Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (527)

Search Parameters:
Keywords = plant genome assembly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 8034 KB  
Article
Decoding Forage-Driven Microbial–Metabolite Patterns: A Multi-Omics Comparison of Eight Tropical Silage Crops
by Xianjun Lai, Siqi Liu, Yandan Zhang, Haiyan Wang and Lang Yan
Fermentation 2025, 11(8), 480; https://doi.org/10.3390/fermentation11080480 - 20 Aug 2025
Viewed by 247
Abstract
Tropical forage crops vary widely in biochemical composition, resulting in inconsistent silage quality. Understanding how plant traits shape microbial and metabolic networks during ensiling is crucial for optimizing fermentation outcomes. Eight tropical forages—Sorghum bicolor (sweet sorghum), Sorghum × drummondii (sorghum–Sudangrass hybrid), Sorghum [...] Read more.
Tropical forage crops vary widely in biochemical composition, resulting in inconsistent silage quality. Understanding how plant traits shape microbial and metabolic networks during ensiling is crucial for optimizing fermentation outcomes. Eight tropical forages—Sorghum bicolor (sweet sorghum), Sorghum × drummondii (sorghum–Sudangrass hybrid), Sorghum sudanense (Sudangrass), Pennisetum giganteum (giant Napier grass), Pennisetum purpureum cv. Purple (purple elephant grass), Pennisetum sinese (king grass), Leymus chinensis (sheep grass), and Zea mexicana (Mexican teosinte)—were ensiled under uniform conditions. Fermentation quality, bacterial and fungal communities (16S rRNA and ITS sequencing), and metabolite profiles (untargeted liquid chromatography–mass spectrometry, LC-MS) were analyzed after 60 days. Sweet sorghum and giant Napier grass showed optimal fermentation, with high lactic acid levels (111.2 g/kg and 99.4 g/kg, respectively), low NH4+-N (2.4 g/kg and 3.1 g/kg), and dominant Lactiplantibacillus plantarum. In contrast, sheep grass and Mexican teosinte exhibited poor fermentation, with high NH4+-N (6.7 and 6.1 g/kg) and Clostridium dominance. Fungal communities were dominated by Kazachstania humilis (>95%), while spoilage-associated genera such as Cladosporium, Fusarium, and Termitomyces proliferated in poorly fermented silages. Metabolomic analysis identified 15,827 features, with >3000 significantly differential metabolites between silages. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment revealed divergence in flavonoid biosynthesis, lipid metabolism, and amino acid pathways. In the sweet sorghum vs. sheep grass comparison, oxidative stress markers ((±) 9-HODE, Agrimonolide) were elevated in sheep grass, while sweet sorghum accumulated antioxidants like Vitamin D3. Giant Napier grass exhibited higher levels of antimicrobial flavonoids (e.g., Apigenin) than king grass, despite both being dominated by lactic acid bacteria. Sorghum–Sudangrass hybrid silage showed enrichment of lignan and flavonoid derivatives, while Mexican teosinte accumulated hormone-like compounds (Gibberellin A53, Pterostilbene), suggesting microbial dysbiosis. These findings indicate that silage fermentation outcomes are primarily driven by forage-intrinsic traits. A “forage–microbiota–metabolite” framework was proposed to explain how plant-specific properties regulate microbial assembly and metabolic output. These insights can guide forage selection and development of precision inoculant for high-quality tropical silage. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

25 pages, 6623 KB  
Article
Characterization of the Mitochondrial Genome of Hippophae rhamnoides subsp. sinensis Rousi Based on High-Throughput Sequencing and Elucidation of Its Evolutionary Mechanisms
by Mengjiao Lin, Na Hu, Jing Sun and Wu Zhou
Plants 2025, 14(16), 2547; https://doi.org/10.3390/plants14162547 - 15 Aug 2025
Viewed by 271
Abstract
Hippophae rhamnoides ssp. sinensis Rousi a species of significant ecological and economic value that is native to the Qinghai–Tibet Plateau and arid/semi-arid regions. Investigating the mitochondrial genome can elucidate stress adaptation mechanisms, population genetic structure, and hybrid evolutionary history, offering molecular insights for [...] Read more.
Hippophae rhamnoides ssp. sinensis Rousi a species of significant ecological and economic value that is native to the Qinghai–Tibet Plateau and arid/semi-arid regions. Investigating the mitochondrial genome can elucidate stress adaptation mechanisms, population genetic structure, and hybrid evolutionary history, offering molecular insights for ecological restoration and species conservation. However, the genetic information and evolutionary mechanisms of its mitochondrial genome remain poorly understood. This study aimed to assemble the complete mitochondrial genome of H. rhamnoides L. ssp. sinensis using Illumina sequencing, uncovering its structural features, evolutionary pressures, and environmental adaptability and addressing the research gap regarding mitochondrial genomes within the Hippophae genus. The study assembled a 454,444 bp circular mitochondrial genome of H. rhamnoides ssp. sinensis, with a GC content of 44.86%. A total of 73 genes and 3 pseudogenes were annotated, with the notable absence of the rps2 gene, which is present in related species. The genome exhibits significant codon usage bias, particularly with high-frequency use of the alanine codon GCU and the isoleucine codon AUU. Additionally, 449 repetitive sequences, potentially driving genome recombination, were identified. Our evolutionary pressure analysis revealed that most genes are under purifying selection, while genes such as atp4 and nad4 exhibit positive selection. A nucleotide diversity analysis revealed that the sdh4 gene exhibits the highest variation, whereas rrn5 is the most conserved. Meanwhile, phylogenetic analysis showed that H. rhamnoides ssp. sinensis from China is most closely related to Hippophae tibetana, with extensive homologous sequences (49.72% of the chloroplast genome) being identified between the chloroplast and mitochondrial genomes, indicating active inter-organellar gene transfer. Furthermore, 539 RNA editing sites, primarily involving hydrophilic-to-hydrophobic amino acid conversions, were predicted, potentially regulating mitochondrial protein function. Our findings establish a foundation for genetic improvement and research on adaptive evolutionary mechanisms in the Hippophae genus, offering a novel case study for plant mitochondrial genome evolution theory. Full article
(This article belongs to the Special Issue Crop Genome Sequencing and Analysis)
Show Figures

Figure 1

16 pages, 2539 KB  
Article
Mitochondrial Genome and RNA Editing Tissue Specificity of Centella asiatica
by Cuihong Yang, Wenjing Liang, Ya Qin, Yuqiong Li, Shugen Wei, Qiulan Huang, Ahmed H. El-Sappah, Guiyu Tan, Ying Wei, Lingjian Gui and Lingyun Wan
Genes 2025, 16(8), 953; https://doi.org/10.3390/genes16080953 - 12 Aug 2025
Viewed by 337
Abstract
Background: Centella asiatica, a medicinally important species that is rich in bioactive compounds, lacks a characterized mitochondrial genome, despite nuclear and chloroplast assemblies. We sequenced and annotated its mitochondrial genome to elucidate its genetic foundations and evolutionary mechanisms. Methods: Assembly using Illumina [...] Read more.
Background: Centella asiatica, a medicinally important species that is rich in bioactive compounds, lacks a characterized mitochondrial genome, despite nuclear and chloroplast assemblies. We sequenced and annotated its mitochondrial genome to elucidate its genetic foundations and evolutionary mechanisms. Methods: Assembly using Illumina short-reads and Nanopore long-reads was used to characterize the mitochondrial genome. Analyses included structural characterization, codon usage bias, repetitive sequences, horizontal gene transfer (HGT), collinearity, and phylogeny. The resulting tissue-specific (root, stem, and leaf) long non-coding RNA (lncRNA) profiles identified RNA editing sites. Results: The complete mitochondrial genome (249,777 bp, 45.5% GC) comprises three circular contigs encoding 51 genes (33 protein-coding, 15 tRNA, and 3 rRNA). Comparative genomics revealed synteny with the Apiaceae family of plants and evidence of HGT. Phylogenetic analysis resolved taxonomic relationships within Apiales. We predicted that 547 RNA editing sites would be identified in its protein-coding genes. Tissue profiling identified 725 (root), 711 (stem), and 668 (leaf) editing sites, with >71% concordance to predictions. RNA editing-generated cryptic promoters/terminators occur in mitochondrial core function genes (e.g., ATP synthase, cytochrome c reductase/oxidase, ribosome large subunit, and cytochrome c biogenesis), exhibiting a lower frequency in the leaves compared to the roots and stems. Conclusions: We provide the first complete mitochondrial genome assembly for C. asiatica, delineating its complex structure, tissue-modulated RNA editing, and evolutionary trajectory. This high-quality genomic resource establishes a foundation for molecular evolutionary studies and enhances the genomic toolkit for this pharmacologically significant species. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

21 pages, 5866 KB  
Article
Genome-Wide Identification and Expression Analysis of the GH19 Chitinase Gene Family in Sea Island Cotton
by Jingjing Ma, Yilei Long, Jincheng Fu, Nengshuang Shen, Le Wang, Shuaijun Wu, Jing Li, Quanjia Chen, Qianli Zu and Xiaojuan Deng
Curr. Issues Mol. Biol. 2025, 47(8), 633; https://doi.org/10.3390/cimb47080633 - 7 Aug 2025
Viewed by 269
Abstract
In this study, GH19 chitinase (Chi) gene family was systematically identified and characterized using genomic assemblies from four cotton species: Gossypium barbadense, G. hirsutum, G. arboreum, and G. raimondii. A suite of analyses was performed, including genome-wide gene identification, [...] Read more.
In this study, GH19 chitinase (Chi) gene family was systematically identified and characterized using genomic assemblies from four cotton species: Gossypium barbadense, G. hirsutum, G. arboreum, and G. raimondii. A suite of analyses was performed, including genome-wide gene identification, physicochemical property characterization of the encoded proteins, subcellular localization prediction, phylogenetic reconstruction, chromosomal mapping, promoter cis-element analysis, and comprehensive expression profiling using transcriptomic data and qRT-PCR (including tissue-specific expression, hormone treatments, and Fusarium oxysporum infection assays). A total of 107 GH19 genes were identified across the four species (35 in G. barbadense, 37 in G. hirsutum, 19 in G. arboreum, and 16 in G. raimondii). The molecular weights of GH19 proteins ranged from 9.9 to 97.3 kDa, and they were predominantly predicted to localize to the extracellular space. Phylogenetic analysis revealed three well-conserved clades within this family. In tetraploid cotton, GH19 genes were unevenly distributed across 12 chromosomes, often clustering in certain regions, whereas in diploid species, they were confined to five chromosomes. Promoter analysis indicated that GH19 gene promoters contain numerous stress- and hormone-responsive motifs, including those for abscisic acid (ABA), ethylene (ET), and gibberellin (GA), as well as abundant light-responsive elements. The expression patterns of GH19 genes were largely tissue-specific; for instance, GbChi23 was predominantly expressed in the calyx, whereas GbChi19/21/22 were primarily expressed in the roots and stems. Overall, this study provides the first comprehensive genomic and functional characterization of the GH19 family in G. barbadense, laying a foundation for understanding its role in disease resistance mechanisms and aiding in the identification of candidate genes to enhance plant defense against biotic stress. Full article
Show Figures

Figure 1

15 pages, 3291 KB  
Article
Organelle Genome Characteristics and Phylogenetic Analysis of a Warm-Season Turfgrass Eremochloa ophiuroides (Poaceae)
by Junming Zhao, Yanli Xiong, Maotao Xu, Wenlong Gou, Tingyong Yang, Yi Xiong, Zhixiao Dong, Ling Pan, Lina Sha, Hong Luo and Xiao Ma
Biology 2025, 14(8), 975; https://doi.org/10.3390/biology14080975 - 1 Aug 2025
Viewed by 292
Abstract
Plant mitochondrial genomes are characterized by their complex compositions and structures, large genomes, rapid recombination and evolution rates, and frequent intracellular gene transfer events. Centipedegrass, known as “Chinese turfgrass”, is a warm-season turfgrass that exhibits excellent tolerance to both biotic and abiotic stresses. [...] Read more.
Plant mitochondrial genomes are characterized by their complex compositions and structures, large genomes, rapid recombination and evolution rates, and frequent intracellular gene transfer events. Centipedegrass, known as “Chinese turfgrass”, is a warm-season turfgrass that exhibits excellent tolerance to both biotic and abiotic stresses. The chloroplast genome, with 139,107 bp, and the mitochondrial genome, with 564,432 bp, were both assembled into a single circular structure. We identified 44 gene transfer events between the chloroplast and mitochondrial genomes. The mitochondrial gene cox1 could serve as a marker for distinguishing accessions found at different altitudes. The unique features of the centipedegrass mitochondrial genome, coupled with the comparative genomic analysis of both chloroplast and mitochondrial genomes, have the potential to enrich the Poaceae database and provide crucial perspectives on plant evolution, energy metabolism, and responses to environmental conditions. The markers developed could facilitate the analysis of the genetic diversity of centipedegrass. Full article
Show Figures

Figure 1

22 pages, 7937 KB  
Article
Insights into Biological and Ecological Features of Four Rare and Endemic Plants from the Northern Tian Shan (Kazakhstan)
by Gulbanu Sadyrova, Aisha Taskuzhina, Alexandr Pozharskiy, Kuralai Orazbekova, Kirill Yanin, Nazym Kerimbek, Saule Zhamilova, Gulzhanat Kamiyeva, Ainur Tanybaeva and Dilyara Gritsenko
Plants 2025, 14(15), 2305; https://doi.org/10.3390/plants14152305 - 26 Jul 2025
Cited by 1 | Viewed by 567
Abstract
This study presents an integrative investigation of four rare and threatened plant species—Taraxacum kok-saghyz L.E. Rodin, Astragalus rubtzovii Boriss., Schmalhausenia nidulans (Regel) Petr., and Rheum wittrockii Lundstr.—native to the Ile Alatau and Ketmen ridges of the Northern Tian Shan in Kazakhstan. Combining [...] Read more.
This study presents an integrative investigation of four rare and threatened plant species—Taraxacum kok-saghyz L.E. Rodin, Astragalus rubtzovii Boriss., Schmalhausenia nidulans (Regel) Petr., and Rheum wittrockii Lundstr.—native to the Ile Alatau and Ketmen ridges of the Northern Tian Shan in Kazakhstan. Combining chloroplast genome sequencing, geobotanical surveys, and anatomical and population structure analyses, we aimed to assess the ecological adaptation, genetic distinctiveness, and conservation status of these species. Field surveys revealed that population structures varied across species, with T. kok-saghyz and S. nidulans dominated by mature vegetative and generative individuals, while A. rubtzovii and R. wittrockii exhibited stable age spectra marked by reproductive maturity and ongoing recruitment. Chloroplast genome assemblies revealed characteristic patterns of plastid evolution, including structural conservation in S. nidulans and R. wittrockii, and a reduced inverted repeat region in A. rubtzovii, consistent with its placement in the IR-lacking clade of Fabaceae. Morphological and anatomical traits reflected habitat-specific adaptations such as tomentose surfaces, thickened epidermis, and efficient vascular systems. Despite these adaptations, anthropogenic pressures including overgrazing and habitat degradation pose significant risks to population viability. Our findings underscore the need for targeted conservation measures, continuous monitoring, and habitat management to ensure the long-term survival of these ecologically and genetically valuable endemic species. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

21 pages, 1420 KB  
Article
Functional Characterization of a Synthetic Bacterial Community (SynCom) and Its Impact on Gene Expression and Growth Promotion in Tomato
by Mónica Montoya, David Durán-Wendt, Daniel Garrido-Sanz, Laura Carrera-Ruiz, David Vázquez-Arias, Miguel Redondo-Nieto, Marta Martín and Rafael Rivilla
Agronomy 2025, 15(8), 1794; https://doi.org/10.3390/agronomy15081794 - 25 Jul 2025
Viewed by 521
Abstract
Sustainable agriculture requires replacing agrochemicals with environmentally friendly products. One alternative is bacterial inoculants with plant-growth-promoting (PGP) activity. Bacterial consortia offer advantages over single-strain inoculants, as they possess more PGP traits and allow the exploitation of bacterial synergies. Synthetic bacterial communities (SynComs) can [...] Read more.
Sustainable agriculture requires replacing agrochemicals with environmentally friendly products. One alternative is bacterial inoculants with plant-growth-promoting (PGP) activity. Bacterial consortia offer advantages over single-strain inoculants, as they possess more PGP traits and allow the exploitation of bacterial synergies. Synthetic bacterial communities (SynComs) can be used as inoculants that are thoroughly characterized and assessed for efficiency and safety. Here, we describe the construction of a SynCom composed of seven bacterial strains isolated from the rhizosphere of tomato plants and other orchard vegetables. The strains were identified by 16S rDNA sequencing as Pseudomonas spp. (two isolates), Rhizobium sp., Ensifer sp., Microbacterium sp., Agromyces sp., and Chryseobacterium sp. The metagenome of the combined strains was sequenced, allowing the identification of PGP traits and the assembly of their individual genomes. These traits included nutrient mobilization, phytostimulation, and biocontrol. When inoculated into tomato plants in an agricultural soil, the SynCom caused minor effects in soil and rhizosphere bacterial communities. However, it had a high impact on the gene expression pattern of tomato plants. These effects were more significant at the systemic than at the local level, indicating a priming effect in the plant, as signaling through jasmonic acid and ethylene appeared to be altered. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

21 pages, 1285 KB  
Article
Stage-Specific Transcriptomic Insights into Seed Germination and Early Development in Camellia oleifera Abel.
by Zhen Zhang, Caixia Liu, Ying Zhang, Zhilong He, Longsheng Chen, Chengfeng Xun, Yushen Ma, Xiaokang Yuan, Yanming Xu and Rui Wang
Plants 2025, 14(15), 2283; https://doi.org/10.3390/plants14152283 - 24 Jul 2025
Viewed by 324
Abstract
Seed germination is a critical phase in the plant lifecycle of Camellia oleifera (oil tea), directly influencing seedling establishment and crop reproduction. In this study, we examined transcriptomic and physiological changes across five defined germination stages (G0–G4), from radicle dormancy to cotyledon emergence. [...] Read more.
Seed germination is a critical phase in the plant lifecycle of Camellia oleifera (oil tea), directly influencing seedling establishment and crop reproduction. In this study, we examined transcriptomic and physiological changes across five defined germination stages (G0–G4), from radicle dormancy to cotyledon emergence. Using RNA sequencing (RNA-seq), we assembled 169,652 unigenes and identified differentially expressed genes (DEGs) at each stage compared to G0, increasing from 1708 in G1 to 10,250 in G4. Functional enrichment analysis revealed upregulation of genes associated with cell wall organization, glucan metabolism, and Photosystem II assembly. Key genes involved in cell wall remodeling, including cellulose synthase (CESA), phenylalanine ammonia-lyase (PAL), 4-coumarate-CoA ligase (4CL), caffeoyl-CoA O-methyltransferase (COMT), and peroxidase (POD) showed progressive activation during germination. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed dynamic regulation of phenylpropanoid and flavonoid biosynthesis, photosynthesis, carbohydrate metabolism, and hormone signaling pathways. Transcription factors such as indole-3-acetic acid (IAA), ABA-responsive element binding factor (ABF), and basic helix–loop–helix (bHLH) were upregulated, suggesting hormone-mediated regulation of dormancy release and seedling development. Physiologically, cytokinin (CTK) and IAA levels peaked in G4, antioxidant enzyme activities were highest in G2, and starch content increased toward later stages. These findings provide new insights into the molecular mechanisms underlying seed germination in C. oleifera and identify candidate genes relevant to rootstock breeding and nursery propagation. Full article
Show Figures

Figure 1

36 pages, 1807 KB  
Review
Thriving or Withering? Plant Molecular Cytogenetics in the First Quarter of the 21st Century
by Elzbieta Wolny, Luis A. J. Mur, Nobuko Ohmido, Zujun Yin, Kai Wang and Robert Hasterok
Int. J. Mol. Sci. 2025, 26(14), 7013; https://doi.org/10.3390/ijms26147013 - 21 Jul 2025
Viewed by 551
Abstract
Nearly four decades have passed since fluorescence in situ hybridisation was first applied in plants to support molecular cytogenetic analyses across a wide range of species. Subsequent advances in DNA sequencing, bioinformatic analysis, and microscopy, together with the immunolocalisation of various nuclear components, [...] Read more.
Nearly four decades have passed since fluorescence in situ hybridisation was first applied in plants to support molecular cytogenetic analyses across a wide range of species. Subsequent advances in DNA sequencing, bioinformatic analysis, and microscopy, together with the immunolocalisation of various nuclear components, have provided unprecedented insights into the cytomolecular organisation of the nuclear genome in both model and non-model plants, with crop species being perhaps the most significant. The ready availability of sequenced genomes is now facilitating the application of state-of-the-art cytomolecular techniques across diverse plant species. However, these same advances in genomics also pose a challenge to the future of plant molecular cytogenetics, as DNA sequence analysis is increasingly perceived as offering comparable insights into genome organisation. This perception persists despite the continued relevance of FISH-based approaches for the physical anchoring of genome assemblies to chromosomes. Furthermore, cytogenetic approaches cannot currently rival purely genomic methods in terms of throughput, standardisation, and automation. This review highlights the latest key topics in plant cytomolecular research, with particular emphasis on chromosome identification and karyotype evolution, chromatin and interphase nuclear organisation, chromosome structure, hybridisation and polyploidy, and cytogenetics-assisted crop improvement. In doing so, it underscores the distinctive contributions that cytogenetic techniques continue to offer in genomic research. Additionally, we critically assess future directions and emerging opportunities in the field, including those related to CRISPR/Cas-based live-cell imaging and chromosome engineering, as well as AI-assisted image analysis and karyotyping. Full article
(This article belongs to the Collection Feature Papers in Molecular Plant Sciences)
Show Figures

Figure 1

8 pages, 3450 KB  
Communication
The Complete Chloroplast Genome of Water Crowfoot of Ranunculus cf. penicillatus and Phylogenetic Insight into the Genus Ranunculus (sect. Batrachium)
by Jurgita Butkuvienė, Donatas Naugžemys and Donatas Žvingila
Int. J. Mol. Sci. 2025, 26(14), 6953; https://doi.org/10.3390/ijms26146953 - 20 Jul 2025
Viewed by 330
Abstract
This study describes the first complete chloroplast genome of Ranunculus cf. penicillatus and provides new insights into the genetic composition and evolutionary relationships of the Ranunculus genus. The genome was assembled and characterized using high-throughput sequencing technologies, revealing a circular structure encompassing 158,313 [...] Read more.
This study describes the first complete chloroplast genome of Ranunculus cf. penicillatus and provides new insights into the genetic composition and evolutionary relationships of the Ranunculus genus. The genome was assembled and characterized using high-throughput sequencing technologies, revealing a circular structure encompassing 158,313 base pairs. Comparative analysis with the chloroplast genomes of related species within the Ranunculus genus highlights notable variations in structural organization, which can elucidate potential adaptive evolutionary mechanisms. Phylogenetic analyses conducted using the maximum likelihood approach resulted in the placement of Ranunculus cf. penicillatus within a well-defined clade, revealing its relationship with other taxa. This study not only enriches the existing plastid genomic data of the genus Ranunculus but also serves as an additional resource for future studies on the phylogenetics, systematics, and conservation biology of this diverse group of aquatic plants. The findings highlight the importance of complete chloroplast genomes in the Ranunculus section Batrachium, an evolutionarily young group of aquatic plants, for understanding plant diversity and evolution. The genome can be accessed on GenBank with the accession number PV690257. Full article
(This article belongs to the Special Issue Study on Organellar Genomes of Vascular Plants)
Show Figures

Figure 1

16 pages, 1945 KB  
Article
Assembly and Comparative Analysis of Complete Mitochondrial Genome Sequence of Endangered Medicinal Plant Trichopus zeylanicus
by Biju Vadakkemukadiyil Chellappan, P. R. Shidhi, Anu Sasi, Rashid Ismael Hag Ibrahim and Hamad Abu Zahra
Curr. Issues Mol. Biol. 2025, 47(7), 553; https://doi.org/10.3390/cimb47070553 - 16 Jul 2025
Viewed by 413
Abstract
Plant mitochondrial genomes exhibit extensive size variability and structural complexity. Here, we report the complete mitochondrial genome of Trichopus zeylanicus, an endemic medicinal plant from the Western Ghats. The mitochondrial genome was assembled using a combination of Illumina short-read and PacBio long-read [...] Read more.
Plant mitochondrial genomes exhibit extensive size variability and structural complexity. Here, we report the complete mitochondrial genome of Trichopus zeylanicus, an endemic medicinal plant from the Western Ghats. The mitochondrial genome was assembled using a combination of Illumina short-read and PacBio long-read sequencing technologies, followed by extensive annotation and comparative analysis. The circular mitogenome spans 709,127 bp with a GC content of 46%, encoding 32 protein-coding genes, 17 tRNAs, and three rRNAs. Comparative analysis with other monocot mitochondrial genomes revealed conserved gene clusters but also significant lineage-specific rearrangements. Despite genome size similarities, T. zeylanicus displayed marked divergence in gene order, suggesting that genome size does not necessarily correlate with structural conservation. The genome contains 6.7% chloroplast-derived sequences and 324 predicted RNA-editing sites, predominantly in the first and second codon positions. Phylogenetic analysis based on mitochondrial genes placed T. zeylanicus as a distinct lineage within Dioscoreales, supporting its evolutionary uniqueness. This work provides the first mitogenomic resource for Dioscoreales and advances our understanding of mitochondrial diversity and evolution in monocots. Full article
(This article belongs to the Special Issue Technological Advances Around Next-Generation Sequencing Application)
Show Figures

Graphical abstract

24 pages, 3598 KB  
Article
Comprehensive Analysis of the Complete Mitochondrial Genome of Paeonia ludlowii Reveals a Dual-Circular Structure and Extensive Inter-Organellar Gene Transfer
by Zhefei Zeng, Zhengyan Zhang, Ngawang Norbu, Ngawang Bonjor, Xin Tan, Shutong Zhang, Norzin Tso, Junwei Wang and La Qiong
Biology 2025, 14(7), 854; https://doi.org/10.3390/biology14070854 - 14 Jul 2025
Viewed by 361
Abstract
Paeonia ludlowii, a critically endangered species endemic to Tibet, China, possesses significant ornamental, culinary, and medicinal value. However, its mitochondrial genome remains understudied, limiting insights into its evolutionary mechanisms and constraining conservation genetics applications and molecular breeding programs. We present the first [...] Read more.
Paeonia ludlowii, a critically endangered species endemic to Tibet, China, possesses significant ornamental, culinary, and medicinal value. However, its mitochondrial genome remains understudied, limiting insights into its evolutionary mechanisms and constraining conservation genetics applications and molecular breeding programs. We present the first complete assembly and comprehensive analysis of the P. ludlowii mitochondrial genome. Most remarkably, we discovered that the P. ludlowii mitogenome exhibits an atypical dual-circular structure, representing the first documented occurrence of this architectural feature within the genus Paeonia. The assembled genome spans 314,371 bp and encodes 42 tRNA genes, 3 rRNA genes, and 31 protein-coding genes, with a pronounced adenine–thymine bias. This multipartite genome structure is characterized by abundant repetitive elements (112 functionally annotated SSRs, 33 tandem repeats, and 945 dispersed repeats), which potentially drive genome rearrangements and facilitate adaptive evolution. Analyses of codon usage bias and nucleotide diversity revealed highly conserved gene expression regulation with limited variability. Phylogenetic reconstruction confirms that P. ludlowii, P. suffruticosa, and P. lactiflora form a monophyletic clade, reflecting close evolutionary relationships, while extensive syntenic collinearity with other Paeonia species underscores mitochondrial genome conservation at the genus level. Extensive inter-organellar gene transfer events, particularly from chloroplast to mitochondrion, suggest that such DNA exchanges enhance genetic diversity and promote environmental adaptation. The discovery of the dual-circular architecture provides novel insights into plant mitochondrial genome evolution and structural plasticity. This study elucidates the unique structural characteristics of the P. ludlowii mitochondrial genome and establishes a crucial genetic foundation for developing targeted conservation strategies and facilitating molecular-assisted breeding programs for this endangered species. Full article
Show Figures

Figure 1

17 pages, 3544 KB  
Article
Assembly and Analysis of the Mitochondrial Genome of Hippophae rhamnoides subsp. sinensis, an Important Ecological and Economic Forest Tree Species in China
by Jie Li, Song-Song Lu, Yang Bi, Yu-Mei Jiang, Li-Dan Feng and Jing He
Plants 2025, 14(14), 2170; https://doi.org/10.3390/plants14142170 - 14 Jul 2025
Viewed by 394
Abstract
Hippophae rhamnoides subsp. sinensis is extensively found in China, where the annual precipitation ranges from 400 to 800 mm. It is the most dominant species in natural sea buckthorn forests and the primary cultivar for artificial ecological plantations. Additionally, it exhibits significant nutritional [...] Read more.
Hippophae rhamnoides subsp. sinensis is extensively found in China, where the annual precipitation ranges from 400 to 800 mm. It is the most dominant species in natural sea buckthorn forests and the primary cultivar for artificial ecological plantations. Additionally, it exhibits significant nutritional and medicinal value, making it a renowned eco-economic tree species. Despite extensive research into its ecological functions and health benefits, the mitochondrial genome of this widespread species has not yet been published, and knowledge of the mitochondrial genome is crucial for understanding plant environmental adaptation, evolution, and maternal inheritance. Therefore, the complete mitochondrial genome was successfully assembled by aligning third-generation sequencing data to the reference genome sequence using the Illumina NovaSeq 6000 platform and Nanopore Prometh ION technologies. Additionally, the gene structure, composition, repeat sequences, codon usage bias, homologous fragments, and phylogeny-related indicators were also analyzed. The results showed that the length of the mitochondrial genome is 454,489 bp, containing 30 tRNA genes, three rRNA genes, 40 PCGs, and two pseudogenes. A total of 411 C-to-U RNA editing sites were identified in 33 protein-coding genes (PCGs), with higher frequencies observed in ccmFn, ccmB, nad5, ccmC, nad2, and nad7 genes. Moreover, 31 chloroplast-derived fragments were detected, accounting for 11.86% of the mitochondrial genome length. The ccmB, nad4L, and nad7 genes related to energy metabolism exhibited positive selection pressure. The mitochondrial genome sequence similarity between H. rhamnoides subsp. sinensis and H. tibetana or H. salicifolia was 99.34% and 99.40%, respectively. Fifteen shared gene clusters were identified between H. rhamnoides subsp. sinensis and H. tibetana. Phylogenetically, the Rosales order showed close relationships with Fagales, Fabales, Malpighiales, and Celastrales. These findings provide fundamental data for exploring the widespread distribution of H. rhamnoides subsp. sinensis and offer theoretical support for understanding the evolutionary mechanisms within the Hippophae genus and the selection of molecular breeding targets. Full article
(This article belongs to the Special Issue Molecular Biology and Bioinformatics of Forest Trees—2nd Edition)
Show Figures

Figure 1

19 pages, 5645 KB  
Article
Characterization of Complete Chloroplast Genome Sequences of Three Tropical Liana Dalbergia Species and Comparative Analysis of Phylogenetic and Structure Variations in Dalbergia Genus
by Jun Wang, Shaoying Zheng, Xianglai Sun, Lulu Wang and Xupo Ding
Horticulturae 2025, 11(7), 799; https://doi.org/10.3390/horticulturae11070799 - 5 Jul 2025
Viewed by 410
Abstract
The Dalbergia genus, a morphologically diverse group within the Fabaceae family, encompasses species of significant value in furniture production and medicinal and aromatic applications. The taxonomy of Dalbergia has relied on morphological traits, chloroplast (cp) DNA fragments, and cp genomic data. However, genomic [...] Read more.
The Dalbergia genus, a morphologically diverse group within the Fabaceae family, encompasses species of significant value in furniture production and medicinal and aromatic applications. The taxonomy of Dalbergia has relied on morphological traits, chloroplast (cp) DNA fragments, and cp genomic data. However, genomic resources for tropical liana species within this genus remain scarce. In this study, we assembled and analyzed the cp genomes of 3 liana species—Dalbergia peishaensis, D. pinnata, and D. tsoi—and compared them with those of 26 other Dalbergia species to explore their cp genome characteristics and evolutionary patterns. We employed a combination of traditional cp genome analysis and methods adapted from plant whole-genome sequencing. Phylogenetic analysis revealed that D. peishaensis has a close relationship with D. cultrata, forming a recently diverged clade, whereas D. tsoi and D. pinnata are positioned within a basal clade of the Dalbergia genus, suggesting an earlier divergence. The Dalbergia cp genomes exhibit considerable variation in size, with evidence of pseudogenization, gene loss, and duplication observed in the three liana species. Notably, the infA gene, previously reported as absent in the chloroplast genomes of Dalbergia species, was identified in the cp genomes of these three liana Dalbergia species. A total of 4533 simple sequence repeats (SSRs) were identified, providing valuable insights into cp genome evolution and facilitating future population genetics studies, particularly when combined with the high structural variation observed in the genus through whole-genome analysis methods. Additionally, seven highly divergent regions were identified as potential DNA barcode hotspots. This study enhances the genomic characterization of liana Dalbergia species and offers a robust framework for future plant cp genome analyses by integrating methodologies originally developed for whole-genome studies. Full article
Show Figures

Figure 1

16 pages, 2421 KB  
Article
Characterization and Analysis of the Complete Mitochondrial Genome of Platycrater arguta
by Xule Zhang, Lei Feng, Xiaohua Ma, Qingdi Hu, Yaping Hu and Jian Zheng
Curr. Issues Mol. Biol. 2025, 47(7), 521; https://doi.org/10.3390/cimb47070521 - 5 Jul 2025
Viewed by 384
Abstract
Platycrater arguta (Hydrangeaceae), a rare and endangered Tertiary relict shrub endemic to East Asia, holds significant ecological and evolutionary value. However, the P. arguta mitochondrial (mt) genome remains unexplored, limiting insights into its cytoplasmic evolution and phylogenetic relationships. In this study, a complete [...] Read more.
Platycrater arguta (Hydrangeaceae), a rare and endangered Tertiary relict shrub endemic to East Asia, holds significant ecological and evolutionary value. However, the P. arguta mitochondrial (mt) genome remains unexplored, limiting insights into its cytoplasmic evolution and phylogenetic relationships. In this study, a complete mt genome of P. arguta was sequenced, and we assembled the mt genome into two linear contigs for description, due to the complexity of its chromosome structure. The mt genome encodes 37 protein-coding genes, 27 tRNA genes, and three rRNA genes. A total of 687 RNA editing sites were predicted, and the most RNA editing sites were found in the nad4 gene. Repeat sequences with different sizes were detected in the mt genome, including 160 simple sequence repeats, 26 tandem repeats, and 320 dispersed repeats. Phylogenetic analysis grouped P. arguta with Hydrangea macrophylla (Hydrangeaceae), which is closely related to Eucommiaceae and Ericaceae. This study provides the first assembled and annotated mt genome of P. arguta, which enhances our understanding of the genome of this relict plant in Hydrangeaceae. Taken together, this study offered foundational data for conservation strategies, molecular breeding, and evolutionary studies of this endangered relict species. Full article
Show Figures

Figure 1

Back to TopTop