LEA gene family expansion through tandem and segmental duplication. Promoter cis-element analysis linked SiLEA genes to plant growth regulation, stress responses, and hormone signaling. Transcriptome analysis revealed tissue-specific expression patterns among SiLEA members, while RT-qPCR verified ABA-induced transcriptional regulation of SiLEA genes. Conclusions: This study identified 94 SiLEA genes grouped into nine subfamilies with distinct spatial expression profiles. ABA treatment notably upregulated SiASR-2, SiASR-5, and SiASR-6 in both shoots and roots. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

19 pages, 9234 KiB  
Article
Physiological Changes and Transcriptomics of Elodea nuttallii in Response to High-Temperature Stress
by Yanling Xu, Yuanyuan Jin, Manrong Zha, Yuhan Mao, Wenqiang Ren, Zirao Guo, Yufei Zhang, Beier Zhou, Tao Zhang, Qi He, Shibiao Liu and Bo Jiang
Biology 2025, 14(8), 993; https://doi.org/10.3390/biology14080993 - 4 Aug 2025
Viewed by 138
Abstract
Elodea nuttallii is a significant submerged macrophyte utilized in shrimp and crab aquaculture, yet it exhibits low thermotolerance. This study investigated the physiological responses and transcriptomic characteristics of E. nuttallii under high-temperature stress (HTS). The results indicated that HTS significantly reduced the absolute [...] Read more.
Elodea nuttallii is a significant submerged macrophyte utilized in shrimp and crab aquaculture, yet it exhibits low thermotolerance. This study investigated the physiological responses and transcriptomic characteristics of E. nuttallii under high-temperature stress (HTS). The results indicated that HTS significantly reduced the absolute growth rate (AGR) and photosynthetic efficiency of E. nuttallii while concurrently elevating antioxidant enzyme activities, malondialdehyde (MDA) content, and concentrations of osmotic adjustment compounds. Furthermore, the apical segments of E. nuttallii demonstrated greater sensitivity to HTS compared to the middle segments. Under exposure to 35 °C and 40 °C, antioxidant enzyme activities, MDA content, and osmotic adjustment compound levels were significantly higher in the apical segments than in the middle segments. Transcriptomic analysis revealed 7526 differentially expressed genes (DEGs) in the apical segments at 35 °C, a number substantially exceeding that observed in the middle segments. Enrichment analysis of DEGs revealed significant upregulation of key metabolic regulators under HTS, including carbohydrate metabolism genes (HXK, FRK) and phenylpropanoid biosynthesis enzymes (4CL, COMT). This transcriptional reprogramming demonstrates E. nuttallii’s adaptive strategy of modulating carbon allocation and phenolic compound synthesis to mitigate thermal damage. Our findings not only elucidate novel thermotolerance mechanisms in aquatic plants but also provide candidate genetic targets (HXK, 4CL) for molecular breeding of heat-resilient cultivars through transcriptomic screening. Full article
Show Figures

Figure 1

20 pages, 1639 KiB  
Case Report
The Power of Preventive Protection: Effects of Vaccination Strategies on Furunculosis Resistance in Large-Scale Aquaculture of Maraena Whitefish
by Kerstin Böttcher, Peter Luft, Uwe Schönfeld, Stephanie Speck, Tim Gottschalk and Alexander Rebl
Fishes 2025, 10(8), 374; https://doi.org/10.3390/fishes10080374 - 4 Aug 2025
Viewed by 212
Abstract
Furunculosis caused by Aeromonas salmonicida poses a significant challenge to the sustainable production of maraena whitefish (Coregonus maraena). This case report outlines a multi-year disease management strategy at a European whitefish facility with two production departments, each specialising in different life-cycle [...] Read more.
Furunculosis caused by Aeromonas salmonicida poses a significant challenge to the sustainable production of maraena whitefish (Coregonus maraena). This case report outlines a multi-year disease management strategy at a European whitefish facility with two production departments, each specialising in different life-cycle stages. Recurrent outbreaks of A. salmonicida necessitated the development of effective vaccination protocols. Herd-specific immersion vaccines failed to confer protection, while injectable formulations with plant-based adjuvants caused severe adverse reactions and mortality rates exceeding 30%. In contrast, the bivalent vaccine Alpha Ject 3000, containing inactivated A. salmonicida and Vibrio anguillarum with a mineral oil adjuvant, yielded high tolerability and durable protection in over one million whitefish. Post-vaccination mortality remained low (3.3%), aligning with industry benchmarks, and furunculosis-related losses were fully prevented in both departments. Transcriptomic profiling of immune-relevant tissues revealed distinct gene expression signatures depending on vaccine type and time post-vaccination. Both the herd-specific vaccine and Alpha Ject 3000 induced the expression of immunoglobulin and inflammatory markers in the spleen, contrasted by reduced immunoglobulin transcript levels in the gills and head kidney together with the downregulated expression of B-cell markers. These results demonstrate that an optimised injectable vaccination strategy can significantly improve health outcomes and disease resilience in maraena whitefish aquaculture. Full article
(This article belongs to the Special Issue Fish Pathogens and Vaccines in Aquaculture)
Show Figures

Graphical abstract

37 pages, 2918 KiB  
Review
Guardians of Water and Gas Exchange: Adaptive Dynamics of Stomatal Development and Patterning
by Eleni Giannoutsou, Ioannis-Dimosthenis S. Adamakis and Despina Samakovli
Plants 2025, 14(15), 2405; https://doi.org/10.3390/plants14152405 - 3 Aug 2025
Viewed by 210
Abstract
Stomata, highly specialized structures that evolved on the aerial surfaces of plants, play a crucial role in regulating hydration, mitigating the effects of abiotic stress. Stomatal lineage development involves a series of coordinated events, such as initiation, stem cell proliferation, and cell fate [...] Read more.
Stomata, highly specialized structures that evolved on the aerial surfaces of plants, play a crucial role in regulating hydration, mitigating the effects of abiotic stress. Stomatal lineage development involves a series of coordinated events, such as initiation, stem cell proliferation, and cell fate determination, ultimately leading to the differentiation of guard cells. While core transcriptional regulators and signaling pathways controlling stomatal cell division and fate determination have been characterized over the past twenty years, the molecular mechanisms linking stomatal development to dynamic environmental cues remain poorly understood. Therefore, stomatal development is considered an active and compelling frontier in plant biology research. On the one hand, this review aims to provide an understanding of the molecular networks governing stomatal ontogenesis, which relies on the activation and function of the transcription factors SPEECHLESS (SPCH), MUTE, and FAMA; the EPF–TMM and ERECTA receptor systems; and downstream MAPK signaling. On the other hand, it synthesizes current discoveries of how hormonal signaling pathways regulate stomatal development in response to environmental changes. As the climate crisis intensifies, the understanding of the complex interplay between stress stimuli and key factors regulating stomatal development may reveal key mechanisms that enhance plant resilience under adverse environmental conditions. Full article
Show Figures

Figure 1

16 pages, 3996 KiB  
Article
Genes Associated with the Accumulation of Proanthocyanidins in Nelumbo nucifera Gaertn
by Wanyue Zhao, Lin Zhao, Shaoyuan Chen, Ruimin Nie, Yi Xu and Longqing Chen
Agriculture 2025, 15(15), 1674; https://doi.org/10.3390/agriculture15151674 - 2 Aug 2025
Viewed by 197
Abstract
Proanthocyanidins are a subclass of flavonoids formed through a poorly understood polymerization process that forms chains of 3–30 catechins and epi-catechins. Proanthocyanidins serve as UV protectants and antifeedants that accumulate in diverse plant species, including the lotus. To identify candidate genes underlying proanthocyanidin [...] Read more.
Proanthocyanidins are a subclass of flavonoids formed through a poorly understood polymerization process that forms chains of 3–30 catechins and epi-catechins. Proanthocyanidins serve as UV protectants and antifeedants that accumulate in diverse plant species, including the lotus. To identify candidate genes underlying proanthocyanidin synthesis and polymerization, we generated and functionally annotated transcriptomes from seedpods and seed epicarps of two lotus cultivars, “Guoqing Hong” and “Space Lotus”, which accumulate markedly divergent proanthocyanidin levels across the immature, near-mature, and mature developmental stages. Our transcriptome analysis was based on a total of 262.29 GB of raw data. We aligned the transcriptome data with the lotus genome and obtained an alignment efficiency that ranged from 91.74% to 96.44%. Based on the alignment results, we discovered 4774 new genes and functionally annotated 3232 genes. A total of 14,994 differentially expressed genes (DEGs) were identified from two-by-two comparisons of transcript libraries. We found 61 DEGs in the same developmental stage in the same tissue of different species. Comparative transcriptome analysis of seedpods and seed epicarps from two cultivars identified 14,994 differentially expressed genes (DEGs), of which 10 were functionally associated with proanthocyanidin synthesis and 9 were possibly implicated in the polymerization reactions. We independently quantified the expression of the candidate genes using qRT-PCR. Significant differences in the expression of candidate genes in different tissues and periods of lotus species are consistent with particular genes contributing to the polymerization of catechins and epi-catechins into proanthocyanidins in lotus seedpods and seed epicarps. Full article
(This article belongs to the Section Crop Genetics, Genomics and Breeding)
Show Figures

Figure 1

21 pages, 3959 KiB  
Article
Unveiling Stage-Specific Flavonoid Dynamics Underlying Drought Tolerance in Sweet Potato (Ipomoea batatas L.) via Integrative Transcriptomic and Metabolomic Analyses
by Tao Yin, Chaoyu Song, Huan Li, Shaoxia Wang, Wenliang Wei, Jie Meng and Qing Liu
Plants 2025, 14(15), 2383; https://doi.org/10.3390/plants14152383 - 2 Aug 2025
Viewed by 255
Abstract
Drought stress severely limits the productivity of sweet potato (Ipomoea batatas L.), yet the stage-specific molecular mechanisms of its adaptation remain poorly understood. Therefore, we integrated transcriptomics and extensive targeted metabolomics analysis to investigate the drought responses of the sweet potato cultivar [...] Read more.
Drought stress severely limits the productivity of sweet potato (Ipomoea batatas L.), yet the stage-specific molecular mechanisms of its adaptation remain poorly understood. Therefore, we integrated transcriptomics and extensive targeted metabolomics analysis to investigate the drought responses of the sweet potato cultivar ‘Luoyu 11’ during the branching and tuber formation stage (DS1) and the storage root expansion stage (DS2) under controlled drought conditions (45 ± 5% field capacity). Transcriptome analysis identified 8292 and 13,509 differentially expressed genes in DS1 and DS2, respectively, compared with the well-watered control (75 ± 5% field capacity). KEGG enrichment analysis revealed the activation of plant hormone signaling, carbon metabolism, and flavonoid biosynthesis pathways, and more pronounced transcriptional changes were observed during the DS2 stage. Metabolomic analysis identified 415 differentially accumulated metabolites across the two growth periods, with flavonoids being the most abundant (accounting for 30.3% in DS1 and 23.7% in DS2), followed by amino acids and organic acids, which highlighted their roles in osmotic regulation and oxidative stress alleviation. Integrated omics analysis revealed stage-specific regulation of flavonoid biosynthesis under drought stress. Genes such as CYP75B1 and IF7MAT were consistently downregulated, whereas flavonol synthase and glycosyltransferases exhibited differential expression patterns, which correlated with the selective accumulation of trifolin and luteoloside. Our findings provide novel insights into the molecular basis of drought tolerance in sweet potato and offer actionable targets for breeding and precision water management in drought-prone regions. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

29 pages, 6015 KiB  
Review
A Comprehensive Review of BBX Protein-Mediated Regulation of Anthocyanin Biosynthesis in Horticultural Plants
by Hongwei Li, Kuanping Deng, Yingying Zhao and Delin Xu
Horticulturae 2025, 11(8), 894; https://doi.org/10.3390/horticulturae11080894 - 2 Aug 2025
Viewed by 271
Abstract
Anthocyanins, a subclass of flavonoid pigments, impart vivid red, purple, and blue coloration to horticultural plants, playing essential roles in ornamental enhancement, stress resistance, and pollinator attraction. Recent studies have identified B-box (BBX) proteins as a critical class of transcription factors (TFs) involved [...] Read more.
Anthocyanins, a subclass of flavonoid pigments, impart vivid red, purple, and blue coloration to horticultural plants, playing essential roles in ornamental enhancement, stress resistance, and pollinator attraction. Recent studies have identified B-box (BBX) proteins as a critical class of transcription factors (TFs) involved in anthocyanin biosynthesis. Despite these advances, comprehensive reviews systematically addressing BBX proteins are urgently needed, especially given the complexity and diversity of their roles in regulating anthocyanin production. In this paper, we provide an in-depth overview of the fundamental structures, biological functions, and classification of BBX TFs, along with a detailed description of anthocyanin biosynthetic pathways and bioactivities. Furthermore, we emphasize the diverse molecular mechanisms through which BBX TFs regulate anthocyanin accumulation, including direct activation or repression of target genes, indirect modulation via interacting protein complexes, and co-regulation with other transcriptional regulators. Additionally, we summarize the known upstream regulatory signals and downstream target genes of BBX TFs, highlighting their significance in shaping anthocyanin biosynthesis pathways. Understanding these regulatory networks mediated by BBX proteins will not only advance fundamental horticultural science but also provide valuable insights for enhancing the aesthetic quality, nutritional benefits, and stress adaptability of horticultural crops. Full article
Show Figures

Graphical abstract

16 pages, 1632 KiB  
Article
Meloidogyne incognita Significantly Alters the Cucumber Root Metabolome and Enriches Differential Accumulated Metabolites Regulating Nematode Chemotaxis and Infection
by Naicun Chen, Qianqian Sun, Zhiqun Chen and Xu Zhang
Horticulturae 2025, 11(8), 892; https://doi.org/10.3390/horticulturae11080892 - 1 Aug 2025
Viewed by 189
Abstract
Root-knot nematode (Meloidogyne incognita) is a globally destructive plant-parasitic nematode that severely impedes the sustainable production of horticultural crops. Metabolic reprogramming in plant roots represents the host response to M. incognita infection that can also be exploited by the nematode to [...] Read more.
Root-knot nematode (Meloidogyne incognita) is a globally destructive plant-parasitic nematode that severely impedes the sustainable production of horticultural crops. Metabolic reprogramming in plant roots represents the host response to M. incognita infection that can also be exploited by the nematode to facilitate its parasitism. In this study, untargeted metabolomics was employed to analyze metabolic changes in cucumber roots following nematode inoculation, with the goal of identifying differentially accumulated metabolites that may influence M. incognita behavior. Metabolomic analysis revealed that M. incognita significantly altered the cucumber root metabolome, triggering an accumulation of lipids and organic acids and enriching biotic stress-related pathways such as alkaloid biosynthesis and linoleic acid metabolism. Among differentially accumulated metabolites, myristic acid and hexadecanal were selected for further study due to their potential roles in nematode inhibition. In vitro assays demonstrated that both metabolites suppressed egg hatching and reduced infectivity of M. incognita, while pot experiments indicated a correlation between their application and reduced root gall formation. Chemotaxis assays further revealed that both metabolites exerted repellent effects on the chemotactic migration of M. incognita J2 and suppressed the transcriptional expression of two motility-and feeding-related neuropeptides, Mi-flp-1 and Mi-flp-18. In conclusion, this study demonstrates the significant potential of differentially accumulated metabolites induced by M. incognita infection for nematode disease control, achieved by interfering with nematode chemotaxis and subsequent infection. This work also provides deeper insights into the metabolomic mechanisms underlying the cucumber-M. incognita interaction. Full article
(This article belongs to the Special Issue 10th Anniversary of Horticulturae—Recent Outcomes and Perspectives)
Show Figures

Figure 1

20 pages, 3136 KiB  
Review
The Role of Genomic Islands in the Pathogenicity and Evolution of Plant-Pathogenic Gammaproteobacteria
by Yuta Watanabe, Yasuhiro Ishiga and Nanami Sakata
Microorganisms 2025, 13(8), 1803; https://doi.org/10.3390/microorganisms13081803 - 1 Aug 2025
Viewed by 132
Abstract
Genomic islands (GIs) including integrative and conjugative elements (ICEs), prophages, and integrative plasmids are central drivers of horizontal gene transfer in bacterial plant pathogens. These elements often carry cargo genes encoding virulence factors, antibiotic and metal resistance determinants, and metabolic functions that enhance [...] Read more.
Genomic islands (GIs) including integrative and conjugative elements (ICEs), prophages, and integrative plasmids are central drivers of horizontal gene transfer in bacterial plant pathogens. These elements often carry cargo genes encoding virulence factors, antibiotic and metal resistance determinants, and metabolic functions that enhance environmental adaptability. In plant-pathogenic species such as Pseudomonas syringae, GIs contribute to host specificity, immune evasion, and the emergence of novel pathogenic variants. ICEclc and its homologs represent integrative and mobilizable elements whose tightly regulated excision and transfer are driven by a specialized transcriptional cascade, while ICEs in P. syringae highlight the ecological impact of cargo genes on pathogen virulence and fitness. Pathogenicity islands further modulate virulence gene expression in response to in planta stimuli. Beyond P. syringae, GIs in genera such as Erwinia, Pectobacterium, and Ralstonia underpin critical traits like toxin biosynthesis, secretion system acquisition, and topoisomerase-mediated stability. Leveraging high-throughput genomics and structural biology will be essential to dissect GI regulation and develop targeted interventions to curb disease spread. This review synthesizes the current understanding of GIs in plant-pathogenic gammaproteobacteria and outlines future research priorities for translating mechanistic insights into sustainable disease control strategies. Full article
Show Figures

Figure 1

Back to TopTop