Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (757)

Search Parameters:
Keywords = plant growth-promoting ability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 562 KiB  
Review
Potential of the Use of Biostimulants in Lettuce Production
by Talys Moratti Lemos de Oliveira, Janyne Soares Braga Pires, Vinicius de Souza Oliveira, Ana Júlia Câmara Jeveaux Machado, Adriano Alves Fernandes, Lúcio de Oliveira Arantes and Sara Dousseau-Arantes
Plants 2025, 14(15), 2416; https://doi.org/10.3390/plants14152416 - 4 Aug 2025
Viewed by 15
Abstract
Lettuce (Lactuca sativa L.) is one of the main leafy vegetables in the world, being present in several countries. Due to its composition, which includes a substance with antioxidant action and beneficial effects on health, it is consumed constantly. However, due to [...] Read more.
Lettuce (Lactuca sativa L.) is one of the main leafy vegetables in the world, being present in several countries. Due to its composition, which includes a substance with antioxidant action and beneficial effects on health, it is consumed constantly. However, due to ongoing climate change that has had global effects, the crop has been suffering a reduction in productivity and quality. Thus, technologies aiming to mitigate the effects of climate extremes have been developed. In lettuce production, biostimulants make it possible to improve the growth and sustainable development of plants. This is due to their ability to activate physiological and biochemical processes in plants, resulting in an increase in the production of bioactive compounds such as vitamins, amino acids, and antioxidants. In addition, biostimulants contribute to improving the nutritional quality of lettuces, making them more resistant and adapted to different environmental conditions, resulting in a more sustainable development for the crop. This review aims to compile and discuss the available scientific evidence on the use of biostimulants in lettuce cultivation, addressing their mechanisms of action, the types of substances used, the results obtained in different cultivation systems, and their potential to promote more efficient and adaptable agriculture in the face of environmental changes. Full article
(This article belongs to the Special Issue Advances in Biostimulant Use on Horticultural Crops)
Show Figures

Figure 1

25 pages, 3789 KiB  
Article
Rhizobium’s Reductase for Chromium Detoxification, Heavy Metal Resistance, and Artificial Neural Network-Based Predictive Modeling
by Mohammad Oves, Majed Ahmed Al-Shaeri, Huda A. Qari and Mohd Shahnawaz Khan
Catalysts 2025, 15(8), 726; https://doi.org/10.3390/catal15080726 - 30 Jul 2025
Viewed by 245
Abstract
This study analyzed the heavy metal tolerance and chromium reduction and the potential of plant growth to promote Rhizobium sp. OS-1. By genetic makeup, the Rhizobium strain is nitrogen-fixing and phosphate-solubilizing in metal-contaminated agricultural soil. Among the Rhizobium group, bacterial strain OS-1 showed [...] Read more.
This study analyzed the heavy metal tolerance and chromium reduction and the potential of plant growth to promote Rhizobium sp. OS-1. By genetic makeup, the Rhizobium strain is nitrogen-fixing and phosphate-solubilizing in metal-contaminated agricultural soil. Among the Rhizobium group, bacterial strain OS-1 showed a significant tolerance to heavy metals, particularly chromium (900 µg/mL), zinc (700 µg/mL), and copper. In the initial investigation, the bacteria strains were morphologically short-rod, Gram-negative, appeared as light pink colonies on media plates, and were biochemically positive for catalase reaction and the ability to ferment glucose, sucrose, and mannitol. Further, bacterial genomic DNA was isolated and amplified with the 16SrRNA gene and sequencing; the obtained 16S rRNA sequence achieved accession no. HE663761.1 from the NCBI GenBank, and it was confirmed that the strain belongs to the Rhizobium genus by phylogenetic analysis. The strain’s performance was best for high hexavalent chromium [Cr(VI)] reduction at 7–8 pH and a temperature of 30 °C, resulting in a total decrease in 96 h. Additionally, the adsorption isotherm Freundlich and Langmuir models fit best for this study, revealing a large biosorption capacity, with Cr(VI) having the highest affinity. Further bacterial chromium reduction was confirmed by an enzymatic test of nitro reductase and chromate reductase activity in bacterial extract. Further, from the metal biosorption study, an Artificial Neural Network (ANN) model was built to assess the metal reduction capability, considering the variables of pH, temperature, incubation duration, and initial metal concentration. The model attained an excellent expected accuracy (R2 > 0.90). With these features, this bacterial strain is excellent for bioremediation and use for industrial purposes and agricultural sustainability in metal-contaminated agricultural fields. Full article
Show Figures

Figure 1

18 pages, 2358 KiB  
Article
Characterizing the Temporally Dynamic Nature of Relative Growth Rates: A Kinetic Analysis on Nitrogen-, Phosphorus-, and Potassium-Limited Growth
by Andrew Sharkey, Asher Altman, Yuming Sun, Thomas K. S. Igou and Yongsheng Chen
Agriculture 2025, 15(15), 1641; https://doi.org/10.3390/agriculture15151641 - 29 Jul 2025
Viewed by 251
Abstract
Developing precision models to describe agricultural growth is a necessary step to promote sustainable agriculture and increase resource circulation. In this study, the researchers hydroponically cultivated Bibb lettuce (Lactuca sativa) across a variety of nitrogen, phosphorus, and potassium (NPK)-limited treatments and [...] Read more.
Developing precision models to describe agricultural growth is a necessary step to promote sustainable agriculture and increase resource circulation. In this study, the researchers hydroponically cultivated Bibb lettuce (Lactuca sativa) across a variety of nitrogen, phosphorus, and potassium (NPK)-limited treatments and developed robust data-driven kinetic models observing nutrient uptake, biomass growth, and tissue composition based on all three primary macronutrients. The resulting Dynamic μ model is the first to integrate plant maturity’s impact on growth rate, significantly improving model accuracy across limiting nutrients, treatments, and developmental stages. This reduced error supports this simple expansion as a practical and necessary inclusion for agricultural kinetic modeling. Furthermore, analysis of nutrient uptake refines the ideal hydroponic nutrient balance for Bibb lettuce to 132, 35, and 174 mg L−1 (N, P, and K, respectively), while qualitative cell yield analysis identifies minimum nutrient thresholds at approximately 26.2–41.7 mg-N L−1, 3.7–5.6 mg-P L−1, and 17.4–31.5 mg-K L−1 to produce compositionally healthy lettuce. These findings evaluate reclaimed wastewater’s ability to offset the fertilizer burden for lettuce by 23–45%, 14–57%, and 3–23% for N, P, and K and guide the required minimum amount of wastewater pre-processing or nutrient supplements needed to completely fulfill hydroponic nutrient demands. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

11 pages, 956 KiB  
Communication
The Growth-Promoting Ability of Serratia liquefaciens UNJFSC 002, a Rhizobacterium Involved in Potato Production
by Cristina Andrade Alvarado, Zoila Honorio Durand, Pedro M. Rodriguez-Grados, Dennis Lloclla Tineo, Diego Hiroshi Takei, Carlos I. Arbizu and Sergio Contreras-Liza
Int. J. Plant Biol. 2025, 16(3), 82; https://doi.org/10.3390/ijpb16030082 - 23 Jul 2025
Viewed by 221
Abstract
Several strains of the genus Serratia isolated from the rhizosphere of crops are plant growth-promoting bacteria (PGPB) that may possess various traits associated with nitrogen metabolism, auxin production, and other characteristics. The objective of the present study was to investigate the in vitro [...] Read more.
Several strains of the genus Serratia isolated from the rhizosphere of crops are plant growth-promoting bacteria (PGPB) that may possess various traits associated with nitrogen metabolism, auxin production, and other characteristics. The objective of the present study was to investigate the in vitro and in vivo characteristics of the growth-promoting activity of S. liquefaciens UNJFSC 002 in potato plants. This strain was inoculated into potato varieties (Solanum tuberosum) under laboratory and greenhouse conditions to determine the bacterial strain’s ability to promote growth under controlled conditions. It was found that the S. liquefaciens strain UNJFSC 002 had a significantly greater effect on the fresh and dry weight of the foliage and induced a higher tuber weight per plant and larger tuber diameter compared to the uninoculated potato plants (p < 0.05). Additionally, in vitro, the strain demonstrated the ability to fix atmospheric nitrogen and produce indole-3-acetic acid (IAA), as well as the capacity to solubilise tricalcium phosphate in the laboratory. This research reveals the potential of S. liquefaciens UNJFSC 002 as an inoculant to improve potato production, demonstrating its ability to promote the growth and productivity of potato varieties suitable for direct consumption and processing under controlled conditions. Full article
(This article belongs to the Section Plant–Microorganisms Interactions)
Show Figures

Figure 1

29 pages, 4742 KiB  
Article
Sustainable Tea Cultivation with a Rhizobacterial Consortium: A Microbiome-Driven Alternative to Chemical Fertilizers
by Silpi Sorongpong, Sourav Debnath, Praveen Rahi, Biswajit Bera and Piyush Pandey
Microorganisms 2025, 13(8), 1715; https://doi.org/10.3390/microorganisms13081715 - 22 Jul 2025
Viewed by 967
Abstract
The excessive use of chemical fertilizers in tea cultivation threatens soil health, environmental sustainability, and long-term crop productivity. This study explores the application of plant growth-promoting bacteria (PGPB) as an eco-friendly alternative to conventional fertilizers. A bacterial consortium was developed using selected rhizobacterial [...] Read more.
The excessive use of chemical fertilizers in tea cultivation threatens soil health, environmental sustainability, and long-term crop productivity. This study explores the application of plant growth-promoting bacteria (PGPB) as an eco-friendly alternative to conventional fertilizers. A bacterial consortium was developed using selected rhizobacterial isolates—Lysinibacillus fusiformis, five strains of Serratia marcescens, and two Bacillus spp.—based on their phosphate and zinc solubilization abilities and production of ACC deaminase, indole-3-acetic acid, and siderophores. The consortium was tested in both pot and field conditions using two tea clones, S3A3 and TS491, and compared with a chemical fertilizer treatment. Plants treated with the consortium showed enhanced growth, biomass, and antioxidant activity. The total phenolic contents increased to 1643.6 mg GAE/mL (S3A3) and 1646.93 mg GAE/mL (TS491), with higher catalase (458.17–458.74 U/g/min), glutathione (34.67–42.67 µmol/gfw), and superoxide dismutase (679.85–552.28 units/gfw/s) activities. A soil metagenomic analysis revealed increased microbial diversity and the enrichment of phyla, including Acidobacteria, Proteobacteria, Actinobacteria, Chloroflexi, and Firmicutes. Functional gene analysis showed the increased abundance of genes for siderophore biosynthesis, glutathione and nitrogen metabolism, and indole alkaloid biosynthesis. This study recommends the potential of a PGPB consortium as a sustainable alternative to chemical fertilizers, enhancing both the tea plant performance and soil microbial health. Full article
Show Figures

Figure 1

26 pages, 2018 KiB  
Review
Influence of Light Regimes on Production of Beneficial Pigments and Nutrients by Microalgae for Functional Plant-Based Foods
by Xiang Huang, Feng Wang, Obaid Ur Rehman, Xinjuan Hu, Feifei Zhu, Renxia Wang, Ling Xu, Yi Cui and Shuhao Huo
Foods 2025, 14(14), 2500; https://doi.org/10.3390/foods14142500 - 17 Jul 2025
Viewed by 472
Abstract
Microalgal biomass has emerged as a valuable and nutrient-rich source of novel plant-based foods of the future, with several demonstrated benefits. In addition to their green and health-promoting characteristics, these foods exhibit bioactive properties that contribute to a range of physiological benefits. Photoautotrophic [...] Read more.
Microalgal biomass has emerged as a valuable and nutrient-rich source of novel plant-based foods of the future, with several demonstrated benefits. In addition to their green and health-promoting characteristics, these foods exhibit bioactive properties that contribute to a range of physiological benefits. Photoautotrophic microalgae are particularly important as a source of food products due to their ability to biosynthesize high-value compounds. Their photosynthetic efficiency and biosynthetic activity are directly influenced by light conditions. The primary goal of this study is to track the changes in the light requirements of various high-value microalgae species and use advanced systems to regulate these conditions. Artificial intelligence (AI) and machine learning (ML) models have emerged as pivotal tools for intelligent microalgal cultivation. This approach involves the continuous monitoring of microalgal growth, along with the real-time optimization of environmental factors and light conditions. By accumulating data through cultivation experiments and training AI models, the development of intelligent microalgae cell factories is becoming increasingly feasible. This review provides a concise overview of the regulatory mechanisms that govern microalgae growth in response to light conditions, explores the utilization of microalgae-based products in plant-based foods, and highlights the potential for future research on intelligent microalgae cultivation systems. Full article
Show Figures

Graphical abstract

23 pages, 5108 KiB  
Review
The Invasive Mechanism and Impact of Arundo donax, One of the World’s 100 Worst Invasive Alien Species
by Hisashi Kato-Noguchi and Midori Kato
Plants 2025, 14(14), 2175; https://doi.org/10.3390/plants14142175 - 14 Jul 2025
Viewed by 365
Abstract
Arundo donax L. has been introduced in markets worldwide due to its economic value. However, it is listed in the world’s 100 worst alien invasive species because it easily escapes from cultivation, and forms dense monospecific stands in riparian areas, agricultural areas, and [...] Read more.
Arundo donax L. has been introduced in markets worldwide due to its economic value. However, it is listed in the world’s 100 worst alien invasive species because it easily escapes from cultivation, and forms dense monospecific stands in riparian areas, agricultural areas, and grassland areas along roadsides, including in protected areas. This species grows rapidly and produces large amounts of biomass due to its high photosynthetic ability. It spreads asexually through ramets, in addition to stem and rhizome fragments. Wildfires, flooding, and human activity promote its distribution and domination. It can adapt to various habitats and tolerate various adverse environmental conditions, such as cold temperatures, drought, flooding, and high salinity. A. donax exhibits defense mechanisms against biotic stressors, including herbivores and pathogens. It produces indole alkaloids, such as bufotenidine and gramine, as well as other alkaloids that are toxic to herbivorous mammals, insects, parasitic nematodes, and pathogenic fungi and oomycetes. A. donax accumulates high concentrations of phytoliths, which also protect against pathogen infection and herbivory. Only a few herbivores and pathogens have been reported to significantly damage A. donax growth and populations. Additionally, A. donax exhibits allelopathic activity against competing plant species, though the allelochemicals involved have yet to be identified. These characteristics may contribute to its infestation, survival, and population expansion in new habitats as an invasive plant species. Dense monospecific stands of A. donax alter ecosystem structures and functions. These stands impact abiotic processes in ecosystems by reducing water availability, and increasing the risk of erosion, flooding, and intense fires. The stands also negatively affect biotic processes by reducing plant diversity and richness, as well as the fitness of habitats for invertebrates and vertebrates. Eradicating A. donax from a habitat requires an ongoing, long-term integrated management approach based on an understanding of its invasive mechanisms. Human activity has also contributed to the spread of A. donax populations. There is an urgent need to address its invasive traits. This is the first review focusing on the invasive mechanisms of this plant in terms of adaptation to abiotic and biotic stressors, particularly physiological adaptation. Full article
Show Figures

Graphical abstract

15 pages, 1673 KiB  
Article
Bacillus-Based Biofertilizer Influences Soil Microbiome to Enhance Soil Health for Sustainable Agriculture
by Fung Ling Ng, Tsung-Chun Lin, Erick Wang, Tzong Yi Lee, Guan Ting Chen, Jiunn-Feng Su and Wen Liang Chen
Sustainability 2025, 17(14), 6293; https://doi.org/10.3390/su17146293 - 9 Jul 2025
Viewed by 462
Abstract
Identifying natural alternatives to conventional chemical fertilizers is critical to preventing the widespread soil degradation and environmental damage caused by modern agriculture. Microbe-based biofertilizers have emerged as promising candidates due to their natural ability to improve nutrient bioavailability and promote plant growth. However, [...] Read more.
Identifying natural alternatives to conventional chemical fertilizers is critical to preventing the widespread soil degradation and environmental damage caused by modern agriculture. Microbe-based biofertilizers have emerged as promising candidates due to their natural ability to improve nutrient bioavailability and promote plant growth. However, how biofertilizers affect the soil microbiome remains unclear. To investigate the impact of biofertilizer application on soil microbiome, LNP-1, a strain of Bacillus subtilis, was used as a biofertilizer in conjunction with no fertilizer, organic fertilizer, and chemical fertilizer for the cultivation of cabbage. Soil samples were collected and analyzed using next-generation sequencing to determine microbial abundance and diversity. Our results showed that LNP-1 supplementation not only improved cabbage yield significantly but also improved soil microbe diversity, a key indicator of soil health. Overall, soils treated with LNP-1 showed the enrichment of microbes involved in nutrient cycling and plant growth when compared to untreated groups. Notably, the yield of organically fertilized cabbage plants increased by 39.7% when treated with LNP-1. These results therefore demonstrate the potential for using biofertilizers to establish a more well-rounded, multifunctional soil microbiome to reduce reliance on chemical inputs and achieve high crop yield sustainably. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

18 pages, 1746 KiB  
Article
Genomic Insights and Plant Growth-Promoting Characterization of Priestia megaterium Strain 53B2, Isolated from Maize-Associated Soil in the Yaqui Valley, Mexico
by Alina Escalante-Beltrán, Pamela Helué Morales-Sandoval, Claudia Berenice González-Astorga, Amelia C. Montoya-Martínez, Edgar A. Cubedo-Ruiz, Gustavo Santoyo, Fannie Isela Parra-Cota and Sergio de los Santos-Villalobos
Plants 2025, 14(13), 2081; https://doi.org/10.3390/plants14132081 - 7 Jul 2025
Viewed by 627
Abstract
Strain 53B2 was isolated from a commercial maize (Zea mays L.) field located in the Yaqui Valley, Mexico. Its draft genome comprises 5,844,085 bp, with a G + C content of 37.5%, an N50 of 602,122 bp, an L50 of 4, and [...] Read more.
Strain 53B2 was isolated from a commercial maize (Zea mays L.) field located in the Yaqui Valley, Mexico. Its draft genome comprises 5,844,085 bp, with a G + C content of 37.5%, an N50 of 602,122 bp, an L50 of 4, and a total of 129 contigs. Genome-based taxonomic affiliation showed this strain belonged to Priestia megaterium. Genome annotation revealed 6394 coding DNA sequences (CDSs), organized into 332 subsystems. Among these, several CDSs were associated with traits relevant to plant growth promotion, including categories such as iron acquisition and metabolism (40 CDSs) and secondary metabolism (6 CDSs), among others. In vitro metabolic assays supported genomic predictions, confirming the strain’s ability to produce IAA, solubilize phosphate, and tolerate abiotic stress. Additionally, greenhouse trials demonstrated that inoculation with Priestia megaterium 53B2 significantly enhanced plant growth parameters (p ≤ 0.05) versus uninoculated control: stem height increased by 22.8%, root length by 35.7%, stem and root fresh weights by 39.6% and 66.1%, and stem and root dry weights by 33.7% and 44.7%, respectively. This first report on the beneficial potential of Priestia megaterium 53B2 highlights its potential as a sustainable bioinoculant for maize cultivation. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

34 pages, 2621 KiB  
Article
Priestia megaterium KW16: A Novel Plant Growth-Promoting and Biocontrol Agent Against Rhizoctonia solani in Oilseed Rape (Brassica napus L.)—Functional and Genomic Insights
by Bożena Nowak, Daria Chlebek and Katarzyna Hupert-Kocurek
Agriculture 2025, 15(13), 1435; https://doi.org/10.3390/agriculture15131435 - 3 Jul 2025
Viewed by 332
Abstract
Plant diseases caused by Rhizoctonia solani present a significant challenge in agriculture. While chemical pesticides remain a common control strategy, their use leads to health and environmental problems. In contrast, endophytic bacteria with plant growth-promoting (PGP) activity offer a promising, sustainable alternative. In [...] Read more.
Plant diseases caused by Rhizoctonia solani present a significant challenge in agriculture. While chemical pesticides remain a common control strategy, their use leads to health and environmental problems. In contrast, endophytic bacteria with plant growth-promoting (PGP) activity offer a promising, sustainable alternative. In this context, a novel endophytic Priestia megaterium strain, KW16, originated from the bluegrass (Poa pratensis L.), demonstrated distinct biocontrol potential against R. solani. in vitro assays showed that KW16 inhibited R. solani growth by up to 58%, primarily by releasing volatile compounds. In planta experiments further highlighted KW16′s ability to colonize oilseed rape internal tissues, significantly enhancing its growth and development. In the presence of the pathogen, KW16 abolished the negative impact of R. solani and promoted plant growth, increasing shoot and root biomass by 216% and 1737%, respectively, when compared to the plants grown in fungal-infested soil. Biochemical and genome analyses confirmed the strain’s metabolic versatility, resistance to biotic and abiotic factors, and a whole spectrum of PGP and biocontrol traits such as biofilm formation, production of phytohormones, and synthesis of lytic enzymes, siderophores, and volatiles, alongside its ability to survive in the presence of autochthonous soil microflora. These findings position KW16 as a potent biological alternative to synthetic fungicides, with significant potential for sustainable crop protection. Full article
Show Figures

Figure 1

22 pages, 1702 KiB  
Article
Enhancing Grape Seed Germination and Seedling Development Through Varietal Responses to Sodium Nitroprusside and Gibberellic Acid Applications
by Özcan Kesen, Adem Yagci, Harlene Hatterman-Valenti and Ozkan Kaya
Horticulturae 2025, 11(7), 754; https://doi.org/10.3390/horticulturae11070754 - 1 Jul 2025
Viewed by 409
Abstract
Germination ability and seedling development of grape (Vitis vinifera L.) seeds show significant differences depending on cultivar characteristics and germination conditions, and this situation is known to create significant difficulties in grape breeding programs and vegetative propagation. In this study, we explored [...] Read more.
Germination ability and seedling development of grape (Vitis vinifera L.) seeds show significant differences depending on cultivar characteristics and germination conditions, and this situation is known to create significant difficulties in grape breeding programs and vegetative propagation. In this study, we explored the effects of different concentrations of sodium nitroprusside (SNP; 500–3000 ppm) and gibberellic acid (GA3) on seed germination and seedling growth in several grape cultivars. Our findings show that cultivar, treatment type, and their interaction had significant effects on both germination and growth. The 5 BB rootstock stood out with consistently high germination rates, reaching up to 95% with 1500 ppm SNP. Overall, SNP treatments outperformed both the control and GA3 applications, although the most effective concentration differed by cultivar. The most beneficial SNP doses ranged between 1000 and 3000 ppm, with 1500 ppm yielding the highest improvement, up to a 21.6% increase compared to the control. Notably, the ‘Çeliksu’ cultivar responded strongly to SNP, while ‘Rizpem’ showed weak germination, regardless of treatment. Seedling growth, as measured by plant height and node number, was also influenced by both treatment and cultivar, with 5 BB again showing the most robust development. Multivariate analyses revealed strong correlations across germination dates and growth traits. Higher SNP concentrations (1500–3000 ppm) consistently promoted better germination and seedling vigor than GA3 and untreated controls. These results highlight the importance of considering cultivar-specific responses and suggest that well-calibrated SNP applications could be a valuable tool for improving seed-based propagation in grape breeding programs. Full article
Show Figures

Figure 1

13 pages, 1303 KiB  
Review
Positive Role of Trichoderma harzianum in Increasing Plant Tolerance to Abiotic Stresses: A Review
by Yueyao Geng, Shuying Chen, Pinke Lv, Yankai Li, Jingxuan Li, Fangling Jiang, Zhen Wu, Qirong Shen and Rong Zhou
Antioxidants 2025, 14(7), 807; https://doi.org/10.3390/antiox14070807 - 30 Jun 2025
Viewed by 531
Abstract
As a beneficial fungus, Trichoderma harzianum (T. harzianum) has been widely applied for growth promotion and biocontrol. Recently, it has attracted much attention with regard to improving stress tolerance in plants under abiotic stress. In this paper, the multiple mechanisms of [...] Read more.
As a beneficial fungus, Trichoderma harzianum (T. harzianum) has been widely applied for growth promotion and biocontrol. Recently, it has attracted much attention with regard to improving stress tolerance in plants under abiotic stress. In this paper, the multiple mechanisms of T. harzianum for alleviating abiotic stress damage in plants are reviewed. T. harzianum can regulate the synthesis of key phytohormones, such as abscisic acid (ABA), indole-3-acetic acid (IAA), etc., thereby enhancing the physiological response ability of plants under stress conditions such as drought, salt stress, and high temperature. These are associated with antioxidant system regulation in plants, which reduces levels of reactive oxygen species (ROS) and oxidative damage and maintains intracellular redox balance. T. harzianum can also improve plant nutrient uptake and root development, secondary metabolism, soil environment and structure, and expression of related genes. In addition, in this paper, the characteristics of T. harzianum application in field and horticultural crops are summarized and compared, revealing differences in the methods, concentrations, time, and effects of applying T. harzianum to various crops. We further explore the synergistic regulation effect of T. harzianum and plant–microbiome interaction on the stress microenvironment. Future perspectives on the molecular mechanism of T. harzianum and its field application potential are discussed. This review provides a theoretic and practical reference for the application of T. harzianum in agricultural production. Full article
Show Figures

Figure 1

13 pages, 886 KiB  
Article
Production of Indole-3-Acetic Acid and Degradation of 2,4-D by Yeasts Isolated from Pollinating Insects
by Camila G. de Oliveira, Angela Alves dos Santos, Eduardo J. P. Pritsch, Stéfany K. Bressan, Anderson Giehl, Odinei Fogolari, Altemir J. Mossi, Helen Treichel and Sérgio L. Alves
Microorganisms 2025, 13(7), 1492; https://doi.org/10.3390/microorganisms13071492 - 26 Jun 2025
Viewed by 388
Abstract
Synthetic herbicides such as glyphosate and 2,4-D are widely used in agriculture but can negatively impact non-target organisms, including microorganisms essential for ecological balance. Yeasts associated with pollinating insects play crucial roles in plant–insect interactions, yet their responses to herbicides remain understudied. This [...] Read more.
Synthetic herbicides such as glyphosate and 2,4-D are widely used in agriculture but can negatively impact non-target organisms, including microorganisms essential for ecological balance. Yeasts associated with pollinating insects play crucial roles in plant–insect interactions, yet their responses to herbicides remain understudied. This study aimed to evaluate the capacity of yeasts isolated from bees and beetles to produce indole-3-acetic acid (IAA), a plant-growth-promoting hormone, as well as their ability to tolerate or degrade glyphosate (in the commercial herbicide Zapp QI 620®) and 2,4-D (in the commercial Aminol 806®). Seven yeast strains were isolated from insects, identified via ITS sequencing, and assessed for IAA production in YPD medium. Growth assays were conducted under varying herbicide concentrations, and 2,4-D degradation was analyzed using high-performance liquid chromatography. All strains produced IAA, with Papiliotrema siamensis CHAP-239 exhibiting the highest yield (4.17 mg/L). Glyphosate completely inhibited growth in all strains, while 2,4-D showed dose-dependent effects, with four strains tolerating lower concentrations. Notably, Meyerozyma caribbica CHAP-248 degraded up to 46% of 2,4-D at 6.045 g/L. These findings highlight the ecological risks herbicides pose to beneficial yeasts and suggest the potential of certain strains for bioremediation in herbicide-contaminated environments. Overall, the study underscores the importance of preserving microbial biodiversity in the context of sustainable agriculture. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

18 pages, 2835 KiB  
Article
Rhizosphere Growth-Promoting Bacteria Enhance Oat Growth by Improving Microbial Stability and Soil Organic Matter in the Saline Soil of the Qaidam Basin
by Xin Jin, Xinyue Liu, Jie Wang, Jianping Chang, Caixia Li and Guangxin Lu
Plants 2025, 14(13), 1926; https://doi.org/10.3390/plants14131926 - 23 Jun 2025
Cited by 1 | Viewed by 521
Abstract
The Qinghai–Tibet Plateau, a critical ecological barrier and major livestock region, faces deteriorating grasslands and rising forage demand under its harsh alpine climate. Oat (Avena sativa L.), valued for its cold tolerance, rapid biomass accumulation, and ability to thrive in nutrient-poor soils, [...] Read more.
The Qinghai–Tibet Plateau, a critical ecological barrier and major livestock region, faces deteriorating grasslands and rising forage demand under its harsh alpine climate. Oat (Avena sativa L.), valued for its cold tolerance, rapid biomass accumulation, and ability to thrive in nutrient-poor soils, can expand winter feed reserves and partly alleviate grazing pressure on native rangelands. However, genetic improvement alone has not been sufficient to address the environmental challenges. This issue is particularly severe in the Qaidam Basin, where soil salinization, characterized by high pH, poor soil structure, and low nutrient availability, significantly limits crop performance. Rhizosphere growth-promoting bacteria (PGPR) are environmentally friendly biofertilizers known to enhance crop growth, yield, and soil quality, but their application in the saline soil of the Qaidam Basin remains limited. We evaluated two PGPR application rates (B1 = 75 kg hm−2 and B2 = 150 kg hm−2) on ‘Qingtian No. 1’ oat, assessing plant growth, soil physicochemical properties, and rhizosphere microbial communities. The results indicated that both treatments significantly increased oat productivity, raised the comprehensive growth index, augmented soil organic matter, and lowered soil pH; B1 chiefly enhanced above-ground biomass and fungal community stability, whereas B2 more strongly promoted root development and bacterial community stability. Structural equation modeling showed that PGPR exerted direct effects on the comprehensive growth index and indirect effects through soil and microbial pathways, with soil properties contributing slightly more than microbial factors. Notably, rhizosphere organic matter, fungal β-diversity, and overall microbial community stability emerged as positive key drivers of the comprehensive growth index. These findings provide a theoretical basis for optimizing PGPR dosage in alpine forage systems and support the sustainable deployment of microbial fertilizers under saline soil conditions in the Qaidam Basin. Full article
Show Figures

Figure 1

16 pages, 699 KiB  
Article
Propagation of Atriplex halimus (Mediterranean Saltbush) in Multi-Contaminated Mine Tailings by Unrooted Cuttings
by Marta Canu, Stefano Milia, Stefano Ubaldini, Elena Tamburini, Alessandra Carucci and Giovanna Cappai
Appl. Sci. 2025, 15(13), 7027; https://doi.org/10.3390/app15137027 - 22 Jun 2025
Viewed by 752
Abstract
Phytotechnologies offer sustainable solutions for remediating mine residues by combining site rehabilitation with the potential recovery of secondary and critical raw materials (SRMs and CRMs, respectively), contributing to resource efficiency strategies. This study explored the direct propagation of Atriplex halimus unrooted cuttings into [...] Read more.
Phytotechnologies offer sustainable solutions for remediating mine residues by combining site rehabilitation with the potential recovery of secondary and critical raw materials (SRMs and CRMs, respectively), contributing to resource efficiency strategies. This study explored the direct propagation of Atriplex halimus unrooted cuttings into metal-contaminated mine tailings, assessing survival, biomass production, and trace metal accumulation. Treatments were carried out on mine tailings, with and without the addition of organic and inorganic amendments, and on commercial soil as a control. After an 8-week preliminary trial, Atriplex halimus demonstrated moderate survival and growth without phytotoxic symptoms, despite elevated trace metal concentrations. Significant accumulation of zinc, lead, and cadmium as model contaminants in the biomass of Atriplex halimus (up to 495.4, 31.9, and 1.2 mg kg−1, respectively), as well as magnesium and manganese as model CRMs (2081 and 87.8 mg kg−1, respectively) was observed in aerial tissues, comparable with traditional, though more labor-intensive propagation methods. Plants’ ability to accumulate metals was high in the presence of amendments added to promote biomass growth. These results highlight the significance of direct propagation by unrooted cuttings as a promising, low-cost strategy to initiate site restoration in metal-contaminated areas and warrant further investigation under field conditions and over longer durations. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

Back to TopTop