Metabolomic Analysis Uncovers the Presence of Pimarenyl Cation-Derived Diterpenes as Insecticidal Constituents of Sphagneticola trilobata
Abstract
1. Introduction
2. Results
2.1. Insecticidal Activity
2.2. GC-MS-Based Metabolomic Analysis
2.3. Molecular Networking
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Preparation of Extracts
4.3. Bioassay
4.4. GC-MS-Based Metabolomic Analysis of the S. trilobata Extract
4.5. Molecular Networking
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NIST20 | National Institute of Standards and Technology Database 20 |
GC-MS | Gas chromatography-mass spectrometry |
GNPS | Global Natural Product Social Molecular Networking |
References
- Ali, M.T.; Al-Mahdy, D.A.; Fishawy, A.M.E.; Otify, A.M. Sphagneticola trilobata (L.) Pruski: An Updated Exploration of Its Traditional Applications, Taxonomy, Phytochemical Profile and Pharmacological Properties. S. Afr. J. Bot. 2024, 174, 183–207. [Google Scholar] [CrossRef]
- R, S.; Varghese, N.; Jacob, J.; B, N.; Rasheed, S.P.; P, N.K.; K, M.J.; T, N.K. A Phytochemical and Pharmacological Review of Sphagneticola trilobata (L.) Pruski. Int. J. Pharm. Sci. Rev. Res. 2023, 79, 26–31. [Google Scholar] [CrossRef]
- Cai, M.; Lin, X.; Peng, J.; Zhang, J.; Chen, M.; Huang, J.; Chen, L.; Sun, F.; Ding, W.; Peng, C. Why Is the Invasive Plant Sphagneticola trilobata More Resistant to High Temperature Than Its Native Congener? Int. J. Mol. Sci. 2021, 22, 748. [Google Scholar] [CrossRef] [PubMed]
- Khursheed, A.; Rather, M.A.; Jain, V.; Wani, A.R.; Rasool, S.; Nazir, R.; Malik, N.A.; Majid, S.A. Plant Based Natural Products as Potential Ecofriendly and Safer Biopesticides: A Comprehensive Overview of Their Advantages over Conventional Pesticides, Limitations and Regulatory Aspects. Microb. Pathog. 2022, 173, 105854. [Google Scholar] [CrossRef] [PubMed]
- Tembo, Y.; Mkindi, A.G.; Mkenda, P.A.; Mpumi, N.; Mwanauta, R.; Stevenson, P.C.; Ndakidemi, P.A.; Belmain, S.R. Pesticidal Plant Extracts Improve Yield and Reduce Insect Pests on Legume Crops Without Harming Beneficial Arthropods. Front. Plant Sci. 2018, 9, 1425. [Google Scholar] [CrossRef] [PubMed]
- Tavares, W.R.; Barreto, M.d.C.; Seca, A.M.L. Aqueous and Ethanolic Plant Extracts as Bio-Insecticides—Establishing a Bridge between Raw Scientific Data and Practical Reality. Plants 2021, 10, 920. [Google Scholar] [CrossRef] [PubMed]
- Firmansyah, E. Toxicity of Sphagneticola trilobata Extracts against Spodoptera litura Larva. IOP Conf. Ser. Earth Environ. Sci. 2021, 672, 012099. [Google Scholar] [CrossRef]
- Ramadhan, R.A.M.; Firmansyah, E. Bioactivity of Spagneticola trilobata Flower Extract against Fall Army Worm Spodoptera frugiperda J. E. Smith. Crop. J. Plant Prot. 2020, 3, 37. [Google Scholar] [CrossRef]
- Im, Y.; Park, S.-E.; Lee, S.Y.; Kim, J.-C.; Kim, J.S. Early-Stage Defense Mechanism of the Cotton Aphid Aphis gossypii Against Infection With the Insect-Killing Fungus Beauveria Bassiana JEF-544. Front. Immunol. 2022, 13, 907088. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; He, H.; Zhao, H.; Xian, Y.; Guo, H.; Liu, B.; Xue, K. Microbiome Diversity of Cotton Aphids (Aphis gossypii) Is Associated with Host Alternation. Sci. Rep. 2021, 11, 5260. [Google Scholar] [CrossRef] [PubMed]
- Colin, T.; Monchanin, C.; Lihoreau, M.; Barron, A.B. Pesticide Dosing Must Be Guided by Ecological Principles. Nat. Ecol. Evol. 2020, 4, 1575–1577. [Google Scholar] [CrossRef] [PubMed]
- Pilon, A.C.; Del Grande, M.; Silvério, M.R.S.; Silva, R.R.; Albernaz, L.C.; Vieira, P.C.; Lopes, J.L.C.; Espindola, L.S.; Lopes, N.P. Combination of GC-MS Molecular Networking and Larvicidal Effect against Aedes Aegypti for the Discovery of Bioactive Substances in Commercial Essential Oils. Molecules 2022, 27, 1588. [Google Scholar] [CrossRef] [PubMed]
- Aksenov, A.A.; Laponogov, I.; Zhang, Z.; Doran, S.L.F.; Belluomo, I.; Veselkov, D.; Bittremieux, W.; Nothias, L.F.; Nothias-Esposito, M.; Maloney, K.N.; et al. Auto-Deconvolution and Molecular Networking of Gas Chromatography–Mass Spectrometry Data. Nat. Biotechnol. 2021, 39, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Erb, M. Volatiles as Inducers and Suppressors of Plant Defense and Immunity—Origins, Specificity, Perception and Signaling. Curr. Opin. Plant Biol. 2018, 44, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Tholl, D.; Lee, S. Elucidating the Metabolism of Plant Terpene Volatiles: Alternative Tools for Engineering Plant Defenses? In The Biological Activity of Phytochemicals; Springer: New York, NY, USA, 2011; pp. 159–178. [Google Scholar] [CrossRef]
- Phillips, M.A.; Croteau, R.B. Resin-Based Defenses in Conifers. Trends Plant Sci. 1999, 4, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Trapp, S.; Croteau, R. Defensive Resin Biosynthesis in Conifers. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 689–724. [Google Scholar] [CrossRef] [PubMed]
- Celedon, J.M.; Bohlmann, J. Oleoresin Defenses in Conifers: Chemical Diversity, Terpene Synthases and Limitations of Oleoresin Defense under Climate Change. New Phytol. 2019, 224, 1444–1463. [Google Scholar] [CrossRef] [PubMed]
- Tsatsakis, A.M.; Vassilopoulou, L.; Kovatsi, L.; Tsitsimpikou, C.; Karamanou, M.; Leon, G.; Liesivuori, J.; Hayes, A.W.; Spandidos, D.A. The Dose Response Principle from Philosophy to Modern Toxicology: The Impact of Ancient Philosophy and Medicine in Modern Toxicology Science. Toxicol. Rep. 2018, 5, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Hodges, J.D.; Elam, W.W.; Watson, W.F.; Nebeker, T.E. Oleoresin Characteristics and Susceptibility of Four Southern Pines to Southern Pine Beetle (Coleoptera: Scolytidae) Attacks. Can. Entomol. 1979, 111, 889–896. [Google Scholar] [CrossRef]
- Xie, Y.; Isman, M.B.; Feng, Y.; Wong, A. Diterpene Resin Acids: Major Active Principles in Tall Oil against Variegated Cutworm, Peridroma saucia (Lepidoptera: Noctuidae). J. Chem. Ecol. 1993, 19, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Weber, E. Sphagneticola trilobata (L.) Pruski. In Invasive Plant Species of the World: A Reference Guide to Environmental Weeds; CABI: Boston, MA, USA, 2017; pp. 553–554. [Google Scholar]
- Ibáñez, A. Sphagneticola trilobata (L.) Pruski. Available online: https://herbario.up.ac.pa/node/693354 (accessed on 14 July 2025).
- Salazar, M.; Chérigo, L.; Acosta, H.; Otero, R.; Martínez-Luis, S. Evaluation of Anti-Bothrops Asper Venom Activity of Ethanolic Extract of Brownea rosademonte Leaves. Acta Pharm. 2014, 64, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Cherigo, L.; Liao-Luo, J.; Fernández, J.; Martínez-Luis, S. Isolation of Alpha-Glucosidase Inhibitors from the Panamanian Mangrove Plant Mora oleifera (Triana Ex Hemsl.) Ducke. Pharmaceuticals 2024, 17, 890. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Peiwen, Q.; Gu, Z.; Liu, Y.; Sikandar, A.; Hussain, D.; Javeed, A.; Shafi, J.; Iqbal, M.F.; An, R.; et al. Insecticidal Activity and Biochemical Composition of Citrullus colocynthis, Cannabis indica and Artemisia argyi Extracts against Cabbage Aphid (Brevicoryne brassicae L.). Sci. Rep. 2020, 10, 522. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2025. [Google Scholar]
- Ritz, C.; Baty, F.; Streibig, J.C.; Gerhard, D. Dose-Response Analysis Using R. PLoS ONE 2015, 10, e0146021. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837. [Google Scholar] [CrossRef] [PubMed]
No. | Compound | RT (min) | A% | MW (g/mol) | MF | P% or C | L |
---|---|---|---|---|---|---|---|
1 | Espatulenol | 6.98 | 1.53 | 220.35 | C15H24O | 98 | Nist 20 |
2 | Junenol | 7.80 | 1.07 | 222.37 | C15H26O | 90 | Nist 20 |
3 | Aromadendrene | 8.41 | 0.37 | 204.35 | C15H24 | 90 | Nist 20 |
4 | Ethyl Myristate | 11.31 | 0.15 | 256.42 | C16H32O2 | 92 | Nist 20 |
5 | Neophytadiene | 12.49 | 0.68 | 278.50 | C20H38 | 99 | Nist 20 |
6 | Palmitic Acid | 15.66 | 0.28 | 256.42 | C16H32O2 | 99 | Nist 20 |
7 | Palmitic acid ethyl ester | 16.67 | 2.82 | 284.50 | C18H36O2 | 92 | Nist 20 |
8 | Manoyl oxide | 17.35 | 0.20 | 290.50 | C20H34O | 97 | Nist 20 |
9 | Phytol | 19.93 | 0.83 | 296.50 | C20H40O | 90 | Nist 20 |
10 | 9,12-Octadecadienoic acid, ethyl ester | 21.29 | 1.46 | 308.50 | C20H36O2 | 99 | Nist 20 |
11 | Linoleic acid ethyl ester | 21.47 | 1.91 | 308.50 | C20H36O2 | 99 | Nist 20 |
12 | 8-Methylenedispiro [2.1.2.4] undecane | 21.72 | 0.37 | 162.27 | C12H18 | 90 | Nist 20 |
13 | Ethyl Stearate | 22.20 | 0.33 | 312.50 | C20H40O2 | 99 | Nist 20 |
14 | Kaur-16-ene | 23.23 | 0.16 | 272.50 | C20H32 | 95 | Nist 20 |
15 | Kaur-16-en-18-al | 23.97 | 0.91 | 302.50 | C20H30O2 | 99 | Nist 20 |
16 | ent-kaur-16-en-19-oic acid | 25.27 | 26.11 | 302.40 | C20H30O2 | 0.87 | GNPS |
17 | Dehydroabietic acid | 26.37 | 2.23 | 300.40 | C20H28O2 | 91 | Nist 20 |
18 | Palustric acid | 27.85 | 26.86 | 302.50 | C20H30O2 | 0.87 | GNPS |
19 | Pimaric acid | 28.53 | 8.14 | 302.50 | C20H30O2 | 0.88 | GNPS |
20 | Neoabitic acid | 31.31 | 0.58 | 302.50 | C20H30O2 | 92 | Nist 20 |
21 | 3 beta-Hydroxy-5-cholen-24-oic acid | 34.42 | 0.35 | 302.50 | C20H30O2 | 0.82 | GNPS |
22 | Squalene | 38.51 | 0.20 | 410.70 | C30H50 | 99 | Nist 20 |
23 | Epoxyprogesterone | 39.43 | 0.17 | 328.40 | C21H28O3 | 0.83 | GNPS |
24 | (1S,2S,3E,7S,8R,11S,12Z)-7-acetoxy-8,11-dihydroxycembra-3,12,15-trien-17,2-olide | 42.41 | 0.13 | 392.50 | C22H32O6 | 0.82 | GNPS |
25 | Alpha-sprinasterol acetate | 44.74 | 0.06 | 454.70 | C31H50O2 | 0.80 | GNPS |
26 | Stigmasterol | 49.76 | 1.34 | 412.70 | C29H48O | 96 | Nist 20 |
27 | beta-Amyrone | 51.36 | 0.96 | 424.70 | C30H48O | 96 | Nist 20 |
28 | beta-Amyrin | 51.99 | 1.63 | 426.70 | C30H50O | 90 | Nist 20 |
29 | (+)-Alpha-cyperone | 52.54 | 0.17 | 218.83 | C15H22O | 0.79 | GNPS |
30 | alpha-Amyrin | 53.20 | 0.56 | 426.70 | C30H50O | 91 | Nist 20 |
31 | beta-Amyrin acetate | 54.93 | 2.01 | 468.80 | C32H52O2 | 83 | Nist 20 |
32 | Friedelanol | 56.05 | 1.71 | 428.70 | C30H52O | 91 | Nist 20 |
No. | Compound | RT (min) | A% | MW (g/mol) | MF | P% or C | L |
---|---|---|---|---|---|---|---|
1 | Espatulenol | 6.97 | 0.56 | 220.350 | C15H24O | 92 | Nist 20 |
2 | Junenol | 7.82 | 0.49 | 222.370 | C15H26O | 91 | Nist 20 |
33 | Palmitic acid methyl esther | 14.79 | 0.31 | 270.450 | C17H34O2 | 99 | Nist 20 |
6 | Palmitic Acid | 15.67 | 0.56 | 256.420 | C16H32O2 | 99 | Nist 20 |
7 | Palmitic acid ethyl ester | 16.67 | 2.99 | 284.500 | C18H36O2 | 95 | Nist 20 |
8 | Manoyl oxide | 17.15 | 2.01 | 290.500 | C20H34O | 90 | Nist 20 |
34 | Linoleic acid methyl ester | 19.44 | 0.15 | 294.472 | C19H34O2 | 99 | Nist 20 |
11 | Linoleic acid ethyl ester | 21.29 | 1.58 | 308.500 | C20H36O2 | 99 | Nist 20 |
35 | Linolenic acid ethyl ester | 21.47 | 0.86 | 306.500 | C20H34O2 | 99 | Nist 20 |
13 | Ethyl Stearate | 22.20 | 0.22 | 312.500 | C20H40O2 | 99 | Nist 20 |
14 | Kaur-16-ene | 23.23 | 0.15 | 290.500 | C20H34O | 90 | Nist 20 |
15 | Kaur-16-en-18-al | 23.97 | 1.03 | 302.500 | C20H30O2 | 99 | Nist 20 |
16 | ent-kaur-16-en-19-oic acid | 25.26 | 26.47 | 302.400 | C20H30O2 | 0.87 | GNPS |
17 | Dehydroabietic acid | 26.35 | 1.56 | 300.400 | C20H28O2 | 91 | Nist 20 |
18 | Palustric acid | 27.79 | 26.57 | 302.500 | C20H30O2 | 0.87 | GNPS |
19 | Pimaric acid | 28.52 | 5.4 | 302.500 | C20H30O2 | 0.88 | GNPS |
36 | Kaur-19-oic acid | 30.08 | 0.6 | 302.500 | C20H30O2 | 99 | Nist 20 |
21 | 3 beta-Hydroxy-5-cholen-24-oic acid | 34.42 | 0.3 | 302.500 | C20H30O2 | 0.82 | GNPS |
26 | Stigmasterol | 49.75 | 0.78 | 412.700 | C29H48O | 0.97 | GNPS |
37 | 13,15-Octacosadiyne | 53.25 | 0.09 | 386.700 | C28H50 | 0.87 | GNPS |
31 | beta-Amyrin acetate | 54.39 | 0.46 | 468.800 | C32H52O2 | 83 | Nist 20 |
32 | Friedelanol | 56.05 | 0.31 | 428.700 | C30H52O | 91 | Nist 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chérigo, L.; Fernández, J.; Martínez, R.; Martínez-Luis, S. Metabolomic Analysis Uncovers the Presence of Pimarenyl Cation-Derived Diterpenes as Insecticidal Constituents of Sphagneticola trilobata. Plants 2025, 14, 2219. https://doi.org/10.3390/plants14142219
Chérigo L, Fernández J, Martínez R, Martínez-Luis S. Metabolomic Analysis Uncovers the Presence of Pimarenyl Cation-Derived Diterpenes as Insecticidal Constituents of Sphagneticola trilobata. Plants. 2025; 14(14):2219. https://doi.org/10.3390/plants14142219
Chicago/Turabian StyleChérigo, Lilia, Juan Fernández, Ramy Martínez, and Sergio Martínez-Luis. 2025. "Metabolomic Analysis Uncovers the Presence of Pimarenyl Cation-Derived Diterpenes as Insecticidal Constituents of Sphagneticola trilobata" Plants 14, no. 14: 2219. https://doi.org/10.3390/plants14142219
APA StyleChérigo, L., Fernández, J., Martínez, R., & Martínez-Luis, S. (2025). Metabolomic Analysis Uncovers the Presence of Pimarenyl Cation-Derived Diterpenes as Insecticidal Constituents of Sphagneticola trilobata. Plants, 14(14), 2219. https://doi.org/10.3390/plants14142219