Methods of Control of Parasitic Weeds of the Genus Cuscuta—Current Status and Future Perspectives
Abstract
1. Introduction to Cuscuta spp. as Invasive Weeds
2. Challenges to Cuscuta Control
3. Mechanical Control
4. Chemical Methods of Control
4.1. Herbicides
4.2. Allelopathy
5. Biological Control
6. Combating Invasive Alien Species
7. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ALS | Acetolactate Synthase |
CABI | Commonwealth Agricultural Bureaux International |
EPPO | European and Mediterranean Plant Protection Organisation |
GR24 | Synthetic Strigolacton Analogue |
HRAC | Herbicide Resistance Action Committee |
USDA | United States Department of Agriculture |
References
- Costea, M.; García, M.A.; Stefanović, S. A phylogenetically based infrageneric classification of the parasitic plant genus Cuscuta (dodders, Convolvulaceae). Syst. Bot. 2015, 40, 269–285. [Google Scholar] [CrossRef]
- Park, I.; Song, J.-H.; Yang, S.; Kim, W.J.; Choi, G.; Moon, B.C. Cuscuta species identification based on the morphology of reproductive organs and complete chloroplast genome sequences. Int. J. Mol. Sci. 2019, 20, 2726. [Google Scholar] [CrossRef]
- Revill, M.J.; Stanley, S.; Hibberd, J.M. Plastid genome structure and loss of photosynthetic ability in the parasitic genus Cuscuta. J. Exp. Bot. 2005, 56, 2477–2486. [Google Scholar] [CrossRef]
- Albert, M.; Belastegui-Macadam, X.M.; Bleischwitz, M.; Kaldenhoff, R. Cuscuta spp.:“Parasitic plants in the spotlight of plant physiology, economy and ecology”. In Progress in Botany; Lüttge, U., Beyschlag, W., Murata, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 69, pp. 267–277. [Google Scholar]
- Těšitel, J. Functional biology of parasitic plants: A review. Plant Ecol. Evol. 2016, 149, 5–20. [Google Scholar] [CrossRef]
- Benvenuti, S.; Dinelli, G.; Bonetti, A.; Catizone, P. Germination ecology, emergence and host detection in Cuscuta campestris. Weed Res. 2005, 45, 270–278. [Google Scholar] [CrossRef]
- Runyon, J.B.; Mescher, M.C.; De Moraes, C.M. Volatile chemical cues guide host location and host selection by parasitic plants. Science 2006, 313, 1964–1967. [Google Scholar] [CrossRef]
- Barath, K.; Csiky, J. Host range and host choice of Cuscuta species in Hungary. Acta Bot. Croat. 2012, 71, 215–227. [Google Scholar] [CrossRef]
- Masanga, J.; Oduor, R.; Alakonya, A.; Ngugi, M.; Ojola, P.; Bellis, E.S.; Runo, S. Comparative phylogeographic analysis of Cuscuta campestris and Cuscuta reflexa in Kenya: Implications for management of highly invasive vines. Plants People Planet 2022, 4, 182–193. [Google Scholar] [CrossRef]
- Hwang, S.; Kil, J.; Lee, C.-W.; Kim, Y. Distribution and Host Plants of Parasitic Weed Cuscuta pentagona Engelm. Korean J. Plant Resour. 2013, 26, 289–302. [Google Scholar] [CrossRef]
- Parker, C. Parasitic weeds: A world challenge. Weed Sci. 2012, 60, 269–276. [Google Scholar] [CrossRef]
- Sarić-Krsmanović, M.; Zagorchev, L.; Gajić Umiljendić, J.; Rajković, M.; Radivojević, L.; Teofanova, D.; Božić, D.; Vrbničanin, S. Variability in early seed development of 26 populations of Cuscuta campestris Yunck.: The significance of host, seed age, morphological trait, light, temperature, and genetic variance. Agronomy 2022, 12, 559. [Google Scholar] [CrossRef]
- Kaiser, B.; Vogg, G.; Fürst, U.B.; Albert, M. Parasitic plants of the genus Cuscuta and their interaction with susceptible and resistant host plants. Front. Plant Sci. 2015, 6, 45. [Google Scholar] [CrossRef]
- Baráth, K. Effect of species environment on host preference of Cuscuta campestris. Plant Ecol. 2021, 222, 1023–1032. [Google Scholar] [CrossRef]
- Wu, A.-P.; Zhong, W.; Yuan, J.-R.; Qi, L.-Y.; Chen, F.-L.; Liang, Y.-S.; He, F.-F.; Wang, Y.-H. The factors affecting a native obligate parasite, Cuscuta australis, in selecting an exotic weed, Humulus scandens, as its host. Sci. Rep. 2019, 9, 511. [Google Scholar] [CrossRef]
- Koch, A.M.; Binder, C.; Sanders, I.R. Does the generalist parasitic plant Cuscuta campestris selectively forage in heterogeneous plant communities? New Phytol. 2004, 162, 147–155. [Google Scholar] [CrossRef]
- Marambe, B.; Wijesundara, S.; Tennakoon, K.; Pindeniya, D.; Jayasinghe, C. Growth and development of Cuscuta chinensis Lam. and its impact on selected crops. Weed Biol. Manag. 2002, 2, 79–83. [Google Scholar] [CrossRef]
- Teofanova, D.; Lozanova, Y.; Lambovska, K.; Pachedjieva, K.; Tosheva, A.; Odjakova, M.; Zagorchev, L. Cuscuta spp. populations as potential reservoirs and vectors of four plant viruses. Phytoparasitica 2022, 50, 555–566. [Google Scholar] [CrossRef]
- Savov, S.; Marinova, B.; Teofanova, D.; Savov, M.; Odjakova, M.; Zagorchev, L. Parasitic Plants—Potential Vectors of Phytopathogens. Pathogens 2024, 13, 484. [Google Scholar] [CrossRef]
- Yen, F.-L.; Wu, T.-H.; Lin, L.-T.; Lin, C.-C. Hepatoprotective and antioxidant effects of Cuscuta chinensis against acetaminophen-induced hepatotoxicity in rats. J. Ethnopharmacol. 2007, 111, 123–128. [Google Scholar] [CrossRef]
- Suresh, V.; Sruthi, V.; Padmaja, B.; Asha, V. In vitro anti-inflammatory and anti-cancer activities of Cuscuta reflexa Roxb. J. Ethnopharmacol. 2011, 134, 872–877. [Google Scholar] [CrossRef]
- Koca-Caliskan, U.; Yilmaz, I.; Taslidere, A.; Yalcin, F.N.; Aka, C.; Sekeroglu, N. Cuscuta arvensis Beyr “dodder”: In vivo hepatoprotective effects against acetaminophen-induced hepatotoxicity in rats. J. Med. Food 2018, 21, 625–631. [Google Scholar] [CrossRef]
- Gangarde, P.; Bhatt, S.; Pujari, R. Assessment of Neuroprotective Potential of Cuscuta reflexa in Aluminium Chloride-Induced Experimental Model of Alzheimer’s Disease: In Vitro and In Vivo Studies. J. Trace Elem. Med. Biol. 2025, 88, 127612. [Google Scholar] [CrossRef]
- Mehanna, E.T.; El-Sayed, N.M.; Ibrahim, A.K.; Ahmed, S.A.; Abo-Elmatty, D.M. Isolated compounds from Cuscuta pedicellata ameliorate oxidative stress and upregulate expression of some energy regulatory genes in high fat diet induced obesity in rats. Biomed. Pharmacother. 2018, 108, 1253–1258. [Google Scholar] [CrossRef]
- Ahmadi, K.; Omidi, H.; Dehaghi, M.A. A Review on the Botanical, Phytochemical and Pharmacological Characteristics of Cuscuta Spp. In Parasitic Plants; IntechOpen: London, UK, 2022. [Google Scholar]
- Donnapee, S.; Li, J.; Yang, X.; Ge, A.-h.; Donkor, P.O.; Gao, X.-m.; Chang, Y.-x. Cuscuta chinensis Lam.: A systematic review on ethnopharmacology, phytochemistry and pharmacology of an important traditional herbal medicine. J. Ethnopharmacol. 2014, 157, 292–308. [Google Scholar] [CrossRef]
- Pignone, D.; Hammer, K. Parasitic angiosperms as cultivated plants? Genet. Resour. Crop Evol. 2016, 63, 1273–1284. [Google Scholar] [CrossRef]
- Heide-Jørgensen, H. Parasitic Flowering Plants; Brill: Leiden, The Netherlands, 2008. [Google Scholar]
- Yuncker, T.G. The genus Cuscuta. Mem. Torrey Bot. Club 1932, 18, 109–331. [Google Scholar]
- GarcÍa, M.A.; MartÍn, M.P. Phylogeny of Cuscuta subgenus Cuscuta (Convolvulaceae) based on nrDNA ITS and chloroplast trnL intron sequences. Syst. Bot. 2007, 32, 899–916. [Google Scholar] [CrossRef]
- Westbrooks, R.G.; Eplee, R.E. Strategies for preventing the world movement of invasive plants: A United States perspective. In Proceedings of the Conference on Alien Species, 2nd Trondheim Conference on Biodiversity, Trondheim, Norway, 1–5 July 1996; pp. 283–293. [Google Scholar]
- García, M. Cuscuta europaea (European dodder). CABI Compend. 2022, 17113. [Google Scholar]
- Mishra, J. Biology and management of Cuscuta species. Indian. J. Weed Sci. 2009, 41, 1–11. [Google Scholar]
- Tănase, M.; Stanciu, M.; Moise, C.; Gheorghe, M. Ecological and economic impact of dodder species (Cuscuta spp. Convolvulaceae) on pratological ecosystems. J. Hortic. For. Biotechnol. 2012, 16, 93–97. [Google Scholar]
- Masanga, J.; Mwangi, B.N.; Kibet, W.; Sagero, P.; Wamalwa, M.; Oduor, R.; Ngugi, M.; Alakonya, A.; Ojola, P.; Bellis, E.S. Physiological and ecological warnings that dodders pose an exigent threat to farmlands in Eastern Africa. Plant Physiol. 2021, 185, 1457–1467. [Google Scholar] [CrossRef]
- Press, M.C.; Phoenix, G.K. Impacts of parasitic plants on natural communities. New Phytol. 2005, 166, 737–751. [Google Scholar] [CrossRef]
- Costea, M.; Tardif, F.J. The biology of Canadian weeds. 133. Cuscuta campestris Yuncker, C. gronovii Willd. ex Schult., C. umbrosa Beyr. ex Hook., C. epithymum (L.) L. and C. epilinum Weihe. Can. J. Plant Sci. 2006, 86, 293–316. [Google Scholar] [CrossRef]
- Tingey, D.; Allred, K.R. Breaking dormancy in seeds of Cuscuta approximata. Weeds 1961, 9, 429–436. [Google Scholar] [CrossRef]
- Rubiales, D.; Fernández-Aparicio, M.; Wegmann, K.; Joel, D. Revisiting strategies for reducing the seedbank of Orobanche and Phelipanche spp. Weed Res. 2009, 49, 23–33. [Google Scholar] [CrossRef]
- Zwanenburg, B.; Mwakaboko, A.S.; Kannan, C. Suicidal germination for parasitic weed control. Pest Manag. Sci. 2016, 72, 2016–2025. [Google Scholar] [CrossRef]
- Samejima, H.; Babiker, A.G.; Takikawa, H.; Sasaki, M.; Sugimoto, Y. Practicality of the suicidal germination approach for controlling Striga hermonthica. Pest Manag. Sci. 2016, 72, 2035–2042. [Google Scholar] [CrossRef]
- Uraguchi, D.; Kuwata, K.; Hijikata, Y.; Yamaguchi, R.; Imaizumi, H.; Am, S.; Rakers, C.; Mori, N.; Akiyama, K.; Irle, S. A femtomolar-range suicide germination stimulant for the parasitic plant Striga hermonthica. Science 2018, 362, 1301–1305. [Google Scholar] [CrossRef]
- Jamil, M.; Wang, J.Y.; Yonli, D.; Patil, R.H.; Riyazaddin, M.; Gangashetty, P.; Berqdar, L.; Chen, G.-T.E.; Traore, H.; Margueritte, O. A new formulation for strigolactone suicidal germination agents, towards successful Striga management. Plants 2022, 11, 808. [Google Scholar] [CrossRef]
- Wigchert, S.; Kuiper, E.; Boelhouwer, G.; Nefkens, G.; Verkleij, J.; Zwanenburg, B. Dose–response of seeds of the parasitic weeds Striga and Orobanche toward the synthetic germination stimulants GR 24 and Nijmegen 1. J. Agric. Food Chem. 1999, 47, 1705–1710. [Google Scholar] [CrossRef]
- Bao, Y.Z.; Yao, Z.Q.; Cao, X.L.; Peng, J.F.; Xu, Y.; Chen, M.X.; Zhao, S.F. Transcriptome analysis of Phelipanche aegyptiaca seed germination mechanisms stimulated by fluridone, TIS108, and GR24. PLoS ONE 2017, 12, e0187539. [Google Scholar] [CrossRef]
- Ye, X.; Zhang, M.; Zhang, M.; Ma, Y. Assessing the performance of maize (Zea mays L.) as trap crops for the management of sunflower broomrape (Orobanche cumana Wallr.). Agronomy 2020, 10, 100. [Google Scholar] [CrossRef]
- Leilah, A.; El-Kalla, S.; Ramadan, G.; Abd-Rabboh, A. Effect of dodder and some control methods for productivity of Egyptian clover cultivars. J. Plant Prod. 2010, 1, 55–65. [Google Scholar] [CrossRef]
- Lanini, W.; Kogan, M. Biology and management of Cuscuta in crops. Int. J. Agric. Nat. Resour. 2005, 32, 127–141. [Google Scholar] [CrossRef]
- Kyoung, E.-S.; Moon, K.-O.; Oh, J.-B. Phytosanitary Management of Dodder Seeds (Cuscuta spp.) Mixed in the Imported Seeds with the Dry Heat-treatment. Weed Turfgrass Sci. 2016, 5, 10–16. [Google Scholar] [CrossRef]
- Yaacoby, T.; Goldwasser, Y.; Paporish, A.; Rubin, B. Germination of Phelipanche aegyptiaca and Cuscuta campestris seeds in composted farm manure. Crop Prot. 2015, 72, 76–82. [Google Scholar] [CrossRef]
- Petcu, P.; Pruteanu, A.; Ciobanu, V.G.; Nicolau, A.-M. Experimental Investigation of Magnetic Drum Separation Techniques for Dodder (Cuscuta L.) Seed Removal from Alfalfa Seed Mixtures. Agriculture 2024, 14, 2313. [Google Scholar] [CrossRef]
- Đokić, D.; Oro, V.; Štrbanović, R.; Poštić, D.; Milenković, J.; Knežević, J.; Stanisavljević, R. Impact of Cuscuta spp. seed size variability on machine operation during seed finishing of natural alfalfa seeds. Biol. Nyssana 2023, 14, 57–63. [Google Scholar]
- Dawson, J.H.; Musselman, L.J.; Wolswinkel, P.; Dörr, I. Biology and control of Cuscuta. Rev. Weed Sci. 1994, 6, 256–317. [Google Scholar]
- Nadler-Hassar, T.; Shaner, D.L.; Nissen, S.; Westra, P.; Rubin, B. Are herbicide-resistant crops the answer to controlling Cuscuta? Pest. Manag. Sci. 2009, 65, 811–816. [Google Scholar] [CrossRef]
- Almhemed, K.; Ustuner, T. Evaluation of four control methods efficiency and damage mitigation of field dodder (Cuscuta campestris Yunck.) in eggplant cultivation. Jordan J. Agric. Sci. 2024, 20, 230–239. [Google Scholar] [CrossRef]
- Meighani, F.; Mamnoei, E.; Hatami, S.; Samadi-Kalkhoran, E.; Khalil-Tahmasebi, B.; Korres, N.E.; Bajwa, A.A. Chemical control of the field dodder (Cuscuta campestris) in new-seeded alfalfa (Medicago sativa). Agronomy 2024, 14, 1643. [Google Scholar] [CrossRef]
- Hosseyni, S.M.; Najafi, H.; Sani, B.; Mozafari, H. Investigation the effect of the application of single and mixing of propyzamide and ethofumesate herbicides in the control of dodder (Cuscuta campestris), grass and broad leaves weeds of sugar beet (Beta vulgaris L.). J. Crop Ecophysiol. 2023, 16, 563–580. [Google Scholar]
- Gupta, V.; Sasode, D.S.; Joshi, E.; Singh, Y.; Ojha, R.; Bhadu, K. Herbicidal impact on density of Cuscuta campestris Yunck. emerged in berseem fodder crop. Indian J. Weed Sci. 2022, 54, 334–336. [Google Scholar] [CrossRef]
- Krsmanovic, M.S.; Uludag, A.; Bozıc, D.; Radıvojevıc, L.; Gajıc-umıljendıc, J.; Vrbnıcanın, S. The effect of glyphosate on anatomical and physiological features of alfalfa infested with field dodder (Cuscuta campestris Yunck.). J. Agric. Sci. 2020, 26, 181–189. [Google Scholar]
- Seif-El-Yazal, M.A.; Hussein Ali, I.H. Ameliorative Impact of Glyphosate Herbicide Treatments on Dodder (Cuscuta campestris) Control in Nerium oleander L. Shrubs. Int. J. Agric. Sci. Technol. 2021, 1, 24–32. [Google Scholar] [CrossRef]
- Dawson, J.H. Dodder (Cuscuta spp.) control with dinitroaniline herbicides in alfalfa (Medicago sativa). Weed Technol. 1990, 4, 341–348. [Google Scholar] [CrossRef]
- Ali, R. Influence of Chemicals and Mechanical Control Methods on Parasite Dodder (Cuscuta planiflora) Controlling in Clover (Trifolium alexandrinum L.) Crops. J. Plant Prot. Pathol. 2018, 9, 691–695. [Google Scholar] [CrossRef]
- Goldwasser, Y.; Rabinovitz, O.; Hayut, E.; Kuzikaro, H.; Sibony, M.; Rubin, B. Selective and effective control of field dodder (Cuscuta campestris) in chickpea with granular pendimethalin. Weed Technol. 2019, 33, 586–594. [Google Scholar] [CrossRef]
- Hock, S.M.; Wiecko, G.; Knezevic, S.Z. Glyphosate dose affected control of field dodder (Cuscuta campestris) in the tropics. Weed Technol. 2008, 22, 151–155. [Google Scholar] [CrossRef]
- Mishra, J.; Moorthy, B.; Bhan, M. Efficacy of herbicides against field dodder (Cuscuta campestris) in lentil, chickpea and linseed. Indian J. Weed Sci. 2005, 37, 220–224. [Google Scholar]
- Goldwasser, Y.; Sazo, M.R.M.; Lanini, W.T. Control of field dodder (Cuscuta campestris) parasitizing tomato with ALS-inhibiting herbicides. Weed Technol. 2012, 26, 740–746. [Google Scholar] [CrossRef]
- Weston, L.A.; Duke, S.O. Weed and crop allelopathy. Crit. Rev. Plant Sci. 2003, 22, 367–389. [Google Scholar] [CrossRef]
- Qasem, J.; Foy, C. Weed allelopathy, its ecological impacts and future prospects: A review. J. Crop Prod. 2001, 4, 43–119. [Google Scholar] [CrossRef]
- Moreno-Robles, A.; Cala Peralta, A.; Soriano, G.; Zorrilla, J.G.; Masi, M.; Vilariño-Rodríguez, S.; Cimmino, A.; Fernández-Aparicio, M. Identification of allelochemicals with differential modes of phytotoxicity against Cuscuta campestris. Agriculture 2022, 12, 1746. [Google Scholar] [CrossRef]
- Moreno-Robles, A.; Cala Peralta, A.; Zorrilla, J.G.; Soriano, G.; Masi, M.; Vilariño-Rodríguez, S.; Cimmino, A.; Fernández-Aparicio, M. Identification of structural features of hydrocinnamic acid related to its allelopathic activity against the parasitic weed Cuscuta campestris. Plants 2022, 11, 2846. [Google Scholar] [CrossRef]
- Zamanipour, M.; Piri, H.; Eskandarpour, S. Allelopathic potential effects of Rhazya stricta plant extract on growth control of Cuscuta campestris weed seedlings. Iran Agric. Res. 2024, 42, 55–61. [Google Scholar]
- Fernández-Aparicio, M.; Soriano, G.; Masi, M.; Carretero, P.; Vilariño-Rodríguez, S.; Cimmino, A. (4 Z)-Lachnophyllum lactone, an acetylenic furanone from Conyza bonariensis, identified for the first time with allelopathic activity against Cuscuta campestris. Agriculture 2022, 12, 790. [Google Scholar] [CrossRef]
- Shekari, F.; Shekari, F.; Najafi, J.; Abassi, A.; Radmanesh, Z.; Bones, A.M. Phytotoxic effects of catnip (Nepeta meyeri Benth.) on early growth stages development and infection potential of field dodder (Cuscuta campestris Yunck). Plants 2022, 11, 2629. [Google Scholar] [CrossRef]
- Hassannejad, S.; Ghafarbi, S.P. Allelopathic effects of some Lamiaceae on seed germination and seedling growth of dodder (Cuscuta campestris Yunck.). Int. J. Biosciences 2013, 3, 9–14. [Google Scholar] [CrossRef]
- Seyyedi, M.; Moghaddam, P.R.; Shahriari, R.; Azad, M.; Rezaei, E.E. Allelopathic potential of sunflower and caster bean on germination properties of dodder (Cuscuta campestris). Afr. J. Agric. Res. 2013, 8, 601–607. [Google Scholar]
- Khanh, T.; Xuan, T.; Chung, I. Rice allelopathy and the possibility for weed management. Ann. Appl. Biol. 2007, 151, 325–339. [Google Scholar] [CrossRef]
- Farooq, M.; Jabran, K.; Cheema, Z.A.; Wahid, A.; Siddique, K.H. The role of allelopathy in agricultural pest management. Pest Manag. Sci. 2011, 67, 493–506. [Google Scholar] [CrossRef]
- Othman, M.R.; Leong, S.T.; Bakar, B.; Awang, K.; Annuar, M.S.M. Allelopathic potentials of Cuscuta campestris Yuncker extracts on germination and growth of radish (Raphanus sativus L.) and lettuce (Lactuca sativa L.). J. Agric. Sci. 2012, 4, 57. [Google Scholar] [CrossRef]
- Fareed, H.M.; Ma, L.; Jianguo, J.; Jinghong, W.; Jakhar, A.M. Allelopathic activity of Cuscuta chinensis against weed species. J. Biol. Act. Prod. Nat. 2025, 15, 316–326. [Google Scholar] [CrossRef]
- Muhammad Fareed, H.; Ma, L.; Hong, Z.; Fangfei, F.; Osei Duah, M. Bhart Biochemical and parasitic effects of Cuscuta chinensis extracts on tomato growth: A preliminary study. J. Plant Interact. 2025, 20, 2448111. [Google Scholar] [CrossRef]
- Cook, J.C.; Charudattan, R.; Zimmerman, T.W.; Rosskopf, E.N.; Stall, W.M.; MacDonald, G.E. Effects of Alternaria destruens, glyphosate, and ammonium sulfate individually and integrated for control of dodder (Cuscuta pentagona). Weed Technol. 2009, 23, 550–555. [Google Scholar] [CrossRef]
- Liu, Y.; Ahmed, A.; Munir, S.; Chen, L.; He, P.; He, Y.; Tang, P.; Kong, B.; Wu, Y.; He, P. Alternaria alternata Pathogen from Cuscuta japonica Could Serve as a Potential Bioherbicide. J. Fungi 2024, 10, 494. [Google Scholar] [CrossRef]
- Pantović, J.G.; Sečanski, M.; Gordanić, S.; Todosijević, L.Š. Weed biological control with fungi-based bioherbicides. Acta Agric. Serbica 2023, 28, 33–37. [Google Scholar] [CrossRef]
- Piwowarczyk, R.; Mielczarek, Ł.; Panek-Wójcicka, M.; Ruraż, K. First report of Melanagromyza cuscutae (Diptera: Agromyzidae) from Poland. Fla. Entomol. 2020, 103, 124–126. [Google Scholar] [CrossRef]
- Baloch, G.; Mohyuddin, A.; Ghani, M. Biological control of Cuscuta spp. II. Biology and host-plant range of Melanagromyza cuscutae Hering [Dipt. agromyzidae]. Entomophaga 1967, 12, 481–489. [Google Scholar] [CrossRef]
- Zhekova, E.; Petkova, D.; Ivanova, I. Smicronyx smreczynskii F. Solari, 1952 (Insecta: Curculionidae): Possibilities for biological control of two Cuscuta species (Cuscutaceae) in district of Ruse. Acta Zool. Bulg. 2014, 66, 431–432. [Google Scholar]
- Yu, H.; Liu, J.; He, W.-M.; Miao, S.-L.; Dong, M. Cuscuta australis restrains three exotic invasive plants and benefits native species. Biol. Invasions 2011, 13, 747–756. [Google Scholar] [CrossRef]
- Yu, H.; Yu, F.-H.; Miao, S.-L.; Dong, M. Holoparasitic Cuscuta campestris suppresses invasive Mikania micrantha and contributes to native community recovery. Biol. Conserv. 2008, 141, 2653–2661. [Google Scholar] [CrossRef]
- Shen, H.; Hong, L.; Chen, H.; Ye, W.-H.; Cao, H.-L.; Wang, Z.-M. The response of the invasive weed Mikania micrantha to infection density of the obligate parasite Cuscuta campestris and its implications for biological control of M. micrantha. Bot. Stud. 2011, 52, 89–97. [Google Scholar]
- Wu, Z.; Guo, Q.; Li, M.; Jiang, L.; Li, F.; Zan, Q.; Zheng, J. Factors restraining parasitism of the invasive vine Mikania micrantha by the holoparasitic plant Cuscuta campestris. Biol. Invasions 2013, 15, 2755–2762. [Google Scholar] [CrossRef]
- He, J.; Xiao, Y.; Yimingniyazi, A. Effect of Parasitic Native Plant Cuscuta australis on Growth and Competitive Ability of Two Invasive Xanthium Plants. Biology 2023, 13, 23. [Google Scholar] [CrossRef]
- Wang, W.-B.; Gao, F.-F.; Feng, W.-W.; Wu, Q.-Y.; Feng, Y.-L. The native stem holoparasitic Cuscuta japonica suppresses the invasive plant Ambrosia trifida and related mechanisms in different light conditions in northeast China. Front. Plant Sci. 2022, 13, 904326. [Google Scholar] [CrossRef]
- Yuan, Y.; Oduor, A.M.; Zhao, Y.; Gao, S.; Han, C.; Li, J. Parasitism by Cuscuta gronovii mediated soil legacy effects and the competitive ability of invasive and native plant species by changing soil abiotic and biotic properties. Appl. Soil. Ecol. 2024, 202, 105583. [Google Scholar] [CrossRef]
- Qu, X.-J.; Fan, S.-J. First report of the parasitic invasive weed field dodder (Cuscuta campestris) parasitizing the confamilial invasive weed common morning-glory (Ipomoea purpurea) in Shandong, China. Plant Dis. 2021, 105, 1230. [Google Scholar] [CrossRef]
- Le, Q.V.; Tennakoon, K.U.; Metali, F.; Lim, L.B.; Bolin, J.F. Impact of Cuscuta australis infection on the photosynthesis of the invasive host, Mikania micrantha, under drought condition. Weed Biol. Manag. 2015, 15, 138–146. [Google Scholar] [CrossRef]
- Wang, W.-B.; Gao, F.-F.; Shao, M.-N.; Liu, M.-C.; Zhai, H.-F.; Qu, B.; Feng, Y.-L. First record of field dodder (Cuscuta campestris) parasitizing invasive buffalobur (Solanum rostratum). J. Plant Pathol. 2020, 102, 703–707. [Google Scholar] [CrossRef]
- Wang, J.; Tan, D.; Wei, G.; Guo, Y.; Chen, C.; Zhu, H.; Xue, Y.; Yin, C.; Zhang, Y. Studies on the Chemical Constituents of Cuscuta chinensis. Chem. Nat. Compd. 2016, 52, 1133–1136. [Google Scholar] [CrossRef]
- Cudney, D.; Orloff, S.; Reints, J. An integrated weed management procedure for the control of dodder (Cuscuta indecora) in alfalfa (Medicago sativa). Weed Technol. 1992, 6, 603–606. [Google Scholar] [CrossRef]
- Sandler, H.A. Managing Cuscuta gronovii (swamp dodder) in cranberry requires an integrated approach. Sustainability 2010, 2, 660–683. [Google Scholar] [CrossRef]
- Ramezani, S.; Najafi, H.; Nourmohammadi, G.; Meighani, F. Control of dodder (Cuscuta campestris) weed through integrated weed management system for higher sugar beet yield. Crop Res. 2018, 53, 68–75. [Google Scholar] [CrossRef]
Life Stage | Measures | Obstacles |
---|---|---|
Seed spreading | Decontamination of commercial crop seeds and soil—mechanical methods | Small seeds, similar to many crop plant seeds |
Soil seed bank | Reduction in soil seed bank—mechanical methods, crop rotation | Seed longevity and strong dormancy, broad host range |
Germination and pre-attachment | Inhibition of germination—herbicides, allelochemicals, biological methods | No specific germination stimulants |
Parasitism (post-attachment) | Removal of the parasite—herbicides, mechanical methods, biological methods | Strong connection to the host, vegetative propagation from small stem fragments |
Reproduction | Decrease in seed production—mechanical methods, biological methods | Large quantity of seed production |
Herbicide | Parasite/Host Species | Time of Application | Maximum Efficacy | References |
---|---|---|---|---|
Group 2 (ALS inhibitors) | ||||
Rimsulfuron | Cuscuta campestris/eggplant | Attachment | 45.8% biomass reduction | [55] |
Group 3 (Inhibitors of microtubule assembly) | ||||
Propyzamide | Cuscuta campestris/alfalfa | Attachment | 100% | [56] |
Propizamide + ethofumasate ** | Cuscuta campestris/sugarbeet | Post-emergence | 100% | [57] |
Pendimethalin | Cuscuta campestris/eggplant | Attachment | 47.2% biomass reduction | [55] |
Cuscuta campestris/Trifolium alexandrinum L. | Pre- and post-emergence | 83% * | [58] | |
Group 9 (Inhibitors of enolpyruvyl shikimate phosphate synthase) | ||||
Imazethapyr | Cuscuta campestris/alfalfa | Attachment | 96% | [56] |
Cuscuta campestris/Trifolium alexandrinum L. | Pre- and post-emergence | 80% | [58] | |
Glyphosate | Cuscuta campestris/alfalfa | Attachment | 82% * | [56] |
Attachment | 97.5% | [59] | ||
Cuscuta campestris/Nerium oleander L. | Established | 95% | [60] | |
Group 14 (Inhibitors of protoporphyrinogen synthase) | ||||
Oxyfluorfen | Cuscuta campestris/Trifolium alexandrinum L. | Post-emergence | 73% * | [58] |
Plant Species | Compounds | Effect | References |
---|---|---|---|
Isolated compounds | 2-benzoxazolinone, hydrocinnamic acid, pisatin | decreased germination, seedling necrosis | [69] |
Isolated compounds | analogues of hydrocinnamic acid | seedling necrosis | [70] |
Rhazya stricta Decne. | not identified—aqueous leaf extract | decreased germination and seedling growth | [71] |
Conyza bonariensis (L.) Cronq. | (4Z)-lachnophyllum lactone | decreased seedling growth | [72] |
Nepeta meyeri Benth. | not identified—aqueous leaf extract | decreased germination and seedling growth | [73] |
Lavandula angustifolia Mill. | not identified—aqueous leaf extract | decreased germination | [74] |
Cuscuta Species | Affected Invasive Species | Location | Reference |
---|---|---|---|
Cuscuta australis R.Br. (N) | Ipomoea cairica (L.) Sweet, Mikania micrantha Kunth, and Wedelia trilobata (L.) Pruski | China | [87] |
Cuscuta campestris (I) | Mikania micrantha | China | [88,89,90] |
Cuscuta australis (N) | Xanthium italicum Moretti | China | [91] |
Cuscuta japonica (N) | Ambrosia trifida L. | China | [92] |
Cuscuta gronovii Willd. (I) | Celosia argentea L., Sphagneticola trilobata (L.) Pruski, Crotalaria pallida Aiton | China | [93] |
Cuscuta australis (N) | Humulus scandens (Lour.) Grudz. | China | [15] |
Cuscuta campestris (I) | Ipomoea purpurea (L.) Roth | China | [94] |
Cuscuta australis (N) | Mikania micrantha | China | [95] |
Cuscuta campestris (I) | Solanum rostratum Dunal | China | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zagorchev, L.; Zagorcheva, T.; Teofanova, D.; Odjakova, M. Methods of Control of Parasitic Weeds of the Genus Cuscuta—Current Status and Future Perspectives. Plants 2025, 14, 2321. https://doi.org/10.3390/plants14152321
Zagorchev L, Zagorcheva T, Teofanova D, Odjakova M. Methods of Control of Parasitic Weeds of the Genus Cuscuta—Current Status and Future Perspectives. Plants. 2025; 14(15):2321. https://doi.org/10.3390/plants14152321
Chicago/Turabian StyleZagorchev, Lyuben, Tzvetelina Zagorcheva, Denitsa Teofanova, and Mariela Odjakova. 2025. "Methods of Control of Parasitic Weeds of the Genus Cuscuta—Current Status and Future Perspectives" Plants 14, no. 15: 2321. https://doi.org/10.3390/plants14152321
APA StyleZagorchev, L., Zagorcheva, T., Teofanova, D., & Odjakova, M. (2025). Methods of Control of Parasitic Weeds of the Genus Cuscuta—Current Status and Future Perspectives. Plants, 14(15), 2321. https://doi.org/10.3390/plants14152321