Positive Role of Trichoderma harzianum in Increasing Plant Tolerance to Abiotic Stresses: A Review
Abstract
1. Introduction
2. Methods of Applying T. harzianum
3. Mechanisms of T. harzianum Promotes Stress Tolerance of Plants Under Abiotic Stresses
3.1. Improving Plant Root Development and Nutrient Uptake
3.2. Enhancement of Plant Secondary Metabolism
3.3. Enhancement of Plant Antioxidant Defense System
3.4. Regulation of Plant Hormone Balance
3.5. Improvement of Soil Environment and Structure
3.6. Expression Analysis of the Hsp70 (Heat-Shock Protein 70), TAS14 Inducible by ABA and Environmental Stress, NAC1 (NAM, ATAF1/2, and CUC2) and P5CS (Delta 1-Pyrroline-5-Carboxylate Synthetase) Genes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosegrant, M.W.; Sulser, T.B.; Dunston, S.; Mishra, A.; Cenacchi, N.; Gebretsadik, Y.; Robertson, R.; Thomas, T.; Wiebe, K. Food and nutrition security under changing climate and socioeconomic conditions. Glob. Food Secur. 2024, 41, 100755. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, J.; Zhao, L.; Wu, H.; Zhu, Y.; Ahmad, I.; Zhou, G. Abiotic stress responses in crop plants: A multi-scale approach. J. Integr. Agric. 2024, 23, 1456–1472. [Google Scholar] [CrossRef]
- Gupta, A.; Rico-Medina, A.; Caño-Delgado, A.I. The Physiology of Plant Responses to Drought. Science 2020, 368, 266–269. [Google Scholar] [CrossRef]
- Xie, G.; Xu, R.; Chong, L.; Zhu, Y. Understanding drought stress response mechanisms in tomato. Veg. Res. 2024, 4, e001. [Google Scholar] [CrossRef]
- Haghpanah, M.; Hashemipetroudi, S.; Arzani, A.; Araniti, F. Drought Tolerance in Plants: Physiological and Molecular Responses. Plants 2024, 13, 2962. [Google Scholar] [CrossRef] [PubMed]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef]
- Isayenkov, S.V.; Maathuis, F.J.M. Plant Salinity Stress: Many Unanswered Questions Remain. Front. Plant Sci. 2019, 10, 80. [Google Scholar] [CrossRef]
- Qian, D.; Wang, M.; Niu, Y.; Yang, Y.; Xiang, Y. Sexual reproduction in plants under high temperature and drought stress. Cell Rep. 2025, 44, 115390. [Google Scholar] [CrossRef]
- Scafaro, A.P.; Posch, B.C.; Evans, J.R.; Atkin, O.K. Rubisco Deactivation and Chloroplast Electron Transport Rates Co-Limit Photosynthesis Above Optimal Leaf Temperature in Terrestrial Plants. Nat. Commun. 2023, 14, 2820. [Google Scholar] [CrossRef]
- Rifai, M.A.; Webster, J. A Revision of the Genus Trichoderma. Mycol. Pap. 1969, 116, 1–56. [Google Scholar]
- Yan, S.H.; Wu, S.P.; Lu, D.Q.; Chen, X.J. Effects of Biocontrol Strain of Trichoderma harzianum on Microflora in Rhizosphere and Its Interactions with Microbe. Southwest China J. Agric. Sci. 2005, 18, 40–46. [Google Scholar]
- Mohammad, A.; Khan, R.M.; Khan, S.H. T. harzianum (Th. azad) as a Mycoparasite of Fusarium and Growth Enhancer of Tomato in Glasshouse Conditions. J. Pure Appl. Microbiol. 2016, 10, 1463–1468. [Google Scholar]
- Woo, S.L.; Ruocco, M.; Vinale, F.; Nigro, M.; Marra, R.; Lombardi, N.; Pascale, A.; Lanzuise, S.; Manganiello, G.; Lorito, M. Trichoderma: A multipurpose, plant-beneficial microorganism for eco-sustainable agriculture. Nat. Rev. Microbiol. 2023, 21, 312–326. [Google Scholar] [CrossRef]
- Ahmad, S.A.; Muhammad, T. Effects of different inoculum densities of T. harzianum and Trichoderma viride against Meloidogyne javanica on tomato. Saudi J. Biol. Sci. 2016, 23, 2. [Google Scholar]
- Ghorbanpour, A.; Salimi, A.; Ghanbary, M.A.T.; Pirdashti, H.; Dehestani, A. The effect of T. harzianum in mitigating low temperature stress in tomato (Solanum lycopersicum L.) plants. Sci. Hortic. 2017, 230, 134–141. [Google Scholar] [CrossRef]
- Khoshmanzar, E.; Aliasgharzad, N.; Rezaei, R.; Neyshabouri, M.R. Effects of Trichoderma Isolates on Tomato Growth and Inducing Its Tolerance to Water-Deficit Stress. Int. J. Environ. Sci. Technol. 2020, 17, 869–878. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, Y.; Liu, C.; Chen, F.; Ge, H.; Tian, F.; Yang, T.; Ma, K.; Zhang, Y. T. harzianum mitigates salt stress in cucumber via multiple responses. Ecotoxicol. Environ. Saf. 2019, 170, 436–445. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Chen, X.; Wang, Y.; Zhang, H.; Li, J. Effects of Solid Matrix Priming with T. harzianum on Seed Germination, Seedling Emergence and Photosynthetic Capacity of Eggplant. Afr. J. Biotechnol. 2017, 16, 699–703. [Google Scholar]
- Valiyambath, V.K.; Thomas, T.A.; George, P.; Nair, S.; Kumar, A. Characterization and Quantification of Peptaibol Produced by Novel Trichoderma spp.: Harnessing Their Potential to Mitigate Moisture Stress Through Enhanced Biochemical and Physiological Responses in Black Pepper (Piper nigrum L.). World J. Microb. Biot. 2024, 40, 330. [Google Scholar] [CrossRef]
- Bashyal, B.M.; Zaidi, N.W.; Singh, S.A.R. Effect of fungal biocontrol agents on enhancement of drought stress tolerance in rice (Oryza sativa L.). Indian J. Biochem. Biophys. 2020, 57, 101–108. [Google Scholar]
- Bashyal, B.M.; Gupta, R.; Pareek, N.; Rai, S. Molecular Programming of Drought-Challenged T. harzianum-Bioprimed Rice (Oryza sativa L.). Front. Microbiol. 2021, 12, 655165. [Google Scholar] [CrossRef]
- Pandey, V.; Ansari, M.W.; Tula, S.; Yadav, S.; Sahoo, R.K.; Shukla, N.; Bains, G.; Badal, S.; Chandra, S.; Gaur, A.K.; et al. Dose-dependent response of T. harzianum in improving drought tolerance in rice genotypes. Planta 2016, 243, 1251–1264. [Google Scholar] [CrossRef] [PubMed]
- Saravanakumar, K.; Li, Y.; Yu, C.; Wang, Q.; Wang, M. Effect of T. harzianum on Maize Rhizosphere Microbiome and Biocontrol of Fusarium Stalk Rot. Sci. Rep. 2017, 7, 1771. [Google Scholar] [CrossRef] [PubMed]
- Han, Y. Metabolic and Antioxidant Responses of Different Control Methods to the Interaction of Sorghum sudangrass hy-brids-Colletotrichum boninense. Int. J. Mol. Sci. 2024, 25, 9505. [Google Scholar]
- Saha, K.C.; Uddin, M.K.; Shaha, P.K.; Hossain Chowdhury, M.A.; Hassan, L.; Saha, B.K. Application of T. harzianum enhances salt tolerance and yield of Indian mustard through increasing antioxidant enzyme activity. Heliyon 2024, 11, e41114. [Google Scholar] [CrossRef]
- Alwhibi, M.S.; Alqarawi, A.A.; Wirth, S.; Egamberdieva, D. Increased Resistance of Drought by T. harzianum Fungal Treatment Correlates with Increased Secondary Metabolites and Proline Content. J. Integr. Agric. 2017, 16, 1751–1760. [Google Scholar]
- Lian, H.; Li, R.; Ma, G.; Zhang, X.; Wang, Y.; Liu, Y. The Effect of T. harzianum Agents on Physiological-Biochemical Characteristics of Cucumber and the Control Effect Against Fusarium Wilt. Sci. Rep. 2023, 13, 17606. [Google Scholar] [CrossRef]
- Martínez-Medina, A.; Roldán, A.; Pascual, J.A. Interaction between arbuscular mycorrhizal fungi and T. harzianum under conventional and low input fertilization field condition in melon crops: Growth response and Fusarium wilt biocontrol. Appl. Soil Ecol. 2011, 47, 98–105. [Google Scholar] [CrossRef]
- Coppola, M.; Diretto, G.; Digilio, M.C.; Woo, S.L.; Giuliano, G.; Molisso, D.; Pennacchio, F.; Lorito, M.; Rao, R. Transcriptome and Metabolome Reprogramming in Tomato Plants by T. harzianum strain T22 Primes and Enhances Defense Responses Against Aphids. Front. Physiol. 2019, 10, 745. [Google Scholar] [CrossRef]
- Lombardi, N.; Caira, S.; Troise, A.D.; Scaloni, A.; Vitaglione, P.; Vinale, F.; Marra, R.; Salzano, A.M.; Lorito, M.; Woo, S.L. Trichoderma applications on strawberry plants modulate the physiological processes positively affecting fruit production and quality. Front. Microbiol. 2020, 11, 1364. [Google Scholar] [CrossRef]
- Wu, Y.-J.; Chen, Y.-L.; Li, J.-Y.; Zhang, H.; Wang, X.-M. T. harzianum Promoting Chrysanthemum Cutting Rooting and Reshaping Microbial Communities in Endophytic and Rhizosphere Environments. Appl. Soil Ecol. 2024, 203, 105636. [Google Scholar] [CrossRef]
- Gupta, S.; Chakraborty, D.; Mishra, A.; Singh, R.P. Inoculation of Barley with T. harzianum T-22 Modifies Lipids and Metabolites to Improve Salt Tolerance. J. Exp. Bot. 2021, 72, 7229–7246. [Google Scholar] [CrossRef] [PubMed]
- Dhanyalakshmi, K.H.; Pawar, R.K.; Aishwarya, G.; Kumar, P. Shaping Root System Architecture: Holobiont-Based Phenotyping for Root Traits. Plant Physiol. Rep. 2024, 29, 716–725. [Google Scholar] [CrossRef]
- Altomare, C.; Norvell, W.A.; Björkman, T.; Harman, G.E. Solubilization of phosphates and micronutrients by the plant-growth-promoting and biocontrol fungus Trichoderma harzianum Rifai 1295-22. Appl. Environ. Microbiol. 1999, 65, 2926–2933. [Google Scholar] [CrossRef] [PubMed]
- Druzhinina, I.S.; Seidl-Seiboth, V.; Herrera-Estrella, A.; Horwitz, B.A.; Kenerley, C.M.; Monte, E.; Mukherjee, P.K.; Zeilinger, S.; Grigoriev, I.V.; Kubicek, C.P. Trichoderma: The Genomics of Opportunistic Success. Nat. Rev. Microbiol. 2011, 9, 749–759. [Google Scholar] [CrossRef]
- Chávez-Arias, C.C.; Ramírez-Godoy, A.; Restrepo-Díaz, H. Influence of drought, high temperatures, and/or defense against arthropod herbivory on the production of secondary metabolites in maize plants. A review. Curr. Plant Biol. 2022, 32, 100268. [Google Scholar] [CrossRef]
- Kaur, S.; Samota, M.K.; Choudhary, M.; Choudhary, M.; Pandey, A.K.; Sharma, A.; Thakur, J. How do plants defend themselves against pathogens-biochemical mechanisms and genetic interventions. Physiol. Mol. Biol. Plants 2022, 28, 485–504. [Google Scholar] [CrossRef]
- Sabzi-Nojadeh, A.M.; Pouresmaeil, M.; Amani, M.; Younessi-Hamzekhanlu, M.; Maggi, F. Colonization of Satureja hortensis L. (Summer savory) with T. harzianum alleviates salinity stress via improving physio-biochemical traits and biosynthesis of secondary metabolites. Ind. Crops Prod. 2024, 208, 117831. [Google Scholar] [CrossRef]
- Soliman, M.H.; Alnusaire, T.S.; Abdelbaky, N.F.; Alayafi, A.A.M.; Hasanuzzaman, M.; Rowezak, M.M.; El-Esawi, M.; Elkelish, A. Trichoderma-Induced Improvement in Growth, Photosynthetic Pigments, Proline, and Glutathione Levels in Cucurbita pepo Seedlings under Salt Stress. Phyton-Int. J. Exp. Bot. 2020, 89, 473–486. [Google Scholar] [CrossRef]
- Choudhary, A.; Sharma, S.; Kaur, H.; Sharma, N.; Gadewar, M.M.; Mehta, S.; Husen, A. Plant system, abiotic stress resilience, reactive oxygen species, and coordination of engineered nanomaterials: A review. S. Afr. J. Bot. 2024, 171, 45–59. [Google Scholar] [CrossRef]
- Foreman, J.; Demidchik, V.; Bothwell, J.; Mylona, P.; Miedema, H.; Torres, M.A.; Linstead, P.; Costa, S.; Brownlee, C.; Jones, J.D.G.; et al. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 2003, 422, 442–446. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Bouzayen, M. Plant Hormones: A broader understanding of plant development processes for better adapted agriculture. Plant Horm. 2025, 1, e001. [Google Scholar] [CrossRef]
- Fahad, S.; Hussain, S.; Bano, A.; Saud, S.; Hassan, S.; Shan, D.; Khan, F.A.; Khan, F.; Chen, Y.; Wu, C. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: Consequences for changing environment. Environ. Sci. Pollut. Res. 2015, 22, 4907–4921. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhuang, S.; Zhang, W. Advances in plant auxin biology: Synthesis, metabolism, signaling, interaction with other hormones, and roles under abiotic stress. Plants 2024, 13, 2523. [Google Scholar] [CrossRef]
- Khan, N.A.; Khan, M.I.R.; Ferrante, A.; Poor, P. Editorial: Ethylene: A key regulatory molecule in plants. Front. Plant Sci. 2017, 8, 1782. [Google Scholar] [CrossRef]
- Peres, L.E.P.; Amar, S.; Kerbauy, G.B.; Salatino, A.; Zaffar, G.R.; Mercier, H. Effects of Auxin, Cytokinin and Ethylene Treatments on the Endogenous Ethylene and Auxin-to-Cytokinin Ratio Related to Direct Root Tip Conversion of Catasetum fimbriatum Lindl. (Orchidaceae) into Buds. J. Plant Physiol. 1999, 155, 551–555. [Google Scholar] [CrossRef]
- Illescas, M.; Pedrero-Méndez, A.; Pitorini-Bovolini, M.; Hermosa, R.; Monte, E. Phytohormone Production Profiles in Trichoderma Species and Their Relationship to Wheat Plant Responses to Water Stress. Pathogens 2021, 10, 991. [Google Scholar] [CrossRef]
- Contreras-Cornejo, H.A.; Schmoll, M.; Esquivel-Ayala, B.A.; López-Bucio, J. Abiotic Plant Stress Mitigation by Trichoderma Species. Soil Ecol. Lett. 2024, 6, 240240. [Google Scholar] [CrossRef]
- Hermosa, R.; Botella, L.; Keck, E.; Jiménez, J.Á.; Montero-Barrientos, M.; Arbona, V.; Gómez-Cadenas, A.; Monte, E.; Nicolás, C. The overexpression in Arabidopsis thaliana of a T. harzianum gene that modulates glucosidase activity, and enhances tolerance to salt and osmotic stresses. J. Plant Physiol. 2011, 168, 1295–1302. [Google Scholar] [CrossRef]
- Dervash, M.A.; Yousuf, A.; Bhat, M.A.; Ozturk, M. Soil stress ecology: Concept, impacts, and management strategies. In Soil Organisms; SpringerBriefs in Microbiology; Springer: Cham, Switzerland, 2024; p. 3. [Google Scholar]
- Singh, S.; Singh, A.K.; Pradhan, B.; Kumar, A.; Pandey, A. Harnessing Trichoderma Mycoparasitism as a Tool in the Management of Soil Dwelling Plant Pathogens. Microb. Ecol. 2024, 87, 158. [Google Scholar] [CrossRef]
- Zhua, L.; Wang, Y.; Wang, G.; Xiao, M.; Luo, H.; Zhang, F.; Li, L. Manure and T. harzianum Increase Cotton Yield via Regulating Soil Bacterial Community and Physicochemical Properties. ScienceAsia 2024, 50, 1–10. [Google Scholar] [CrossRef]
- De Palma, M.; Salzano, M.; Villano, C.; Aversano, R.; Lorito, M.; Ruocco, M.; Docimo, T.; Piccinelli, A.L.; D’Agostino, N.; Tucci, M. Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum. Hortic. Res. 2019, 6, 5. [Google Scholar] [CrossRef]
- Usman, M.G.; Rafii, M.Y.; Martini, M.Y.; Yusuff, O.A.; Ismail, M.R.; Miah, G. Molecular analysis of Hsp70 mechanisms in plants and their function in response to stress. Biotechnol. Genet. Eng. Rev. 2017, 33, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Alam, P.; Al Balawi, T.; Manzoor, M.A.; Al-Malki, A.L.; Alansi, S. Genome-Wide Analysis of HSP70 Gene Family in Beta vulgaris and In-Silico Expression Under Environmental Stress. BMC Plant Biol. 2025, 25, 214. [Google Scholar] [CrossRef] [PubMed]
- Montero-Barrientos, M.; Hermosa, R.; Nicolás, C.; Cardoza, R.E.; Gutiérrez, S. Overexpression of a Trichoderma HSP70 Gene Increases Fungal Resistance to Heat and Other Abiotic Stresses. Fungal Genet. Biol. 2008, 45, 1506–1513. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; You, J.; Fang, Y.; Zhu, X.; Qi, Z.; Xiong, L. Characterization of Transcription Factor Gene SNAC2 Conferring Cold and Salt Tolerance in Rice. Plant Mol. Biol. 2008, 67, 169–181. [Google Scholar] [CrossRef]
- Li, X.-L.; Yang, X.; Hu, Y.-X.; Yu, X.-D.; Chen, X.-Y. A Novel NAC Transcription Factor from Suaeda liaotungensis K. Enhanced Transgenic Arabidopsis Drought, Salt, and Cold Stress Tolerance. Plant Cell Rep. 2014, 33, 767–778. [Google Scholar] [CrossRef]
- Muñoz-Mayor, A.; Pineda, B.; Garcia-Abellán, J.O.; Antón, T.; Garcia-Sogo, B.; Sanchez-Bel, P.; Flores, F.B.; Atarés, A.; Angosto, T.; Pintor-Toro, J.A.; et al. Overexpression of Dehydrin tas14 Gene Improves the Osmotic Stress Imposed by Drought and Salinity in Tomato. J. Plant Physiol. 2012, 169, 459–468. [Google Scholar] [CrossRef]
- Rai, A.N.; Penna, S. Molecular Evolution of Plant P5CS Gene Involved in Proline Biosynthesis. Mol. Biol. Rep. 2013, 40, 6429–6435. [Google Scholar] [CrossRef]
Plant Species | Method | Amount | Time | Effect | Reference |
---|---|---|---|---|---|
Tomato | Seed immersion as well as seedling treatment or sprinkled under the surface of the soil | 107 CFU/mL or 10 g/pot | Before sowing and before stress treatment or during the growing period | Mitigates low-temperature and water-deficit stress, and promotes growth | Ghorbanpour et al., 2017 [15], Khoshmanzar et al., 2020 [16] |
Cucumber | Root drenching or soil application | 108 spores mL−1 or 104–107 CFU/g | Before salt stress or before sowing | Enhances plant physiology and biochemistry, controls wilt and improves yield and quality | Zhang et al., 2019 [17], Lian et al., 2023 [27] |
Eggplant | Seed treatment (seed germination) | 4.9 × 108 CFU/L | Before the seed germination experiment | Significantly enhanced seed germination, seedling growth, and photosynthesis | Wu et al., 2017 [18] |
Melon | Add to mixtures containing peat and vermiculite | 106 conidia g−1 of peat | Seedling stage and before transplanting | Increase plant fresh weight, promote growth, and inhibit wilt | Martínez-Medina et al., 2011 [28] |
Strawberry | Pre-transplant root dipping and post-transplant root irrigation | 107 spores/mL | Before and after transplanting | Regulates physiological processes, improves fruit yield and quality | Lombardi et al., 2020 [30] |
Black Pepper | Soil application | 10 g/bag for soil | After drought treatment | Enhance physiological and biochemical responses and alleviate water stress | Valiyambath et al., 2024 [19] |
Chrysanthemum | Root irrigation | 106 CFU/mL | At the time of cutting, then once every five days | Improve the rooting quality of chrysanthemum cuttings | Wu et al., 2024 [31] |
Plant Species | Method | Amount | Time | Effect | Reference |
---|---|---|---|---|---|
Maize | Soil application | 107 CFU/mL soil | Before sowing | Alterations in maize growth, inter-root microbial communities and biological control of Fusarium stem rot | Saravanakumar et al., 2017 [23] |
Rice | Seed treatment (seed coating) or root dipping | 10 g/kg seeds or 1–3 × 105 CFU/mL | Before sowing or at transplanting | Improves drought tolerance, enhances antioxidant enzyme activity, increases water use efficiency and yield | Bashyal et al., 2020 [20] Bashyal et al., 2021 [21] Pandey et al., 2016 [22] |
Sorghum sudangrass | Root irrigation | 106 CFU/mL | Before the treatment of pathogens in the seedling stage | Prevention and control of leaf spot disease caused by anthrax | Han et al., 2024 [24] |
Indian Mustard | Soil application (mixed with fertilizer) or soak with suspended seeds | 7.5–12.5 g/kg soil or 1.1 × 105–107 CFU | Before sowing | Improves salt tolerance, enhances antioxidant enzyme activity, increases seed yield under salt stress | Saha et al., 2024 [25] |
Hordeum vulgare L. | Add spore suspension to the roots of the seedlings | 108 spores/mL | Before salt treatment | Alters the metabolome and lipidome of barley to enhance its tolerance to salt stress | Gupta et al., 2021 [32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, Y.; Chen, S.; Lv, P.; Li, Y.; Li, J.; Jiang, F.; Wu, Z.; Shen, Q.; Zhou, R. Positive Role of Trichoderma harzianum in Increasing Plant Tolerance to Abiotic Stresses: A Review. Antioxidants 2025, 14, 807. https://doi.org/10.3390/antiox14070807
Geng Y, Chen S, Lv P, Li Y, Li J, Jiang F, Wu Z, Shen Q, Zhou R. Positive Role of Trichoderma harzianum in Increasing Plant Tolerance to Abiotic Stresses: A Review. Antioxidants. 2025; 14(7):807. https://doi.org/10.3390/antiox14070807
Chicago/Turabian StyleGeng, Yueyao, Shuying Chen, Pinke Lv, Yankai Li, Jingxuan Li, Fangling Jiang, Zhen Wu, Qirong Shen, and Rong Zhou. 2025. "Positive Role of Trichoderma harzianum in Increasing Plant Tolerance to Abiotic Stresses: A Review" Antioxidants 14, no. 7: 807. https://doi.org/10.3390/antiox14070807
APA StyleGeng, Y., Chen, S., Lv, P., Li, Y., Li, J., Jiang, F., Wu, Z., Shen, Q., & Zhou, R. (2025). Positive Role of Trichoderma harzianum in Increasing Plant Tolerance to Abiotic Stresses: A Review. Antioxidants, 14(7), 807. https://doi.org/10.3390/antiox14070807