Sustainable Tea Cultivation with a Rhizobacterial Consortium: A Microbiome-Driven Alternative to Chemical Fertilizers
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Isolation of Rhizobacteria from Soil Samples
2.3. Plant Growth-Promoting (PGP) Attributes of Rhizobacterial Isolates
2.3.1. Phosphate Solubilization and Zinc Solubilization
2.3.2. Siderophore Production
2.3.3. ACC Deaminase
2.3.4. IAA, Ammonia, and HCN Production
2.4. Identification of Rhizobacterial Isolates
2.5. Pot and Field Trial Assays with C. sinensis Plants—S3A3 and TS491 Clones
2.5.1. Greenhouse Assay
2.5.2. Field Assay
2.6. Phenolic Content and Enzyme Activities in Tea Leaves
2.6.1. Determination of Total Phenolic Content
2.6.2. Catalase Activity (CAT)
2.6.3. Glutathione Reductase (GR)
2.6.4. Superoxide Dismutase (SOD) Activity
2.7. Soil Enzyme Activities
2.7.1. Hydrolysis of Fluorescein Diacetate (FDA)
2.7.2. Dehydrogenase Activity (DA)
2.7.3. Soil Physicochemical Properties
2.8. Bacterial Community Analysis of Rhizospheric Soil Before and After Bacterial Consortium During Field Trial Assay
2.9. Statistical Analysis
3. Results and Discussion
3.1. Microorganisms and Their PGP Attributes
3.2. Characterization of Rhizobacterial Isolates
3.3. Pot and Field Trial Assays with C. sinensis Varieties S3A3 and TS491
3.3.1. Effect of Rhizobacteria on the Growth of Tea Plants in Greenhouse and Field Conditions
3.3.2. Rhizobacterial-Mediated Regulation of Plant Enzymatic Activity During Field Trial Study
3.3.3. Effect of Bacterial Consortium on Soil Enzyme Activities During Field Trials
3.3.4. Changes in Soil Physiochemical Properties After the Treatment
3.3.5. Effect of Rhizobacteria on Bacterial Community Analysis During Field Trial Assay
3.3.6. Effect of Rhizobacteria on Bacterial Predicted Functions During Field Trial Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ISS1 | Initial S3A3 Sample 1 (control, before treatment) |
ISS2 | Initial S3A3 Sample 2 (consortium, before treatment) |
ISS3 | Initial S3A3 Sample 3 (50% fertilizer + consortium, before treatment) |
ISS4 | Initial S3A3 Sample 4 (fertilizer only, before treatment) |
FSS1 | Final S3A3 Sample 1 (control, after treatment) |
FSS2 | Final S3A3 Sample 2 (consortium, after treatment) |
FSS3 | Final S3A3 Sample 3 (50% fertilizer + consortium, after treatment) |
FSS4 | Final S3A3 Sample 4 (fertilizer only, after treatment) |
FTS1 | Final TS491 Sample 1 (control, after treatment) |
FTS2 | Final TS491 Sample 2 (consortium, after treatment) |
FTS3 | Final TS491 Sample 3 (50% fertilizer + consortium, after treatment) |
FTS4 | Final TS491 Sample 4 (fertilizer only, after treatment) |
ITS1 | Initial TS491 Sample 1 (control, before treatment) |
ITS2 | Initial TS491 Sample 2 (consortium, before treatment) |
ITS3 | Initial TS491 Sample 3 (50% fertilizer + consortium, before treatment) |
ITS4 | Initial TS491 Sample 4 (fertilizer only, before treatment) |
References
- Bora, P.; Bora, L.C. Microbial antagonists and botanicals mediated disease management in tea, Camellia sinensis (L.) O. Kuntze: An overview. Crop Prot. 2021, 148, 105711. [Google Scholar] [CrossRef]
- Lin, S.; Chen, Z.; Chen, T.; Deng, W.; Wan, X.; Zhang, Z. Theanine metabolism and transport in tea plants (Camellia sinensis L.): Advances and perspectives. Crit. Rev. Biotechnol. 2023, 43, 327–341. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.K.; Dinesh, K.; Yadav, S.; Sharma, H.K.; Babu, A. Functional traits and phylogenetic analysis of top-soil inhabiting rhizobacteria associated with tea rhizospheres in North Bengal, India. Curr. Res. Microbiol. Sci. 2023, 5, 100200. [Google Scholar] [CrossRef] [PubMed]
- Baibakova, E.V.; Nefedjeva, E.E.; Suska-Malawska, M.; Wilk, M.; Sevriukova, G.A.; Zheltobriukhov, V.F. Modern fungicides: Mechanisms of action, fungal resistance and phytotoxic effects. Annu. Res. Rev. Biol. 2019, 32, 1–16. [Google Scholar] [CrossRef]
- Thakur, R.; Rahi, P.; Gulati, A.; Gulati, A. Tea seedlings growth promotion by widely distributed and stress-tolerant PGPR from the acidic soils of the Kangra valley. BMC Microbiol. 2025, 25, 102. [Google Scholar] [CrossRef] [PubMed]
- Samynathan, R.; Kiruthikaa, S.; Harsha, M.; Ilango, R.V.J.; Shanmugam, A.; Venkidasamy, B.; Thiruvengadam, M. The effect of abiotic and biotic stresses on the production of bioactive compounds in tea (Camellia sinensis (L.) O. Kuntze). Plant Gene 2021, 27, 100316. [Google Scholar] [CrossRef]
- Suganthi, M.; Arvinth, S.; Senthilkumar, P. Defensive responses in tea (Camellia sinensis) against tea mosquito bug infestation. Res. J. Biotechnol. 2018, 13, 7–11. [Google Scholar]
- Ray, S.K.; Mukhopadhyay, D. A study on physicochemical properties of soils under different tea growing regions of West Bengal (India). Int. J. Agric. Sci. 2012, 4, 325. [Google Scholar] [CrossRef]
- Maritim, T.; Kamunya, S.; Muoki, R.; Francesca, S.; Wachira, F.N. Tackling drought through transcriptomic approaches in tea, Camellia sinensis (L.) O Kuntze. Tea 2016, 37, 122–128. [Google Scholar]
- Leghari, S.J.; Wahocho, N.A.; Laghari, G.M.; HafeezLaghari, A.; Mustafa Bhabhan, G.; Hussain Talpur, K.; Lashari, A.A. Role of nitrogen for plant growth and development: A review. Adv. Environ. Biol. 2016, 10, 209–219. [Google Scholar]
- Thabah, S.; Joshi, S.R. Performance Evaluation of Native Plant Growth-Promoting Bacteria Associated with Organic Tea Plantations for Development of Bioinoculants for Crop Plants. Curr. Microbiol. 2024, 81, 444. [Google Scholar] [CrossRef] [PubMed]
- Gamage, A.; Gangahagedara, R.; Gamage, J.; Jayasinghe, N.; Kodikara, N.; Suraweera, P.; Merah, O. Role of organic farming for achieving sustainability in agriculture. Farming Syst. 2023, 1, 100005. [Google Scholar] [CrossRef]
- Zhang, T.; Jian, Q.; Yao, X.; Guan, L.; Li, L.; Liu, F.; Lu, L. Plant growth-promoting rhizobacteria (PGPR) improve the growth and quality of several crops. Heliyon 2024, 10, e31553. [Google Scholar] [CrossRef] [PubMed]
- Kotoky, R.; Das, S.; Singha, L.P.; Pandey, P.; Singha, K.M. Biodegradation of Benzo (a) pyrene by biofilm forming and plant growth promoting Acinetobacter sp. strain PDB4. Environ. Technol. Innov. 2017, 8, 256–268. [Google Scholar] [CrossRef]
- Boudjabi, S.; Chenchouni, H. Comparative effectiveness of exogenous organic amendments on soil fertility, growth, photosynthesis, and heavy metal accumulation in cereal crops. Heliyon 2023, 9, e14615. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Li, K.; Li, C.; Wang, S.; Li, L.; Xie, J.; Wang, G. Enhancing Soil Phosphorus and Potassium Availability in Tea Plantation: The Role of Biochar, PGPR, and Phosphorus-and Potassium-Bearing Minerals. Agronomy 2025, 15, 1287. [Google Scholar] [CrossRef]
- Jiang, X.; Shen, T.; Han, M.; Chen, G.; Lai, S.; Zhang, S.; Xia, T. Aluminum-tolerant, growth-promoting rhizosphere bacteria improve growth and alleviate aluminum stress in tea plants. Hortic. Plant J. 2025, in press. [Google Scholar] [CrossRef]
- Pandey, A.; Singh, S.; Palni, L.M.S. Microbial inoculants to support tea industry in India. Indian J. Biotech. 2013, 12, 13–19. [Google Scholar]
- Wang, M.; Sun, H.; Dai, H.; Xu, Z. Characterization of Plant-Growth-Promoting Rhizobacteria for Tea Plant (Camellia sinensis) Development and Soil Nutrient Enrichment. Plant 2024, 13, 2659. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.C.; Pandey, P.; Khillon, R.; Maheshwari, D.K. Process of rock phosphate solubilization by Aspergillus sp. PS 104 in soil amended medium. J. Environ. Biol. 2008, 29, 743–746. [Google Scholar] [PubMed]
- Yasmin, R.; Hussain, S.; Rasool, M.H.; Siddique, M.H.; Muzammil, S. Isolation, characterization of Zn solubilizing bacterium (Pseudomonas protegens RY2) and its contribution in growth of chickpea (Cicer arietinum L) as deciphered by improved growth parameters and Zn content. Dose-Response 2021, 19, 15593258211036791. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Kang, S.C.; Gupta, C.P.; Maheshwari, D.K. Rhizosphere competent Pseudomonas aeruginosa GRC 1 produces characteristic siderophore and enhances growth of Indian mustard (Brassica campestris). Curr. Microbiol. 2005, 51, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Penrose, D.M.; Glick, B.R. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol. Plant. 2003, 118, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Gordon, S.A.; Weber, R.P. Colorimetric estimation of indoleacetic acid. Plant Physiol. 1951, 26, 192. [Google Scholar] [CrossRef] [PubMed]
- Cappuccino, J.; Sherman, N. Microbiology: A Laboratory Manual; Academic Distributors: New York, NY, USA, 1992; pp. 125–179. [Google Scholar]
- Bakker, A.W.; Schippers, B. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth- stimulation. Soil Biol. Biochem. 1987, 19, 451–457. [Google Scholar] [CrossRef]
- Ayyaz, K.; Zaheer, A.; Rasul, G.; Mirza, M.S. Isolation and identification by 16S rRNA sequence analysis of plant growth-promoting Azospirilla from the rhizosphere of wheat. Braz. J. Microbiol. 2016, 47, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Saikia, G.K.; Barbora, A.C.; Deka, M.K. Pest, disease and weed incidence and crop yield as influenced by organic culture in tea [Camellia sinensis (L.) O. Kuntze]. Agric. Sci. Digest. 2014, 34, 119–122. [Google Scholar] [CrossRef]
- Denaya, S.; Yulianti, R.; Pambudi, A.; Effendi, Y. Novel microbial consortium formulation as plant growth promoting bacteria (PGPB) agent. IOP Conf. Ser. Earth Environ. Sci. 2021, 637, 012030. [Google Scholar] [CrossRef]
- Debnath, S.; Das, A.; Maheshwari, D.K.; Pandey, P. Treatment with atypical rhizobia, Pararhizobium giardinii and Ochrobactrum sp. modulate the rhizospheric bacterial community, and enhances lens culinaris growth in fallow-soil. Microbiol. Res. 2023, 267, 127255. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.X.; Blumwald, E. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat. Biotechnol. 2001, 19, 765–768. [Google Scholar] [CrossRef] [PubMed]
- Bansode, P.A.; Shinde, R.A.; Kamble, V.S. Spectrophotometric determination of total phenolic content of some commonly consumed teas in India. Bionano Front. 2014, 7, 78–80. [Google Scholar]
- Zhang, Y.; Li, G.; Si, L.; Liu, N.; Gao, T.; Yang, Y. Effects of tea polyphenols on the activities of antioxidant enzymes and the expression of related gene in the leaves of wheat seedlings under salt stress. Environ. Sci. Pollut. Res. 2021, 28, 65447–65461. [Google Scholar] [CrossRef] [PubMed]
- Sarker, U.; Oba, S. Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Sci. Rep. 2018, 8, 16496. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Khati, P.; Chaudhary, A.; Maithani, D.; Kumar, G.; Sharma, A. Cultivable and metagenomic approach to study the combined impact of Nanogypsum and Pseudomonas taiwanensis on maize plant health and its rhizospheric microbiome. PLoS ONE 2021, 16, e0250574. [Google Scholar] [CrossRef] [PubMed]
- Shanthakumar, S.; Abinandan, S.; Venkateswarlu, K.; Subashchandrabose, S.R.; Megharaj, M. Algalization of acid soils with acid-tolerant strains: Improvement in pH, carbon content, exopolysaccharides, indole acetic acid and dehydrogenase activity. Land Degrad. Dev. 2021, 32, 3157–3166. [Google Scholar] [CrossRef]
- Lu, R.K. Soil Agro-Chemical Analyses; China Agricultural Scientech Press: Beijing, China, 2000; pp. 106–253. [Google Scholar]
- Drescher, G.L.; da Silva, L.S.; Sarfaraz, Q.; dal Molin, G.; Marzari, L.B.; Lopes, A.F.; Cella, C.; Facco, D.B.; Hammerschmitt, R.K. Alkaline hydrolyzable nitrogen and properties that dictate its distribution in paddy soil profiles. Pedosphere 2020, 30, 326–335. [Google Scholar] [CrossRef]
- Keeney, D.R.; Nelson, D.W. Nitrogen—Inorganic Forms 1. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties, 2nd ed.; Agronomy 9/2; Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy: Madison, WI, USA, 1982; pp. 643–698. [Google Scholar]
- Bao, S.D. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Wang, L.; Sun, X.; Li, S.; Zhang, T.; Zhang, W.; Zhai, P. Application of organic amendments to a coastal saline soil in north China: Effects on soil physical and chemical properties and tree growth. PLoS ONE 2014, 9, e89185. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Xun, W.; Yan, H.; Ma, A.; Xiong, W.; Shen, Q.; Zhang, R. Functional compensation dominates the assembly of plant rhizospheric bacterial community. Soil Biol. Biochem. 2020, 150, 107968. [Google Scholar] [CrossRef]
- Ma, B.; Wang, H.; Dsouza, M.; Lou, J.; He, Y.; Dai, Z.; Gilbert, J.A. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China. ISME J. 2016, 10, 1891–1901. [Google Scholar] [CrossRef] [PubMed]
- Jibola-Shittu, M.Y.; Heng, Z.; Keyhani, N.O.; Dang, Y.; Chen, R.; Liu, S.; Qiu, J. Understanding and exploring the diversity of soil microorganisms in tea (Camellia sinensis) gardens: Toward sustainable tea production. Front. Microbiol. 2024, 15, 1379879. [Google Scholar] [CrossRef] [PubMed]
- Pandey, N.; Xalxo, R.; Chandra, J.; Keshavkant, S. Bacterial consortia mediated induction of systemic tolerance to arsenic toxicity via expression of stress responsive antioxidant genes in Oryza sativa L. Biocatal. Agric. Biotechnol. 2023, 47, 102565. [Google Scholar] [CrossRef]
- Bhattacharyya, C.; Banerjee, S.; Acharya, U.; Mitra, A.; Mallick, I.; Haldar, A.; Ghosh, A. Evaluation of plant growth promotion properties and induction of antioxidative defense mechanism by tea rhizobacteria of Darjeeling, India. Sci. Rep. 2020, 10, 15536. [Google Scholar] [CrossRef] [PubMed]
- Glick, B.R. Plant growth-promoting bacteria: Mechanisms and applications. Scientifica. 2012, 2012, 963401. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.S.; Zaidi, A.; Ahmad, E. Mechanism of phosphate solubilization and physiological functions of phosphate-solubilizing microorganisms. In Phosphate Solubilizing Microorganisms: Principles and Application of Microphos Technology; Springer: Cham, Switzerland, 2014; pp. 31–62. [Google Scholar]
- Çakmakçı, R. Screening of multi-trait rhizobacteria for improving the growth, enzyme activities, and nutrient uptake of tea (Camellia sinensis). Commun. Soil Sci. Plant Anal. 2016, 47, 1680–1690. [Google Scholar] [CrossRef]
- Brownlie, W.J.; Sutton, M.A.; Cordell, D.; Reay, D.S.; Heal, K.V.; Withers, P.J.; Spears, B.M. Phosphorus price spikes: A wake-up call for phosphorus resilience. Front. Sustain. Food Syst. 2023, 7, 1088776. [Google Scholar] [CrossRef]
- Chen, Y.J.; Ren, K.; Su, J.E.; He, X.; Zhao, G.K.; Hu, B.B.; Chen, Y.; Xu, Z.L.; Jin, Y.; Zou, C.M. Rotation and organic fertilizers stabilize soil water-stable aggregates and their associated carbon and nitrogen in flue-cured tobacco production. J. Soil Sci. Plant Nutr. 2020, 20, 192–205. [Google Scholar] [CrossRef]
- Tian, J.; Ge, F.; Zhang, D.; Deng, S.; Liu, X. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology 2021, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Pataczek, L.; Hilger, T.H.; Zahir, Z.A.; Hussain, A.; Rasche, F.; Solberg, S.O. Perspectives of microbial inoculation for sustainable development and environmental management. Front. Microbiol. 2018, 9, 2992. [Google Scholar] [CrossRef] [PubMed]
- Leo Daniel Amalraj, E.; Mohanty, D.; Praveen Kumar, G.; Desai, S.; Mir Hassan Ahmed, S.K.; Pradhan, R.; Khan, S.S. Potential microbial consortium for plant growth promotion of sunflower (Helianthus annuus L.). Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2015, 85, 635–642. [Google Scholar] [CrossRef]
- Kaymak, H.; Uruşan, A.; Tiraşci, S.; Kaşka, M. Role of N2-Fixing Plant Growth-Promoting Rhizobacteria in Some Selected Vegetables. Turk. Tarım Gıda Bilim Teknol. Derg. 2023, 11, 1183–1194. [Google Scholar] [CrossRef]
- Xavier, G.R.; Jesus, E.D.C.; Dias, A.; Coelho, M.R.R.; Molina, Y.C.; Rumjanek, N.G. Contribution of biofertilizers to pulse crops: From single-strain inoculants to new technologies based on microbiomes strategies. Plants 2023, 12, 954. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Jain, A.; Sarma, B.K.; Upadhyay, R.S.; Singh, H.B. Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection. Microbiol. Res. 2014, 169, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Ferioun, M.; Bouhraoua, S.; Srhiouar, N.; Tirry, N. Optimized drought tolerance in barley (Hordeum vulgare L.) using plant growth-promoting rhizobacteria (PGPR). Biocat. Agric. Biotechnol. 2023, 50, 102691. [Google Scholar] [CrossRef]
- Mittler, R. ROS are good. Trends Plant Sci. 2017, 22, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Roychoudhury, A.; Basu, S.; Sengupta, D.N. Antioxidants and stress-related metabolites in the seedlings of two indica rice varieties exposed to cadmium chloride toxicity. Acta Physiol. Plant. 2012, 34, 835–847. [Google Scholar] [CrossRef]
- Singh, R.P.; Jha, P.N. The PGPR Stenotrophomonas maltophilia SBP-9 augments resistance against biotic and abiotic stress in wheat plants. Front. Microbiol. 2017, 8, 1945. [Google Scholar] [CrossRef] [PubMed]
- Çakmakçı, R.; Atasever, A.; Kotan, R.; Çoban, F.; Erat, M.; Türkyılmaz, K.; Haznedar, A.; Sekban, R. Research on multi-trait bacteria-based biofertilizer formulations for tea cultivation. In Proceedings of the International Symposium on Medicinal, Aromatic and Dye Plants, Malatya, Turkey, 5–7 October 2017; Proceedings Book. pp. 87–96. [Google Scholar]
- Yunita, M.; Ohiwal, M.; Warella, J.C.; Asmin, E.; Azizah, S.N.; Siahaya, P.G. Investigation of endophytic bacteria associated with Paederia foetida: Population, characterization, antibacterial, and pathogenicity analysis. Biodiversitas 2025, 26. [Google Scholar] [CrossRef]
- Chakrabarty, S.; Boksh, F.M.; Chakraborty, A. Economic viability of biogas and green self-employment opportunities. Renew. Sustain. Energy Rev. 2013, 28, 757–766. [Google Scholar] [CrossRef]
- Saikia, D.N.; Sarma, J.; Dutta, P.K.; Baruah, D.K. Sustainable productivity of tea through conservation of bio-mass, addition of bio-fertilizers and reduction of inorganic fertilizer. Two A Bud 2011, 58, 109–117. [Google Scholar]
- Haghighi, B.J.; Alizadeh, O.; Firoozabadi, A.H. The role of plant growth promoting rhizobacteria (PGPR) in sustainable agriculture. Adv. Environ. Biol. 2011, 5, 3079–3083. [Google Scholar]
- Çakmakçı, R.; Ertürk, Y.; Atasever, A.; Kotan, R.; Erat, M.; Varmazyari, A.; Türkyılmaz, K.; Haznedar, A.; Sekban, R. Development of plant growth-promoting bacterial based bioformulations using solid and liquid carriers and evaluation of their influence on growth parameters of tea. In Proceedings of the 9th International Soil Science Congress on the Soul of the Soil and Civilization, Antalya, Turkey, 14–16 October 2014; Side, Book of Proceedings. pp. 801–808. [Google Scholar]
- Yang, S.; Xu, Z.; Wang, R.; Zhang, Y.; Yao, F.; Zhang, Y. Variations in soil microbial community composition and enzymatic activities in response to increased N deposition and precipitation in Inner Mongolian grassland. Appl. Soil Ecol. 2017, 119, 275–285. [Google Scholar] [CrossRef]
- Hernández-Ibáñez, N.; Montiel, V.; Gomis-Berenguer, A.; Ania, C.; Iniesta, J. Effect of confinement of horse heart cytochrome c and formate dehydrogenase from Candida boidinii on mesoporous carbons on their catalytic activity. Bioprocess Biosyst. Eng. 2021, 44, 1699–1710. [Google Scholar] [CrossRef] [PubMed]
- Pittarello, M.; Dal Ferro, N.; Chiarini, F.; Morari, F.; Carletti, P. Influence of tillage and crop rotations in organic and conventional farming systems on soil organic matter, bulk density and enzymatic activities in a short-term field experiment. Agronomy 2021, 11, 724. [Google Scholar] [CrossRef]
- Rachwał, K.; Gustaw, K.; Kazimierczak, W.; Waśko, A. Is soil management system really important? comparison of microbial community diversity and structure in soils managed under organic and conventional regimes with some view on soil properties. PLoS ONE 2021, 16, e0256969. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Santiago-Arenas, R.; Ferdous, Z.; Attia, A.; Datta, A. Improving water use efficiency, nitrogen use efficiency, and radiation use efficiency in field crops under drought stress: A review. Adv. Agron. 2019, 156, 109–157. [Google Scholar]
- Ling, N.; Wang, T.; Kuzyakov, Y. Rhizosphere bacteriome structure and functions. Nat. Commun. 2022, 13, 836. [Google Scholar] [CrossRef] [PubMed]
- Ling, N.; Zhu, C.; Xue, C.; Chen, H.; Duan, Y.; Peng, C.; Shen, Q. Insight into how organic amendments can shape the soil microbiome in long-term field experiments as revealed by network analysis. Soil Biol. Biochem. 2016, 99, 137–149. [Google Scholar] [CrossRef]
- Tesfaye, A.; Tesfaye, K. Influence of clone and nitrogen application level on quality of green tea in some selected tea (Camellia sinensis (L.) O. Kuntze) in Southwest Ethiopia. PLoS ONE 2022, 17, e0272852. [Google Scholar]
- Kamau, D.M.; Spiertz, J.; Oenema, O.; Owuor, P.O. Productivity and nitrogen use of tea plantations in relation to age and genotype. Field Crop. Res. 2008, 108, 60–70. [Google Scholar] [CrossRef]
- Dutta, J.; Handique, P.J.; Thakur, D. Assessment of culturable tea rhizobacteria isolated from tea estates of Assam, India for growth promotion in commercial tea cultivars. Front. Microbiol. 2015, 6, 1252. [Google Scholar] [CrossRef] [PubMed]
- Reichert, J.M.; Morales, B.; Lima, E.M.; de Bastos, F.; Morales, C.A.S.; de Araújo, E.F. Soil morphological, physical and chemical properties affecting Eucalyptus spp. productivity on Entisols and Ultisols. Soil Tillage Res. 2023, 226, 105563. [Google Scholar] [CrossRef]
- Aalipour, H.; Nikbakht, A.; Etemadi, N.; Rejali, F.; Soleimani, M. Biochemical response and interactions between arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria during establishment and stimulating growth of Arizona cypress (Cupressus arizonica G.) under drought stress. Sci. Hortic. 2020, 261, 108923. [Google Scholar] [CrossRef]
- Toubali, S.; Tahiri, A.I.; Anli, M.; Symanczik, S.; Boutasknit, A.; Ait-El-Mokhtar, M.; Meddich, A. Physiological and biochemical behaviors of date palm vitroplants treated with microbial consortia and compost in response to salt stress. Appl. Sci. 2020, 10, 8665. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, Z.; Gao, J.; Wu, H. The impacts of microplastics on the cycling of carbon and nitrogen in terrestrial soil ecosystems: Progress and prospects. Sci. Total Environ. 2024, 915, 169977. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, C.; Tu, C.; Hoyt, G.D.; DeForest, J.L.; Hu, S. Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community. Sci. Total Environ. 2017, 609, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Pramanik, K.; Das, A.; Banerjee, J.; Das, A.; Chatterjee, S.; Sharma, R.; Kumar, S.; Gupta, S. Metagenomic Insights into Rhizospheric Microbiome Profiling in Lentil Cultivars Unveils Differential Microbial Nitrogen and Phosphorus Metabolism under Rice-Fallow Ecology. Int. J. Mol. Sci. 2020, 21, 8895. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Dong, X.; Wang, Y.; Maker, G.; Agarwal, M.; Ding, Z. Tea-soybean intercropping improves tea quality and nutrition uptake by inducing changes of rhizosphere bacterial communities. Microorganisms 2022, 10, 2149. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, J.M.; Badri, D.V.; Vivanco, J.M. Rhizosphere microbiome assemblage is affected by plant development. ISME J. 2014, 8, 790–803. [Google Scholar] [CrossRef] [PubMed]
- Kgosi, V.T.; Tingting, B.; Ying, Z.; Liu, H. Anti-fungal analysis of Bacillus subtilis DL76 on conidiation, appressorium formation, growth, multiple stress response, and pathogenicity in Magnaporthe oryzae. Int. J. Mol. Sci. 2022, 23, 5314. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Sood, A.; Sharma, S.; Kumar, V.; Singh, K.D.; Pandey, P. Studies on rhizospheric mycoflora of tea (Camellia sinensis): In vitro antagonism with dominant bacteria. Chin. J. Appl. Environ. Biol. 2007, 13, 357. [Google Scholar]
- Antoun, H.; Beauchamp, C.J.; Goussard, N.; Chabot, R.; Lalande, R. Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: Effect on radishes (Raphanus sativus L.). Plant Soil 1998, 204, 57–67. [Google Scholar] [CrossRef]
- Li, Y.C.; Li, Z.W.; Lin, W.W.; Jiang, Y.H.; Weng, B.Q.; Lin, W.X. Effects of biochar and sheep manure on rhizospheric soil microbial community in continuous rationing tea orchards. J. Appl. Ecol. 2018, 29, 1273–1282. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Zhang, S.; Wang, Y. What could promote farmers to replace chemical fertilizers with organic fertilizers? J. Clean. Prod. 2018, 199, 882–890. [Google Scholar] [CrossRef]
- Banerjee, S.; Kirkby, C.A.; Schmutter, D.; Bissett, A.; Kirkegaard, J.A.; Richardson, A.E. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 2016, 97, 188–198. [Google Scholar] [CrossRef]
- Sun, J.; Lin, Z.; Zhu, L.; Zhang, W. Differences in bacterial community structure and metabolites between the root zone soil of the new high–Fragrance tea variety Jinlong No. 4 and its grandparent Huangdan. PLoS ONE 2025, 20, e0318659. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Chen, G.H.; Sun, J.J.; Chen, S.; Fang, Y.; Ren, J.H. Isolation, characterization, and tea growth-promoting analysis of JW-CZ2, a bacterium with 1-aminocyclopropane-1-carboxylic acid deaminase activity isolated from the rhizosphere soils of tea plants. Front. Microbiol. 2022, 13, 792876. [Google Scholar] [CrossRef] [PubMed]
- Karpi’nski, T.M. Marine macrolides with antibacterial and/or antifungal activity. Mar. Drugs 2019, 17, 241. [Google Scholar] [CrossRef] [PubMed]
- Barooah, A.K. Present status of use of agrochemicals in tea industry of eastern India and future directions. Sci. Cult. 2011, 77, 385–390. [Google Scholar]
Isolates | Phosphate Solubilization (µg/mL) | Siderophores (%) | IAA (µg/mL) | ACC Deaminase Activity | Ammonia Production * | Zinc Solubilization * | HCN Production * |
---|---|---|---|---|---|---|---|
BS14 | 49.45 ± 0.11 | 49.31 ± 0.49 | 90.62 ± 0.21 | 100.05 ± 0.03 | + | − | − |
CIC2 | 57.09 ± 0.11 | 41.77 ± 0.45 | 182.12 ± 0.10 | 85.96 ± 0.03 | + | + | + |
FS1 | 44.07 ± 0.10 | 63.84 ± 0.09 | 121.49 ± 0.10 | 89.81 ± 0.03 | + | − | + |
PH3 | 25.37 ± 0.10 | 43.59 ± 0.07 | 39.10 ± 0.10 | 100.05 ± 0.03 | + | − | + |
SS2 | 23.95 ± 0.10 | 65.73 ± 0.45 | 16.94 ± 0.07 | 80.32 ± 0.33 | + | − | − |
SRH1 | 34.76 ± 0.09 | 41.27 ± 0.19 | 25.60 ± 0.10 | 85.31 ± 0.00 | + | − | − |
WJB5 | 57.77 ± 0.11 | 62.54 ± 0.17 | 36.55 ± 0.14 | 62.82 ± 0.03 | + | − | − |
WJB6 | 35.30 ± 0.00 | 66.91 ± 0.13 | 15.99 ± 0.14 | 62.82 ± 0.03 | + | + | + |
(A) Growth Parameters | S3A3 | TS491 | |||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | Treatment/Duration (Months) | Control | Consortium | 50% Fertilizer + Consortium | Only Fertilizer | Control | Consortium | 50% Fertilizer + Consortium | Only Fertilizer |
Shoot Length | 0 | 15.6 ± 0.14 a | 15.7 ± 0.29 a | 15.4 ± 0.36 a | 15.6 ± 0.29 a | 14.8 ± 0.24 a | 15.1 ± 0.24 a | 14.8 ± 0.24 a | 15.5 ± 0.76 a |
12 | 59.1 ± 4.49 b | 86.2 ± 0.90 d | 68.1 ± 0.29 c | 48.13 ± 0.6 a | 56.6 ± 0.43 b | 88.5 ± 0.42 c | 59.8 ± 4.84 b | 46.1 ± 1.51 a | |
Root Length | 0 | 5.1 ± 0.662 a | 5.5 ± 0.81 a | 5.5 ± 0.36 a | 4.2 ± 0.59 a | 4.8 ± 0.34 b | 4.7 ± 0.17 a | 4.9 ± 0.45 a | 4.8 ± 0.26 a |
12 | 10.7 ± 0.95 a | 14.1 ± 0.66 b | 10.8 ± 1.03 a | 9.6 ± 0.98 a | 11.4 ± 1.84 a | 13 ± 0.82 b | 11.6 ± 1.25 a | 11.3 ± 1.69 a | |
Leaf Number | 0 | 7.5 ± 0.47 a | 7.5 ± 0.47 a | 6.0 ± 0.47 a | 6.5 ± 0.82 a | 7.0 ± 0.82 a | 7.6 ± 0.47 a | 6.3 ± 0.47 a | 7.0 ± 0.82 a |
12 | 28.3 ± 2.05 a | 96.3 ± 6.79 c | 73.6 ± 3.3 b | 44.0 ± 6.16 a | 30.6 ± 2.05 a | 99.6 ± 3.86 c | 58.0 ± 5.72 b | 36.3 ± 6.9 a | |
Water Content | 12 | 55.4 ± 0.44 a | 78.7 ± 0.50 d | 69.5 ± 1.35 c | 61.8 ± 0.80 b | 54.6 ± 0.57 b | 76.2 ± 0.23 d | 69.1 ± 0.43 c | 60.32 ± 0.37 a |
(B) Chlorophyll Content | S3 A3 | TS491 | |||||||
Duration (Months) | Treatment/ Chlorophyll Content (µg/g) | Control | Consortium | 50% Fertilizer + Consortium | Only Fertilizer | Control | Consortium | 50% Fertilizer + Consortium | Only Fertilizer |
3 months | Chl a | 1.80 ± 0.00 a | 5.60 ± 0.00 d | 4.90 ± 0.00 c | 4.30 ± 0.00 b | 2.20 ± 0.00 a | 6.10 ± 0.00 d | 5.30 ± 5.81 c | 4.90 ± 0.00 b |
Chl b | 2.80 ± 0.00 a | 5.00 ± 0.00 c | 3.40 ± 0.00 b | 2.20 ± 0.00 a | 6.30 ± 0.00 a | 5.40 ± 0.00 d | 5.50 ± 0.00 c | 2.60 ± 0.00 b | |
Carotene | 1.91 ± 0.00 a | 3.20 ± 0.01 d | 2.84 ± 0.00 c | 2.83 ± 0.00 b | 1.23 ± 0.07 a | 3.19 ± 0.20 d | 2.81 ± 0.05 c | 2.32 ± 0.04 b | |
6 months | Chl a | 2.60 ± 0.00 a | 8.00 ± 0.00 d | 7.20 ± 0.00 c | 5.30 ± 0.00 b | 3.10 ± 0.01 a | 8.20 ± 0.03 d | 8.10 ± 0.02 c | 2.60 ± 0.02 b |
Chl b | 2.00 ± 0.00 c | 1.40 ± 0.00 b | 1.40 ± 0.00 b | 1.10 ± 0.00 a | 1.20 ± 0.01 a | 6.40 ± 0.01 c | 2.00 ± 0.01 b | 2.40 ± 0.01 b | |
Carotene | 3.43 ± 0.02 c | 1.86 ± 0.18 a | 2.67 ± 0.00 b | 1.71 ± 0.01 a | 1.73 ± 0.11 a | 3.22 ± 0.21 c | 2.43 ± 0.041 b | 1.28 ± 0.00 a | |
9 months | Chl a | 2.70 ± 0.00 a | 7.50 ± 0.00 d | 7.00 ± 0.00 c | 5.80 ± 0.00 b | 3.10 ± 0.00 a | 8.10 ± 0.00 c | 8.70 ± 0.00 c | 6.60 ± 0.00 b |
Chl b | 5.40 ± 0.00 b | 8.20 ± 0.00 c | 4.20 ± 0.00 b | 2.50 ± 0.00 a | 5.60 ± 0.00 b | 6.10 ± 0.00 c | 2.00 ± 0.00 a | 2.20 ± 0.00 a | |
Carotene | 2.17 ± 0.00 a | 3.39 ± 0.00 d | 3.13 ± 0.00 c | 3.03 ± 0.00 b | 1.74 ± 0.018 a | 4.02 ± 0.00 c | 3.78 ± 0.39 c | 3.00 ± 0.00 b | |
12 months | Chl a | 3.10 ± 0.00 a | 7.60 ± 0.00 d | 6.30 ± 0.00 c | 5.60 ± 0.00 b | 4.60 ± 0.00 a | 11.00 ± 0.00 d | 9.4 ± 0.00 c | 8.50 ± 0.00 b |
Chl b | 5.900 ± 0.00 a | 12.00 ± 6.00 d | 11.00 ± 0.00 c | 10.00 ± 0.00 b | 6.20 ± 0.00 c | 11.00 ± 0.00 d | 7.00 ± 0.00 a | 3.70 ± 0.00 b | |
Carotene | 2.42 ± 0.02 a | 3.80 ± 0.01 d | 3.28 ± 0.01 c | 2.92 ± 0.00 b | 2.12 ± 0.00 a | 4.72 ± 0.01 d | 4.45 ± 0.0 c | 3.57 ± 0.00 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorongpong, S.; Debnath, S.; Rahi, P.; Bera, B.; Pandey, P. Sustainable Tea Cultivation with a Rhizobacterial Consortium: A Microbiome-Driven Alternative to Chemical Fertilizers. Microorganisms 2025, 13, 1715. https://doi.org/10.3390/microorganisms13081715
Sorongpong S, Debnath S, Rahi P, Bera B, Pandey P. Sustainable Tea Cultivation with a Rhizobacterial Consortium: A Microbiome-Driven Alternative to Chemical Fertilizers. Microorganisms. 2025; 13(8):1715. https://doi.org/10.3390/microorganisms13081715
Chicago/Turabian StyleSorongpong, Silpi, Sourav Debnath, Praveen Rahi, Biswajit Bera, and Piyush Pandey. 2025. "Sustainable Tea Cultivation with a Rhizobacterial Consortium: A Microbiome-Driven Alternative to Chemical Fertilizers" Microorganisms 13, no. 8: 1715. https://doi.org/10.3390/microorganisms13081715
APA StyleSorongpong, S., Debnath, S., Rahi, P., Bera, B., & Pandey, P. (2025). Sustainable Tea Cultivation with a Rhizobacterial Consortium: A Microbiome-Driven Alternative to Chemical Fertilizers. Microorganisms, 13(8), 1715. https://doi.org/10.3390/microorganisms13081715