Bacillus-Based Biofertilizer Influences Soil Microbiome to Enhance Soil Health for Sustainable Agriculture
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Apparatus
2.2. Cultivation of Brassica oleracea
2.3. Culture and Field Application of Bacillus subtilis LNP-1
2.4. Soil Sampling and Microbiome Analysis
2.5. Microbial Abundance and Diversity Analysis
3. Results
3.1. Effect of Biofertilizer Treatment on Crop Yield Under Different Fertilization Strategies
3.2. Effect of LNP-1 Biofertilizer on Soil Microbial Diversity
3.3. Effect of LNP-1 Biofertilizer on Relative Abundance of Specific Soil Microbial Genera
4. Discussion
4.1. LNP-1 Biofertilizer Improves Cabbage Yield
4.2. LNP-1 Biofertilizer Promotes Soil Health by Increasing Microbial Diversity
4.3. LNP-1 Biofertilizer Modulates Different Bacterial Genera to Improve Soil Function
4.4. Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Taxa | Log2FC | p-Value | Function | Reference |
---|---|---|---|---|
Chryseolinea | 3.2456 | 0.0032 | Suppresses plant diseases such as Fusarium. | Y Ou et al. (2019) [39] |
Paenibacillus | −19.8761 | <0.0001 | Nitrogen fixation, reduces fertilizer use and enhances growth. | Liu X et al. (2019) [32] |
Minicystis | 2.7806 | 0.0159 | Degrades organic matter, enhances nutrient cycling and soil fertility. | Rayapadi et al. (2024) [40] |
Panacagrimonas | 4.1974 | 0.0052 | Ables to decompose chemical pollutants such as chlorinated hydrocarbons, aides in the breakdown of harmful substances in contaminated soils. | Zhou, Y. et al. (2014) [41] |
Fictibacillus | 4.7720 | 0.0084 | Degrades lignocellulosic agricultural residues. | YF Chen et al. (2020) [42] |
Dongia | 1.0233 | 0.0292 | Suppresses the growth of soil-borne pathogens. | Han, L. et al. (2018) [43] |
Devosia | 1.0811 | 0.0412 | Establishes nitrogen-fixing symbioses with legumes, enhances soil fertility and promotes plant growth. | Rivas et al. (2002) [44] |
Produces indole acetic acid (IAA) that stimulates root development and overall plant vigor. | Chhetri et al. (2022) [45] | |||
Produce siderophores which chelate iron from the environment, making iron more available to plants. | Chhetri et al. (2022) [45] | |||
Mitigates the adverse effects of salinity on seed germination, enhances plant resilience to abiotic stresses. | Monjezi et al. (2023) [46] |
Taxa | Log2FC | p-Value | Function | Reference |
---|---|---|---|---|
Chryseolinea | 3.8447 | 0.0022 | Suppresses plant diseases such as Fusarium. | Y Ou et al. (2019) [39] |
Terrimonas | 1.4473 | 0.0271 | Promotes plant growth, mitigates replant disease. | Yim B. et al. (2017) [47] |
Paenibacillus | −1.2907 | 0.0073 | Nitrogen fixation, reduces fertilizer use and enhances growth. | Liu X et al. (2019) [32] |
Minicystis | 3.1712 | 0.0448 | Degrades organic matter, enhances nutrient cycling and soil fertility. | Rayapadi et al. (2024) [40] |
Clostridium_sensu_stricto | −19.0959 | 0.0077 | Produces exotoxins in the environment and affect crop growth. | S Jin et al. (2023) [48] |
Pseudarthrobacter | −2.2595 | 0.0239 | Identified as aerobic auxin-producing bacterium. | Nanetti et al. (2023) [49] |
Increases the availability of nitrogen, phosphorus, and potassium in growing medium. | Issifu et al. (2022) [50] | |||
Protects plants from various biotic and abiotic stresses. | Ham et al. (2022) [51] | |||
Produces siderophores molecules that bind and solubilize iron, making it more accessible to plants. | Mghazli et al. (2022) [52] | |||
Mycobacterium | 2.9279 | 0.0287 | Identified as pathogenic bacteria. | B Wang et al. (2023) [53] |
Kribbella | −21.3685 | 0.0341 | Plant growth promoting bacteria, as a biocontrol agent. | Mehmood et al. (2022) [54] |
Flavihumibacter | −18.5318 | 0.0331 | Growth promotion, disease control and tolerance to abiotic stress. | Seo et al. (2024) [55] |
Streptomyces | −3.7314 | 0.0320 | Solubilizes phosphate, making it more accessible to plants. | Chouyia et al. (2022) [56] |
Produces siderophore and making it available for plant growth. | Omar et al. (2022) [57] | |||
Gordonia | 20.2721 | 0.0268 | Nitrogen fixation in saline-affected areas. | Kayasth et al. (2014) [58] |
Taxa | Log2FC | p-Value | Function | Reference |
---|---|---|---|---|
Pseudarthrobacter | −2.9450 | 0.0094 | Increases the availability of nitrogen, phosphorus, and potassium in growing medium. | Issifu et al. (2022) [50] |
Protects plants from various biotic and abiotic stresses. | Ham et al. (2022) [51] | |||
Produces siderophores molecules that bind and solubilize iron, making it more accessible to plants. | Mghazli et al. (2022) [52] | |||
Identified as aerobic auxin-producing bacterium. | Nanetti et al. (2023) [49] | |||
Panacagrimonas | 20.5296 | 0.0296 | Ables to decompose chemical pollutants such as chlorinated hydrocarbons, aides in the breakdown of harmful substances in contaminated soils. | Zhou, Y. et al. (2014) [41] |
Dongia | 1.0755 | 0.0091 | Suppresses the growth of soil-borne pathogens. | Han, L. et al. (2018) [43] |
Involves in nutrient cycling in soil. | Jia M. et al. (2022) [59] | |||
Reyranella | 2.1292 | 0.0473 | Participates in the reduction of nitrates to nitrogen gas, thus playing a role in the nitrogen cycle within soil ecosystems. | Dhanoa et al. (2023) [60] |
Chitinophaga | 1.8816 | 0.0332 | Possess a diverse array of enzymes capable of breaking down complex carbohydrates, including chitin and plant cell wall polysaccharides. Facilitates the decomposition of organic matter, enhances soil fertility and structure. | Fernandes et al. (2021) [61] |
Exhibits antifungal activity against plant pathogens like Botrytis cinerea. Potential use as biological control agents to manage plant diseases. | Kim et al. (2023) [62] | |||
Dactylosporangium | 20.0412 | 0.0261 | Exhibits antifungal activities against various plant pathogenic fungi. | JY Lee and BK Hwang (2002) [63] |
Gordonia | 4.9206 | 0.0197 | Nitrogen fixation in saline-affected areas. | Kayasth et al. (2014) [58] |
Taxa | Log2FC | p-Value | Function | Reference |
---|---|---|---|---|
Noviherbaspirillum | 3.7877 | 0.0056 | Identified as denitrifying bacteria. | Peta et al. (2021) [37] |
Planifilum | 18.4313 | <0.0001 | Produces enzymes such as xylanases and proteases, break down complex organic compounds into simpler forms. Enhances soil health and promotes plant growth. | Zhang, H. et al. (2021) [36] |
Pseudarthrobacter | −1.5332 | 0.0404 | Identified as aerobic auxin-producing bacterium. | Nanetti et al. (2023) [49] |
Increases the availability of nitrogen, phosphorus, and potassium in growing medium. | Issifu et al. (2022) [50] | |||
Protects plants from various biotic and abiotic stresses. | Ham et al. (2022) [51] | |||
Produces siderophores molecules that bind and solubilize iron, making it more accessible to plants. | Mghazli et al. (2022) [52] | |||
Rhodomicrobium | 3.0364 | 0.0316 | Fixation of atmospheric nitrogen, converting into forms usable by plants. | Eric et al. (2023) [38] |
Taxa | Log2FC | p-Value | Function | Reference |
---|---|---|---|---|
Microvirga | −2.3531 | 0.0399 | Nitrogen fixation, solubilizes phosphate and produce siderophores, facilitating nutrient uptake and promoting plant health. | Jimnez-Gmez et al. (2019) [34] |
Sphingomonas | −1.1674 | 0.0358 | Synthesizes phytohormones like indole-3-acetic acid (IAA), which promote cell division and elongation in plants. | Lombardino et al. (2022) [35] |
Produces auxins and gibberellins, enhancing plant tolerance to salinity and cadmium stress. | Lombardino et al. (2022) [35] | |||
Increases number of lateral roots and root hairs of Arabidopsis thaliana, thus improving water and nutrient uptake. | Luo Y. et al. (2019) [64] | |||
Terrimonas | 1.6384 | 0.0393 | Promotes plant growth, mitigates replant disease. | Yim B. et al. (2017) [47] |
Minicystis | 20.4337 | 0.0180 | Degrades organic matter, enhances nutrient cycling and soil fertility. | Rayapadi et al. (2024) [40] |
Chitinophaga | −18.8338 | 0.0229 | Exhibits antagonistic properties against plant pathogens. Potential as a biocontrol agent in agriculture. | Kim et al. (2023) [62] |
Taxa | Log2FC | p-Value | Function | Reference |
---|---|---|---|---|
Terrimonas | 1.6049 | 0.0050 | Promotes plant growth, mitigates replant disease. | Yim B. et al. (2017) [47] |
Minicystis | 19.8817 | <0.0001 | Degrades organic matter, enhances nutrient cycling and soil fertility. | Rayapadi et al. (2024) [40] |
Nannocystis | 2.0670 | 0.0466 | Produces antimicrobial secondary metabolites, suppresses soil-borne pathogens and promote plant health. Potential biocompetitive agent against aflatoxigenic Aspergillus moulds. | Visioli G. et al. (2018) [65] |
Fictibacillus | 4.2241 | 0.0011 | Degrades lignocellulosic agricultural residues. | YF Chen et al. (2020) [42] |
Roseomonas | −18.4296 | 0.0422 | Produces plant-growth-promoting substances such as indole-3-acetic acid (IAA), siderophores, and phytase. Enhances nutrient availability and uptake. | HJ Lee and KS Whang (2022) [66] |
References
- Tian, Z.; Wang, J.W.; Li, J.; Han, B. Designing future crops: Challenges and strategies for sustainable agriculture. Plant J. 2021, 105, 1165–1178. [Google Scholar] [CrossRef] [PubMed]
- Cassman, K.G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl. Acad. Sci. USA 1999, 96, 5952–5959. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Rauf, M.; Mukhtar, Z.; Saeed, N.A. Excessive use of nitrogenous fertilizers: An unawareness causing serious threats to environment and human health. Environ. Sci. Pollut. Res. 2017, 24, 26983–26987. [Google Scholar] [CrossRef]
- Zhu, X.; Ros, G.H.; Xu, M.; Xu, D.; Cai, Z.; Sun, N.; Duan, Y.; de Vries, W. The contribution of natural and anthropogenic causes to soil acidification rates under different fertilization practices and site conditions in southern China. Sci. Total Environ. 2024, 934, 172986. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.E.; Shahrukh, S.; Hossain, S.A. Chemical fertilizers and pesticides: Impacts on soil degradation, groundwater, and human health in Bangladesh. In Environmental Degradation: Challenges and Strategies for Mitigation; Springer: Berlin/Heidelberg, Germany, 2022; pp. 63–92. [Google Scholar]
- Maikhuri, R.K.; Rao, K.S. Soil quality and soil health: A review. Int. J. Ecol. Environ. Sci. 2012, 38, 19–37. [Google Scholar]
- Zhang, Y.; Ye, C.; Su, Y.; Peng, W.; Lu, R.; Liu, Y.; Huang, H.; He, X.; Yang, M.; Zhu, S. Soil Acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from literature review and field trials. Agric. Ecosyst. Environ. 2022, 340, 108176. [Google Scholar] [CrossRef]
- Tian, D.; Niu, S. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 2015, 10, 024019. [Google Scholar] [CrossRef]
- Massah, J.; Azadegan, B. Effect of chemical fertilizers on soil compaction and degradation. Agric. Mech. Asia Afr. Lat. Am. 2016, 47, 44–50. [Google Scholar]
- Shaheb, M.R.; Venkatesh, R.; Shearer, S.A. A review on the effect of soil compaction and its management for sustainable crop production. J. Biosyst. Eng. 2021, 46, 417–439. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, U.B.; Sahu, P.K.; Paul, S.; Kumar, A.; Malviya, D.; Singh, S.; Kuppusamy, P.; Singh, P.; Paul, D. Linking soil microbial diversity to modern agriculture practices: A review. Int. J. Environ. Res. Public Health 2022, 19, 3141. [Google Scholar] [CrossRef]
- Narayanan, Z.; Glick, B.R. Secondary metabolites produced by plant growth-promoting bacterial endophytes. Microorganisms 2022, 10, 2008. [Google Scholar] [CrossRef] [PubMed]
- Barriuso, J.; Solano, B.R.; Gutiérrez Mañero, F. Protection against pathogen and salt stress by four plant growth-promoting rhizobacteria isolated from Pinus sp. on Arabidopsis thaliana. Phytopathology 2008, 98, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Saeed, K.S.; Ahmed, S.A.; Hassan, I.A.; Ahmed, P.H. Effect of bio-fertilizer and chemical fertilizer on growth and yield in cucumber (Cucumis sativus) in green house condition. Pak. J. Biol. Sci. 2015, 18, 129–134. [Google Scholar]
- Sun, B.; Gu, L.; Bao, L.; Zhang, S.; Wei, Y.; Bai, Z.; Zhuang, G.; Zhuang, X. Application of biofertilizer containing Bacillus subtilis reduced the nitrogen loss in agricultural soil. Soil Biol. Biochem. 2020, 148, 107911. [Google Scholar] [CrossRef]
- Elsayed, S.I.; Glala, A.; Abdalla, A.M.; El-Sayed, A.E.G.A.; Darwish, M.A. Effect of biofertilizer and organic fertilization on growth, nutrient contents and fresh yield of dill (Anethum graveolens). Bull. Natl. Res. Cent. 2020, 44, 122. [Google Scholar] [CrossRef]
- Ali, S.; Tyagi, A.; Mir, R.A.; Rather, I.A.; Anwar, Y.; Mahmoudi, H. Plant beneficial microbiome a boon for improving multiple stress tolerance in plants. Front. Plant Sci. 2023, 14, 1266182. [Google Scholar] [CrossRef]
- Ortiz, A.; Sansinenea, E. The role of beneficial microorganisms in soil quality and plant health. Sustainability 2022, 14, 5358. [Google Scholar] [CrossRef]
- Jansson, J.K.; McClure, R.; Egbert, R.G. Soil microbiome engineering for sustainability in a changing environment. Nat. Biotechnol. 2023, 41, 1716–1728. [Google Scholar] [CrossRef]
- Assefa, S.; Tadesse, S. The principal role of organic fertilizer on soil properties and agricultural productivity—A review. Agric. Res. Technol. Open Access J. 2019, 22, 556192. [Google Scholar] [CrossRef]
- Wang, J.; Han, G.; Duan, Y.; Han, R.; Shen, X.; Wang, C.; Zhao, L.; Nie, M.; Du, H.; Yuan, X. Effects of different organic fertilizer substitutions for chemical nitrogen fertilizer on soil fertility and nitrogen use efficiency of foxtail millet. Agronomy 2024, 14, 866. [Google Scholar] [CrossRef]
- Satapute, P.; Olekar, H.; Shetti, A.; Kulkarni, A.; Hiremath, G.; Patagundi, B.; Shivsharan, C.; Kaliwal, B. Isolation and characterization of nitrogen fixing Bacillus subtilis strain as-4 from agricultural soil. Int. J. Recent Sci. Res. 2012, 3, 762–765. [Google Scholar]
- Saeid, A.; Prochownik, E.; Dobrowolska-Iwanek, J. Phosphorus solubilization by Bacillus species. Molecules 2018, 23, 2897. [Google Scholar] [CrossRef] [PubMed]
- Du, T.-Y.; He, H.-Y.; Zhang, Q.; Lu, L.; Mao, W.-J.; Zhai, M.-Z. Positive effects of organic fertilizers and biofertilizers on soil microbial community composition and walnut yield. Appl. Soil Ecol. 2022, 175, 104457. [Google Scholar] [CrossRef]
- Estrada, G.A.; Baldani, V.L.D.; de Oliveira, D.M.; Urquiaga, S.; Baldani, J.I. Selection of phosphate-solubilizing diazotrophic Herbaspirillum and Burkholderia strains and their effect on rice crop yield and nutrient uptake. Plant Soil 2013, 369, 115–129. [Google Scholar] [CrossRef]
- Bednarek, P.; Osbourn, A. Plant-microbe interactions: Chemical diversity in plant defense. Science 2009, 324, 746–748. [Google Scholar] [CrossRef]
- Sparling, G. Soil microbial biomass, activity and nutrient cycling as indicators of soil health. Biol. Indic. Soil Health 1997, 97–119. [Google Scholar]
- Kennedy, A.C.; Stubbs, T.L. Soil microbial communities as indicators of soil health. Ann. Arid Zone 2006, 45, 287. [Google Scholar]
- Wang, J.; Liu, L.; Gao, X.; Hao, J.; Wang, M. Elucidating the effect of biofertilizers on bacterial diversity in maize rhizosphere soil. PLoS ONE 2021, 16, e0249834. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, J.; Bai, Z.; Wu, S.; Li, X.; Wang, N.; Du, X.; Fan, H.; Zhuang, G.; Bohu, T. Unraveling mechanisms and impact of microbial recruitment on oilseed rape (Brassica napus L.) and the rhizosphere mediated by plant growth-promoting rhizobacteria. Microorganisms 2021, 9, 161. [Google Scholar] [CrossRef]
- Yu, Y.-H.; Crosbie, D.B.; Arancibia, M.M. Pseudomonas in the spotlight: Emerging roles in the nodule microbiome. Trends Plant Sci. 2025, 30, 461–470. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Li, Y.; Guan, G.; Chen, S. Paenibacillus strains with nitrogen fixation and multiple beneficial properties for promoting plant growth. PeerJ 2019, 7, e7445. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Gao, J.; Chen, X.; Zhang, M.; Yang, F.; Du, Y.; Moe, T.S.; Munir, I.; Xue, J.; Zhang, X. Isolation and characterization of plant growth–promoting endophytic bacteria Paenibacillus polymyxa SK1 from Lilium lancifolium. BioMed Res. Int. 2020, 2020, 8650957. [Google Scholar] [CrossRef]
- Jimenez-Gomez, A.; Saati-Santamaria, Z.; Igual, J.; Rivas, R.; Mateos, P.; Garcia-Fraile, P. Genome Insights into the Novel Species Microvirga brassicacearum, a Rapeseed Endophyte with Biotechnological Potential. Microorganisms 7: 0. Kanso S, Patel BK (2003) Microvirga subterranea gen. nov., sp. nov., a moderate thermophile from a deep subsurface Australian thermal aquifer. Int. J. Syst. Evol. Microbiol. 2019, 53, 401–406. [Google Scholar]
- Lombardino, J.; Bijlani, S.; Singh, N.K.; Wood, J.M.; Barker, R.; Gilroy, S.; Wang, C.C.; Venkateswaran, K. Genomic characterization of potential plant growth-promoting features of Sphingomonas strains isolated from the International Space Station. Microbiol. Spectr. 2022, 10, e0199421. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, W.; Li, Z.; Yang, C.; Liang, S.; Wang, L. Planifilum fulgidum is the dominant functional microorganism in compost containing spent mushroom substrate. Sustainability 2021, 13, 10002. [Google Scholar] [CrossRef]
- Peta, V.; Raths, R.; Bücking, H. Massilia horti sp. nov. and Noviherbaspirillum arenae sp. nov., two novel soil bacteria of the Oxalobacteraceae. Int. J. Syst. Evol. Microbiol. 2021, 71. [Google Scholar] [CrossRef] [PubMed]
- Conners, E.M.; Rengasamy, K.; Bose, A. The phototrophic bacteria Rhodomicrobium spp. are novel chassis for bioplastic production. bioRxiv 2023, bioRxiv: 2023.05.17.541187. [Google Scholar]
- Ou, Y.; Penton, C.R.; Geisen, S.; Shen, Z.; Sun, Y.; Lv, N.; Wang, B.; Ruan, Y.; Xiong, W.; Li, R.; et al. Deciphering underlying drivers of disease suppressiveness against pathogenic Fusarium oxysporum. Front. Microbiol. 2019, 10, 2535. [Google Scholar] [CrossRef]
- Swetha, R.G.; Arakal, B.S.; Rajendran, S.; Sekar, K.; Whitworth, D.E.; Ramaiah, S.; James, P.E.; Livingstone, P.G.; Anbarasu, A. MyxoPortal: A database of myxobacterial genomic features. Database 2024, 2024, baae056. [Google Scholar] [CrossRef]
- Zhou, Y.; Lai, R.; Li, W.J. The family solimonadaceae. Prokaryotes 2014, 627–638. [Google Scholar]
- Chen, Y.; Wang, W.; Zhou, D.; Jing, T.; Li, K.; Zhao, Y.; Tang, W.; Qi, D.; Zhang, M.; Zang, X.; et al. Biodegradation of lignocellulosic agricultural residues by a newly isolated Fictibacillus sp. YS-26 improving carbon metabolic properties and functional diversity of the rhizosphere microbial community. Bioresour. Technol. 2020, 310, 123381. [Google Scholar] [CrossRef]
- Han, L.; Wang, Z.; Li, N.; Wang, Y.; Feng, J.; Zhang, X. Bacillus amyloliquefaciens B1408 suppresses Fusarium wilt in cucumber by regulating the rhizosphere microbial community. Appl. Soil Ecol. 2019, 136, 55–66. [Google Scholar] [CrossRef]
- Rivas, R.; Velázquez, E.; Willems, A.; Vizcaíno, N.; Subba-Rao, N.S.; Mateos, P.F.; Gillis, M.; Dazzo, F.B.; Martínez-Molina, E. A new species of Devosia that forms a unique nitrogen-fixing root-nodule symbiosis with the aquatic legume Neptunia natans (Lf) Druce. Appl. Environ. Microbiol. 2002, 68, 5217–5222. [Google Scholar] [CrossRef] [PubMed]
- Chhetri, G.; Kim, I.; Kang, M.; Kim, J.; So, Y.; Seo, T. Devosia rhizoryzae sp. nov., and Devosia oryziradicis sp. nov., novel plant growth promoting members of the genus Devosia, isolated from the rhizosphere of rice plants. J. Microbiol. 2022, 60, 1–10. [Google Scholar] [CrossRef]
- Monjezi, N.; Yaghoubian, I.; Smith, D.L. Cell-free supernatant of Devosia sp. (strain SL43) mitigates the adverse effects of salt stress on soybean (Glycine max L.) seed vigor index. Front. Plant Sci. 2023, 14, 1071346. [Google Scholar] [CrossRef]
- Yim, B.; Nitt, H.; Wrede, A.; Jacquiod, S.; Sørensen, S.J.; Winkelmann, T.; Smalla, K. Effects of soil pre-treatment with Basamid® granules, Brassica juncea, Raphanus sativus, and Tagetes patula on bacterial and fungal communities at two apple replant disease sites. Front. Microbiol. 2017, 8, 1604. [Google Scholar] [CrossRef]
- Jin, S.; Huang, Y.; Dong, C.; Bai, Y.; Pan, H.; Hu, Z. Effects of different straw returning amounts and fertilizer conditions on bacteria of rice’s different part in rare earth mining area. Sci. Rep. 2023, 13, 412. [Google Scholar] [CrossRef] [PubMed]
- Nanetti, E.; Palladino, G.; Scicchitano, D.; Trapella, G.; Cinti, N.; Fabbrini, M.; Cozzi, A.; Accetta, G.; Tassini, C.; Iannaccone, L.; et al. Composition and biodiversity of soil and root-associated microbiome in Vitis vinifera cultivar Lambrusco distinguish the microbial terroir of the Lambrusco DOC protected designation of origin area on a local scale. Front. Microbiol. 2023, 14, 1108036. [Google Scholar] [CrossRef] [PubMed]
- Issifu, M.; Songoro, E.K.; Onguso, J.; Ateka, E.M.; Ngumi, V.W. Potential of Pseudarthrobacter chlorophenolicus BF2P4-5 as a biofertilizer for the growth promotion of tomato plants. Bacteria 2022, 1, 191–206. [Google Scholar] [CrossRef]
- Ham, S.H.; Yoon, A.R.; Oh, H.E.; Park, Y.G. Plant growth-promoting microorganism Pseudarthrobacter sp. NIBRBAC000502770 enhances the growth and flavonoid content of Geum aleppicum. Microorganisms 2022, 10, 1241. [Google Scholar] [CrossRef]
- Mghazli, N.; Bruneel, O.; Zouagui, R.; Hakkou, R.; Sbabou, L. Characterization of plant growth promoting activities of indigenous bacteria of phosphate mine wastes, a first step toward revegetation. Front. Microbiol. 2022, 13, 1026991. [Google Scholar] [CrossRef]
- Wang, B.; Chen, C.; Xiao, Y.; Chen, K.; Wang, J.; Wang, L.; Li, J.; Kang, Z.; Zhou, G. A core root bacteria contribute to plant growth and anisodine accumulation of Anisodus tanguticus. BMC Plant Biol. 2023, 23, 655. [Google Scholar] [CrossRef]
- Mehmood, M.A.; Fu, Y.; Zhao, H.; Cheng, J.; Xie, J.; Jiang, D. Enrichment of bacteria involved in the nitrogen cycle and plant growth promotion in soil by sclerotia of rice sheath blight fungus. Stress Biol. 2022, 2, 32. [Google Scholar] [CrossRef] [PubMed]
- Seo, H.; Kim, J.H.; Lee, S.M.; Lee, S.W. The plant-associated Flavobacterium: A hidden helper for improving plant health. Plant Pathol. J. 2024, 40, 251. [Google Scholar] [CrossRef] [PubMed]
- Chouyia, F.E.; Ventorino, V.; Pepe, O. Diversity, mechanisms and beneficial features of phosphate-solubilizing Streptomyces in sustainable agriculture: A review. Front. Plant Sci. 2022, 13, 1035358. [Google Scholar] [CrossRef] [PubMed]
- Omar, A.F.; Abdelmageed, A.H.; Al-Turki, A.; Abdelhameid, N.M.; Sayyed, R.Z.; Rehan, M. Exploring the plant growth-promotion of four Streptomyces strains from rhizosphere soil to enhance cucumber growth and yield. Plants 2022, 11, 3316. [Google Scholar] [CrossRef]
- Kayasth, M.; Kumar, V.; Gera, R. Gordonia sp.: A salt tolerant bacterial inoculant for growth promotion of pearl millet under saline soil conditions. 3 Biotech 2014, 4, 553–557. [Google Scholar] [CrossRef]
- Jia, M.; Sun, X.; Chen, M.; Liu, S.; Zhou, J.; Peng, X. Deciphering the microbial diversity associated with healthy and wilted Paeonia suffruticosa rhizosphere soil. Front. Microbiol. 2022, 13, 967601. [Google Scholar] [CrossRef]
- Dhanoa, M.S.; Sanderson, R.; Shepherd, A.; Cardenas, L.M.; Ellis, J.L.; Powell, C.D.; López, S.; France, J. An analysis of Earth temperature and related series in air and soil. Adv. Agron. 2023, 180, 227–258. [Google Scholar]
- Fernandes, G.C.; Sierra, E.G.M.; Brear, P.; Pereira, M.R.; Lemos, E.G. From data mining of Chitinophaga sp. genome to enzyme discovery of a hyperthermophilic metallocarboxypeptidase. Microorganisms 2021, 9, 393. [Google Scholar] [CrossRef]
- Kim, D.Y.; Han, J.W.; Lee, J.W.; Kim, B.; Kim, Y.S.; Kim, H.T.; Choi, G.J.; Kim, H. Biocontrol potential of Chitinophaga flava HK235 producing antifungal-related peptide chitinocin. Front. Microbiol. 2023, 14, 1170673. [Google Scholar] [CrossRef]
- Lee, J.Y.; Hwang, B.K. Diversity of antifungal actinomycetes in various vegetative soils of Korea. Can. J. Microbiol. 2002, 48, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wang, F.; Huang, Y.; Zhou, M.; Gao, J.; Yan, T.; Sheng, H.; An, L. Sphingomonas sp. Cra20 increases plant growth rate and alters rhizosphere microbial community structure of Arabidopsis thaliana under drought stress. Front. Microbiol. 2019, 10, 1221. [Google Scholar] [CrossRef] [PubMed]
- Visioli, G.; Sanangelantoni, A.M.; Vamerali, T.; Dal Cortivo, C.; Blandino, M. 16S rDNA profiling to reveal the influence of seed-applied biostimulants on the rhizosphere of young maize plants. Molecules 2018, 23, 1461. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Whang, K.S. Roseomonas rosulenta sp. nov., isolated from rice paddy soil. Arch. Microbiol. 2022, 204, 445. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ng, F.L.; Lin, T.-C.; Wang, E.; Lee, T.Y.; Chen, G.T.; Su, J.-F.; Chen, W.L. Bacillus-Based Biofertilizer Influences Soil Microbiome to Enhance Soil Health for Sustainable Agriculture. Sustainability 2025, 17, 6293. https://doi.org/10.3390/su17146293
Ng FL, Lin T-C, Wang E, Lee TY, Chen GT, Su J-F, Chen WL. Bacillus-Based Biofertilizer Influences Soil Microbiome to Enhance Soil Health for Sustainable Agriculture. Sustainability. 2025; 17(14):6293. https://doi.org/10.3390/su17146293
Chicago/Turabian StyleNg, Fung Ling, Tsung-Chun Lin, Erick Wang, Tzong Yi Lee, Guan Ting Chen, Jiunn-Feng Su, and Wen Liang Chen. 2025. "Bacillus-Based Biofertilizer Influences Soil Microbiome to Enhance Soil Health for Sustainable Agriculture" Sustainability 17, no. 14: 6293. https://doi.org/10.3390/su17146293
APA StyleNg, F. L., Lin, T.-C., Wang, E., Lee, T. Y., Chen, G. T., Su, J.-F., & Chen, W. L. (2025). Bacillus-Based Biofertilizer Influences Soil Microbiome to Enhance Soil Health for Sustainable Agriculture. Sustainability, 17(14), 6293. https://doi.org/10.3390/su17146293