Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,152)

Search Parameters:
Keywords = plant infestation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1560 KiB  
Article
Detection of the Early Sensitive Stage and Natural Resistance of Broad Bean (Vicia faba L.) Against Black Bean and Cowpea Aphids
by Fouad Meradsi, Adel Lekbir, Oussama A. Bensaci, Abdelkader Tifferent, Asim Abbasi, Assia Djemoui, Nazih Y. Rebouh, Abeer Hashem, Graciela Dolores Avila-Quezada, Khalid F. Almutairi and Elsayed Fathi Abd_Allah
Insects 2025, 16(8), 817; https://doi.org/10.3390/insects16080817 - 7 Aug 2025
Abstract
Broad bean is one of the most important leguminous crops worldwide. However, its productivity is greatly affected by the infestation of Aphis fabae and Aphis craccivora (Hemiptera: Aphididae). The main objective of the current study was to identify the most susceptible phenological stages [...] Read more.
Broad bean is one of the most important leguminous crops worldwide. However, its productivity is greatly affected by the infestation of Aphis fabae and Aphis craccivora (Hemiptera: Aphididae). The main objective of the current study was to identify the most susceptible phenological stages of the broad bean variety (Histal) against black aphids’ herbivory. This had been achieved through an evaluation of plant resistance mechanisms such as antixenosis and antibiosis. The results regarding an antixenosis test revealed that the four tested phenological stages of V. faba did not have a significant effect on the preference of A. craccivora and A. fabae towards the crop plant. Overall, a slightly higher number of adults settled on the three and four unfolded leaves’ stage of the crop plant. Similarly, the highest number of developed embryos were found in the four leaves’ stage of the crop, and the lowest in the second leaf stage. The adult body size of A. craccivora was slightly larger in the case of the three unfolded leaves. Furthermore, the maximum body size of A. fabae adults was recorded in the case of the first unfolded leaf stage crop. Linear correlations between the biological parameters for both species revealed only one significant relationship between developed and total embryos for A. craccivora. The results of the current study highlight the need to protect broad bean crops against infestations of black aphids, i.e., A. craccivora and A. fabae. This is essential for reducing direct damage and preventing the transmission of phytoviruses. However, future studies should aim to evaluate the susceptibility of all developmental phenological stages of the crop against black aphids to mitigate potential crop losses. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

20 pages, 312 KiB  
Article
Pimelea and Its Toxicity: A Survey of Landholder Experiences and Management Practices
by Rashid Saleem, Shane Campbell, Mary T. Fletcher, Sundaravelpandian Kalaipandian and Steve W. Adkins
Toxins 2025, 17(8), 393; https://doi.org/10.3390/toxins17080393 - 6 Aug 2025
Abstract
Pimelea is one of the highly toxic plants in Australia, particularly affecting cattle. It contains simplexin, a potent toxin that can cause Pimelea poisoning (St. George Disease) in livestock. A survey was conducted to assess the current impact of Pimelea on livestock production, [...] Read more.
Pimelea is one of the highly toxic plants in Australia, particularly affecting cattle. It contains simplexin, a potent toxin that can cause Pimelea poisoning (St. George Disease) in livestock. A survey was conducted to assess the current impact of Pimelea on livestock production, pasture systems, and financial losses among agricultural producers. In addition, information was also sought about the environmental conditions that facilitate its growth and the effectiveness of existing management strategies. The survey responses were obtained from producers affected by Pimelea across nine different Local Government Areas, through three States, viz., Queensland, New South Wales, and South Australia. Pimelea was reported to significantly affect animal production, with 97% of producers surveyed acknowledging its detrimental effects. Among livestock, cattle were the most severely affected (94%), when compared to sheep (13%), goats (3%), and horses (3%). The presence of Pimelea was mostly observed in spring (65%) and winter (48%), although 29% of respondents indicated that it could be present all year-round under favorable rainfall conditions. Germination was associated with light to moderate rainfall (52%), while only 24% linked it to heavy rainfall. Pimelea simplex F. Muell. was the most frequently encountered species (71%), followed by Pimelea trichostachya Lindl. (26%). Infestations were reported to occur annually by 47% of producers, with 41% noting occurrences every 2 to 5 years. Financially, producers estimated average annual losses of AUD 67,000, with 50% reporting an average of 26 cattle deaths per year, reaching up to 105 deaths in severe years. Some producers were spending up to AUD 2100 per annum to manage Pimelea. While chemical and physical controls were commonly employed, integrating competitive pastures and alternative livestock, such as sheep and goats, was considered as a potential management strategy. This study reiterates the need for further research on sustainable pasture management practices to reduce Pimelea-related risks to livestock and agricultural production systems. Full article
(This article belongs to the Special Issue Plant Toxin Emergency)
28 pages, 346 KiB  
Review
Emerging Perspectives on Chemical Weed Management Tactics in Container Ornamental Production in the United States
by Sushil Grewal and Debalina Saha
Horticulturae 2025, 11(8), 926; https://doi.org/10.3390/horticulturae11080926 (registering DOI) - 6 Aug 2025
Abstract
Weed management remains a critical challenge in the U.S. container ornamental production industry, where weeds not only compete with crops for limited resources but also harbor pests and pathogens, thereby diminishing plant quality and marketability. The paper explores the economic impact of weed [...] Read more.
Weed management remains a critical challenge in the U.S. container ornamental production industry, where weeds not only compete with crops for limited resources but also harbor pests and pathogens, thereby diminishing plant quality and marketability. The paper explores the economic impact of weed infestations, herbicide resistance development, and the limited availability of selective herbicides for ornamental crops in the United States. This review synthesizes current chemical weed control tactics, focusing not only on both preemergence and postemergence herbicides commonly used in ornamental nurseries, but also organic alternatives and integrated weed management (IWM) approaches as complementary strategies by evaluating their effectiveness, crop safety, and usage. There is a critical need for research in the areas of alternative chemical options such as insecticides, miticides (e.g., Zerotol and Tetra Curb Max), and organic products for liverwort control in greenhouses. Although essential oils and plant-based extracts show some potential, their effectiveness and practical use remain largely unexplored. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Graphical abstract

12 pages, 757 KiB  
Brief Report
DNA-Programmable Oligonucleotide Insecticide Eriola-11 Targets Mitochondrial 16S rRNA and Exhibits Strong Insecticidal Activity Against Woolly Apple Aphid (Eriosoma lanigerum) Hausmann
by Vol Oberemok, Kate Laikova, Oksana Andreeva, Anastasia Dmitrienko, Tatiana Rybareva, Jamin Ali and Nikita Gal’chinsky
Int. J. Mol. Sci. 2025, 26(15), 7486; https://doi.org/10.3390/ijms26157486 - 2 Aug 2025
Viewed by 205
Abstract
The potent and selective ‘genetic zipper’ method for insect pest control consists of three essential components: an antisense DNA (the finder), its complementary mature rRNA or pre-rRNA of the pest (the target), and the host’s endogenous DNA-guided rRNase (the degrader). Although this approach [...] Read more.
The potent and selective ‘genetic zipper’ method for insect pest control consists of three essential components: an antisense DNA (the finder), its complementary mature rRNA or pre-rRNA of the pest (the target), and the host’s endogenous DNA-guided rRNase (the degrader). Although this approach has been validated, the spectrum of effective rRNA targets remains insufficiently explored. In this study, we report for the first time the insecticidal efficacy of a novel oligonucleotide insecticide, Eriola-11, which targets the mitochondrial 16S rRNA of the woolly apple aphid Eriosoma lanigerum Hausmann. We hypothesized that the antisense-mediated silencing of mitochondrial rRNA would impair aphid viability and lead to physiological disruptions associated with mitochondrial energy metabolism. Eriola-11 was applied either once or twice (with a 24 h interval) to aphid-infested plants, and aphid mortality was recorded over 14 days. Mitochondrial 16S rRNA expression levels were quantified using molecular assays, and the degradation kinetics of Eriola-11 were assessed in aphid tissue homogenates. Results showed significant insecticidal activity, with 67.55% mortality after a single treatment and 83.35% after two treatments. Treated aphids exhibited the loss of their characteristic white woolly wax covering, and mitochondrial 16S rRNA expression was reduced 0.66-fold relative to the control. Additionally, Eriola-11 was fully degraded by aphid DNases from tissue homogenates within 3 h, highlighting its rapid biodegradability. These findings establish mitochondrial 16S rRNA as a viable target for antisense insecticides and expand the catalogue of potential rRNA-based targets, offering a promising avenue for environmentally sustainable pest control strategies. Full article
(This article belongs to the Special Issue Antisense Oligonucleotides: Versatile Tools with Broad Applications)
Show Figures

Figure 1

16 pages, 950 KiB  
Article
Survey of Weed Flora Diversity as a Starting Point for the Development of a Weed Management Strategy for Medicinal Crops in Pančevo, Serbia
by Dragana Božić, Ana Dragumilo, Tatjana Marković, Urban Šilc, Svetlana Aćić, Teodora Tojić, Miloš Rajković and Sava Vrbničanin
Horticulturae 2025, 11(8), 882; https://doi.org/10.3390/horticulturae11080882 (registering DOI) - 31 Jul 2025
Viewed by 176
Abstract
Similarly to conventional field crops, weeds often pose significant problems in the cultivation of medicinal plants. To date, no comprehensive documentation exists regarding weed infestation levels in these crops in Serbia. The objective of this study was to provide a valuable foundation for [...] Read more.
Similarly to conventional field crops, weeds often pose significant problems in the cultivation of medicinal plants. To date, no comprehensive documentation exists regarding weed infestation levels in these crops in Serbia. The objective of this study was to provide a valuable foundation for developing effective, site-specific weed management strategies in medicinal crop production. Weeds in five medicinal crops (lemon balm, fennel, peppermint, ribwort plantain, German chamomile), were surveyed based on the agro-phytosociological method between 2019 and 2024, and across 59 plots. A total of 109 weed species were recorded, belonging to 29 families and 88 genera. Among them, 75 were annuals and 34 perennials, including 93 broadleaved species, 10 grasses, and one parasitic species. All surveyed plots were heavily infested with perennial weeds such as Elymus repens, Cirsium arvense, Convolvulus arvensis, Lepidium draba, Rumex crispus, Sorghum halepense, Taraxacum officinale, etc. Also, several annual species were found in high abundance and frequency, including Amaranthus retroflexus, Chenopodium album, Galium aparine, Lactuca serriola, Lamium amplexicaule, L. purpureum, Papaver rhoeas, Stellaria media, Veronica hederifolia, V. persica, etc. The most important ecological factors influencing the composition of weed vegetation in investigated medicinal crops were temperature and light for fennel and peppermint plots, soil reaction for lemon balm and ribwort plantain plots, and nutrient content for German chamomile plots. A perspective for exploitation of these results is the development of effective weed control programs tailored to this specific cropping system. Weed control strategies should consider such information, targeting the control of the most frequent, abundant, and dominant species existing in a crops or locality. Full article
(This article belongs to the Special Issue Conventional and Organic Weed Management in Horticultural Production)
Show Figures

Graphical abstract

9 pages, 237 KiB  
Communication
Grazing Reduces Field Bindweed Infestations in Perennial Warm-Season Grass Pastures
by Leonard M. Lauriault, Brian J. Schutte, Murali K. Darapuneni and Gasper K. Martinez
Agronomy 2025, 15(8), 1832; https://doi.org/10.3390/agronomy15081832 - 29 Jul 2025
Viewed by 204
Abstract
Field bindweed (Convolvulus arvensis L.) is a competitive herbaceous perennial weed that reduces productivity in irrigated pastures. Grazing might reduce competition by field bindweed when it begins growth in the spring, thereby encouraging encroachment by desirable grass species during the summer. To [...] Read more.
Field bindweed (Convolvulus arvensis L.) is a competitive herbaceous perennial weed that reduces productivity in irrigated pastures. Grazing might reduce competition by field bindweed when it begins growth in the spring, thereby encouraging encroachment by desirable grass species during the summer. To test this hypothesis, a two-year study was conducted in two adjacent, privately owned, irrigated, warm-season perennial grass pastures (replicates) that were heavily infested with field bindweed. Study sites were near Tucumcari, NM, USA. The fields were grazed with exclosures to evaluate ungrazed management. Aboveground biomass of field bindweed, other weeds, and perennial grass were measured, and field bindweed plants were counted in May of 2018 and 2019. There was no difference between years for any variable. Other weed biomass and field bindweed biomass and plant numbers were reduced (p < 0.05) by grazing (61.68 vs. 41.67 g bindweed biomass m−2 for ungrazed and grazed management, respectively, and 108.5 and 56.8 bindweed plants m−2 for ungrazed and grazed management, respectively). Otherwise, perennial grass production was unaffected by either year or management. These results indicate that grazing can be an effective tool to reduce field bindweed competition in warm-season perennial grass pastures. Full article
(This article belongs to the Section Weed Science and Weed Management)
31 pages, 6501 KiB  
Review
From Hormones to Harvests: A Pathway to Strengthening Plant Resilience for Achieving Sustainable Development Goals
by Dipayan Das, Hamdy Kashtoh, Jibanjyoti Panda, Sarvesh Rustagi, Yugal Kishore Mohanta, Niraj Singh and Kwang-Hyun Baek
Plants 2025, 14(15), 2322; https://doi.org/10.3390/plants14152322 - 27 Jul 2025
Viewed by 1224
Abstract
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. [...] Read more.
The worldwide agriculture industry is facing increasing problems due to rapid population increase and increasingly unfavorable weather patterns. In order to reach the projected food production targets, which are essential for guaranteeing global food security, innovative and sustainable agricultural methods must be adopted. Conventional approaches, including traditional breeding procedures, often cannot handle the complex and simultaneous effects of biotic pressures such as pest infestations, disease attacks, and nutritional imbalances, as well as abiotic stresses including heat, salt, drought, and heavy metal toxicity. Applying phytohormonal approaches, particularly those involving hormonal crosstalk, presents a viable way to increase crop resilience in this context. Abscisic acid (ABA), gibberellins (GAs), auxin, cytokinins, salicylic acid (SA), jasmonic acid (JA), ethylene, and GA are among the plant hormones that control plant stress responses. In order to precisely respond to a range of environmental stimuli, these hormones allow plants to control gene expression, signal transduction, and physiological adaptation through intricate networks of antagonistic and constructive interactions. This review focuses on how the principal hormonal signaling pathways (in particular, ABA-ET, ABA-JA, JA-SA, and ABA-auxin) intricately interact and how they affect the plant stress response. For example, ABA-driven drought tolerance controls immunological responses and stomatal behavior through antagonistic interactions with ET and SA, while using SnRK2 kinases to activate genes that react to stress. Similarly, the transcription factor MYC2 is an essential node in ABA–JA crosstalk and mediates the integration of defense and drought signals. Plants’ complex hormonal crosstalk networks are an example of a precisely calibrated regulatory system that strikes a balance between growth and abiotic stress adaptation. ABA, JA, SA, ethylene, auxin, cytokinin, GA, and BR are examples of central nodes that interact dynamically and context-specifically to modify signal transduction, rewire gene expression, and change physiological outcomes. To engineer stress-resilient crops in the face of shifting environmental challenges, a systems-level view of these pathways is provided by a combination of enrichment analyses and STRING-based interaction mapping. These hormonal interactions are directly related to the United Nations Sustainable Development Goals (SDGs), particularly SDGs 2 (Zero Hunger), 12 (Responsible Consumption and Production), and 13 (Climate Action). This review emphasizes the potential of biotechnologies to use hormone signaling to improve agricultural performance and sustainability by uncovering the molecular foundations of hormonal crosstalk. Increasing our understanding of these pathways presents a strategic opportunity to increase crop resilience, reduce environmental degradation, and secure food systems in the face of increasing climate unpredictability. Full article
Show Figures

Figure 1

14 pages, 635 KiB  
Review
Methods of Control of Parasitic Weeds of the Genus Cuscuta—Current Status and Future Perspectives
by Lyuben Zagorchev, Tzvetelina Zagorcheva, Denitsa Teofanova and Mariela Odjakova
Plants 2025, 14(15), 2321; https://doi.org/10.3390/plants14152321 - 27 Jul 2025
Viewed by 478
Abstract
Dodders (Cuscuta spp.; Convolvulaceae) are parasitic weeds that pose major challenges to agriculture due to their ability to infect a wide range of host plants, extract nutrients, and transmit pathogens. Their control is especially challenging because of the seed longevity, resistance to [...] Read more.
Dodders (Cuscuta spp.; Convolvulaceae) are parasitic weeds that pose major challenges to agriculture due to their ability to infect a wide range of host plants, extract nutrients, and transmit pathogens. Their control is especially challenging because of the seed longevity, resistance to herbicides, and the capacity for vegetative regeneration. Mechanical methods such as hand-pulling or mowing are labour-intensive and often ineffective for large infestations. Chemical control is limited, as systemic herbicides often affect the host species equally, or even worse than the parasite. Current research is exploring biological control methods, including allelopathic compounds, host-specific fungal pathogens, and epiparasitic insects, though these methods remain largely experimental. An integrated approach that combines prevention, targeted mechanical removal, and biological methods offers the most promising path for long-term management. Continued research is essential to develop effective, sustainable control strategies while exploring possible beneficial uses of these complex parasitic plants. The present review aims to thoroughly summarise the existing literature, emphasising the most recent advances and discussing future perspectives. Full article
Show Figures

Figure 1

22 pages, 4664 KiB  
Article
Aerial Image-Based Crop Row Detection and Weed Pressure Mapping Method
by László Moldvai, Péter Ákos Mesterházi, Gergely Teschner and Anikó Nyéki
Agronomy 2025, 15(8), 1762; https://doi.org/10.3390/agronomy15081762 - 23 Jul 2025
Viewed by 292
Abstract
Accurate crop row detection is crucial for determining weed pressure (weeds item per square meter). However, this task is complicated by the similarity between crops and weeds, the presence of missing plants within rows, and the varying growth stages of both. Our hypothesis [...] Read more.
Accurate crop row detection is crucial for determining weed pressure (weeds item per square meter). However, this task is complicated by the similarity between crops and weeds, the presence of missing plants within rows, and the varying growth stages of both. Our hypothesis was that in drone imagery captured at altitudes of 20–30 m—where individual plant details are not discernible—weed presence among crops can be statistically detected, allowing for the generation of a weed distribution map. This study proposes a computer vision detection method using images captured by unmanned aerial vehicles (UAVs) consisting of six main phases. The method was tested on 208 images. The algorithm performs well under normal conditions; however, when the weed density is too high, it fails to detect the row direction properly and begins processing misleading data. To investigate these cases, 120 artificial datasets were created with varying parameters, and the scenarios were analyzed. It was found that a rate variable—in-row concentration ratio (IRCR)—can be used to determine whether the result is valid (usable) or invalid (to be discarded). The F1 score is a metric combining precision and recall using a harmonic mean, where “1” indicates that precision and recall are equally weighted, i.e., β = 1 in the general Fβ formula. In the case of moderate weed infestation, where 678 crop plants and 600 weeds were present, the algorithm achieved an F1 score of 86.32% in plant classification, even with a 4% row disturbance level. Furthermore, IRCR also indicates the level of weed pressure in the area. The correlation between the ground truth weed-to-crop ratio and the weed/crop classification rate produced by the algorithm is 98–99%. As a result, the algorithm is capable of filtering out heavily infested areas that require full weed control and capable of generating weed density maps on other cases to support precision weed management. Full article
Show Figures

Figure 1

20 pages, 2970 KiB  
Review
The Rise of Eleusine indica as Brazil’s Most Troublesome Weed
by Ricardo Alcántara-de la Cruz, Laryssa Barbosa Xavier da Silva, Hudson K. Takano, Lucas Heringer Barcellos Júnior and Kassio Ferreira Mendes
Agronomy 2025, 15(8), 1759; https://doi.org/10.3390/agronomy15081759 - 23 Jul 2025
Viewed by 577
Abstract
Goosegrass (Eleusine indica) is a major weed in Brazilian soybean, corn, and cotton systems, infesting over 60% of grain-producing areas and potentially reducing yields by more than 50%. Its competitiveness is due to its rapid emergence, fast tillering, C4 metabolism, and [...] Read more.
Goosegrass (Eleusine indica) is a major weed in Brazilian soybean, corn, and cotton systems, infesting over 60% of grain-producing areas and potentially reducing yields by more than 50%. Its competitiveness is due to its rapid emergence, fast tillering, C4 metabolism, and adaptability to various environmental conditions. A critical challenge relates to its widespread resistance to multiple herbicide modes of action, notably glyphosate and acetyl-CoA carboxylate (ACCase) inhibitors. Resistance mechanisms include 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) target-site mutations, gene amplification, reduced translocation, glyphosate detoxification, and mainly ACCase target-site mutations. This literature review summarizes the current knowledge on herbicide resistance in goosegrass and its management in Brazil, with an emphasis on integrating chemical and non-chemical strategies. Mechanical and physical controls are effective in early or local infestations but must be combined with chemical methods for lasting control. Herbicides applied post-emergence of weeds, especially systemic ACCase inhibitors and glyphosate, remain important tools, although widespread resistance limits their effectiveness. Sequential applications and mixtures with contact herbicides such as glufosinate and protoporphyrinogen oxidase (PPO) inhibitors can improve control. Pre-emergence herbicides are effective when used before or immediately after planting, with adequate soil moisture being essential for their activation and effectiveness. Given the complexity of resistance mechanisms, chemical control alone is not enough. Integrated weed management programs, combining diverse herbicides, sequential treatments, and local resistance monitoring, are essential for sustainable goosegrass management. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

22 pages, 17694 KiB  
Article
Studies on Host–Parasite Relationship Between Soybean Plants and Aphelenchoides besseyi
by Neveen Atta Elhamouly, Nehal Atta, Shiming Liu and Deliang Peng
Life 2025, 15(7), 1154; https://doi.org/10.3390/life15071154 - 21 Jul 2025
Viewed by 374
Abstract
Aphelenchoides besseyi is considered a highly prevalent facultative plant-parasitic nematode and has a significant impact on various economically important crops globally. Due to the lack of knowledge on the efficacy of various management techniques, A. besseyi is still challenging to control in the [...] Read more.
Aphelenchoides besseyi is considered a highly prevalent facultative plant-parasitic nematode and has a significant impact on various economically important crops globally. Due to the lack of knowledge on the efficacy of various management techniques, A. besseyi is still challenging to control in the open field. The present investigation successfully shed light on some significant new points, including the following: (1) A. besseyi was confirmed inside all soybean tissues—including roots, stems, leaves, and seeds—indicating its endoparasitic nature and its strong ability to reach the upper foliar system where it causes green stem and foliar retention syndrome (GSFR) symptoms; (2) inoculated plants exhibited reduced vegetative growth parameters, as non-inoculated control soybean plants showed higher values of plant height (PH), fresh root weight (FRW), and fresh shoot weight (FSW) compared to inoculated plants; (3) Yudou 29 was identified as highly resistant to A. besseyi, as results from the resistance screening assay among different Chinese soybean cultivars confirmed its strong resistance under natural field infestation conditions; and (4) soybean seeds may act as inoculum sources of A. besseyi, highlighting the need to develop more effective control measures to prevent or limit nematode dissemination through seed transmission. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

16 pages, 2821 KiB  
Article
Metabolomic Analysis Uncovers the Presence of Pimarenyl Cation-Derived Diterpenes as Insecticidal Constituents of Sphagneticola trilobata
by Lilia Chérigo, Juan Fernández, Ramy Martínez and Sergio Martínez-Luis
Plants 2025, 14(14), 2219; https://doi.org/10.3390/plants14142219 - 17 Jul 2025
Viewed by 404
Abstract
Aphis gossypii is a significant global pest that impacts numerous agricultural crops and vegetables, causing direct damage to food plants and indirect damage through the transmission of phytopathogenic viruses, primarily begomoviruses. In Panama, particularly in the Azuero region, viral infections transmitted by this [...] Read more.
Aphis gossypii is a significant global pest that impacts numerous agricultural crops and vegetables, causing direct damage to food plants and indirect damage through the transmission of phytopathogenic viruses, primarily begomoviruses. In Panama, particularly in the Azuero region, viral infections transmitted by this aphid can affect a substantial share of tomato crops cultivated for industrial use. A traditional alternative to synthetic pesticides involves exploring plant extracts with insecticidal properties derived from wild plants found in our tropical forests, which can be easily prepared and applied by farmers. In this context, the present research aimed to evaluate the insecticidal activity of ethanolic extracts from the stems and leaves of Sphagneticola trilobata on both nymphs and adults of A. gossypii. Mortality was assessed at 24, 48, and 72 h after applying three doses of each extract (25, 50, and 100 µg/L). A standard phytochemical analysis to determine insecticidal activity revealed that both extracts exhibited significant efficacy at the highest concentration tested; however, the leaf extract demonstrated greater effectiveness at lower concentrations. A comprehensive metabolomic study indicated that the active compounds are diterpenes derived from the pimarenyl cation. These compounds have been extensively documented for their insecticidal potential against various insect species, suggesting that ethanolic extracts from this plant could serve as viable candidates for agricultural insecticides to combat aphid infestations. Full article
(This article belongs to the Special Issue Sustainable Strategies for Managing Plant Diseases)
Show Figures

Figure 1

24 pages, 1481 KiB  
Article
Sources of Environmental Exposure to the Naturally Occurring Anabolic Steroid Ecdysterone in Horses
by Martin N. Sillence, Kathi Holt, Fang Ivy Li, Patricia A. Harris, Mitchell Coyle and Danielle M. Fitzgerald
Animals 2025, 15(14), 2120; https://doi.org/10.3390/ani15142120 - 17 Jul 2025
Viewed by 337
Abstract
Ecdysterone controls moulting and reproduction in insects, crustaceans, and helminths. It is also produced by many plants, probably as an insect deterrent. The steroid is not made by vertebrates but has anabolic effects in mammals and could be useful for treating sarcopenia in [...] Read more.
Ecdysterone controls moulting and reproduction in insects, crustaceans, and helminths. It is also produced by many plants, probably as an insect deterrent. The steroid is not made by vertebrates but has anabolic effects in mammals and could be useful for treating sarcopenia in aged horses. However, ecdysterone is banned in horseracing and equestrian sports, and with no limit of reporting, the risk of unintended exposure to this naturally occurring prohibited substance is a concern. To explore this risk, pasture plants and hay samples were analysed for ecdysterone content, as well as samples of blood, faeces, and intestinal mucosa from horses (euthanized for non-research purposes) with varying degrees of endo-parasite infestation. The variability in serum ecdysterone concentrations between different horses after administering a fixed dose was also examined. Ecdysterone was detected in 24 hay samples (0.09 to 3.74 µg/g) and several weeds, with particularly high concentrations in Chenopodium album (244 µg/g) and Solanum nigrum (233 µg/g). There was a positive correlation between faecal ecdysterone and faecal egg counts, but no effect of anthelmintic treatment and no relation to the number of encysted cyathostome larvae in the large intestine mucosa. Certain horses maintained an unusually high serum ecdysterone concentration over several weeks and/or displayed an abnormally large response to oral ecdysterone administration. Thus, the risk of environmental exposure to ecdysterone is apparent, and several factors must be considered when determining an appropriate dosage for clinical studies or setting a reporting threshold for equine sports. Full article
Show Figures

Figure 1

12 pages, 2137 KiB  
Article
Electrophysiology and Behavior of Tomicus yunnanensis to Pinus yunnanensis Volatile Organic Compounds Across Infestation Stages in Southwest China
by Jinlin Liu, Mengdie Zhang, Lubing Qian, Zhenji Wang and Zongbo Li
Forests 2025, 16(7), 1178; https://doi.org/10.3390/f16071178 - 17 Jul 2025
Viewed by 284
Abstract
Tomicus yunnanensis Kirkendall and Faccoli, a native bark beetle species and key pest of Pinus yunnanensis Franch. in southwestern China, relies on host-derived volatile organic compounds (VOCs) for host selection. To unravel these mechanisms, we collected VOCs from P. yunnanensis trunks across four [...] Read more.
Tomicus yunnanensis Kirkendall and Faccoli, a native bark beetle species and key pest of Pinus yunnanensis Franch. in southwestern China, relies on host-derived volatile organic compounds (VOCs) for host selection. To unravel these mechanisms, we collected VOCs from P. yunnanensis trunks across four infestation stages (healthy, early-infested, weakened, near-dead) using dynamic headspace sampling. Chemical profiling via gas chromatography–mass spectrometry (GC-MS) identified 51 terpenoids, with α-pinene as the most abundant component. VOC profiles differed markedly between healthy and early-infested trees, while gradual shifts in compound diversity and abundance occurred from the weakened to near-dead stages. Bioactive compounds were screened using gas chromatography–electroantennographic detection (GC-EAD) and a Y-tube olfactometer. Electrophysiological responses in T. yunnanensis were triggered by α-pinene, β-pinene, 3-carene, 2-thujene, and 4-allylanisole. Behavioral tests revealed that α-pinene, 3-carene, and 2-thujene acted as attractants, whereas β-pinene and 4-allylanisole functioned as repellents. These results indicate that infestation-induced VOC dynamics guide beetle behavior, with attractants likely promoting host colonization during early infestation and repellents signaling deteriorating host suitability in later stages. By mapping these chemical interactions, our study identifies potential plant-derived semiochemicals for targeted pest management. Integrating these compounds with pheromones could enhance the monitoring and control strategies for T. yunnanensis, offering ecologically sustainable solutions for pine ecosystems. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

23 pages, 5108 KiB  
Review
The Invasive Mechanism and Impact of Arundo donax, One of the World’s 100 Worst Invasive Alien Species
by Hisashi Kato-Noguchi and Midori Kato
Plants 2025, 14(14), 2175; https://doi.org/10.3390/plants14142175 - 14 Jul 2025
Viewed by 369
Abstract
Arundo donax L. has been introduced in markets worldwide due to its economic value. However, it is listed in the world’s 100 worst alien invasive species because it easily escapes from cultivation, and forms dense monospecific stands in riparian areas, agricultural areas, and [...] Read more.
Arundo donax L. has been introduced in markets worldwide due to its economic value. However, it is listed in the world’s 100 worst alien invasive species because it easily escapes from cultivation, and forms dense monospecific stands in riparian areas, agricultural areas, and grassland areas along roadsides, including in protected areas. This species grows rapidly and produces large amounts of biomass due to its high photosynthetic ability. It spreads asexually through ramets, in addition to stem and rhizome fragments. Wildfires, flooding, and human activity promote its distribution and domination. It can adapt to various habitats and tolerate various adverse environmental conditions, such as cold temperatures, drought, flooding, and high salinity. A. donax exhibits defense mechanisms against biotic stressors, including herbivores and pathogens. It produces indole alkaloids, such as bufotenidine and gramine, as well as other alkaloids that are toxic to herbivorous mammals, insects, parasitic nematodes, and pathogenic fungi and oomycetes. A. donax accumulates high concentrations of phytoliths, which also protect against pathogen infection and herbivory. Only a few herbivores and pathogens have been reported to significantly damage A. donax growth and populations. Additionally, A. donax exhibits allelopathic activity against competing plant species, though the allelochemicals involved have yet to be identified. These characteristics may contribute to its infestation, survival, and population expansion in new habitats as an invasive plant species. Dense monospecific stands of A. donax alter ecosystem structures and functions. These stands impact abiotic processes in ecosystems by reducing water availability, and increasing the risk of erosion, flooding, and intense fires. The stands also negatively affect biotic processes by reducing plant diversity and richness, as well as the fitness of habitats for invertebrates and vertebrates. Eradicating A. donax from a habitat requires an ongoing, long-term integrated management approach based on an understanding of its invasive mechanisms. Human activity has also contributed to the spread of A. donax populations. There is an urgent need to address its invasive traits. This is the first review focusing on the invasive mechanisms of this plant in terms of adaptation to abiotic and biotic stressors, particularly physiological adaptation. Full article
Show Figures

Graphical abstract

Back to TopTop