Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (32,391)

Search Parameters:
Keywords = plant activators

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3036 KiB  
Article
Research on the Synergistic Mechanism Design of Electricity-CET-TGC Markets and Transaction Strategies for Multiple Entities
by Zhenjiang Shi, Mengmeng Zhang, Lei An, Yan Lu, Daoshun Zha, Lili Liu and Tiantian Feng
Sustainability 2025, 17(15), 7130; https://doi.org/10.3390/su17157130 (registering DOI) - 6 Aug 2025
Abstract
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the [...] Read more.
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the green power market, tradable green certificate (TGC) market, and carbon emission trading (CET) mechanism, and the ambiguous policy boundaries affect the trading decisions made by its market participants. Therefore, this paper systematically analyses the composition of the main players in the electricity-CET-TGC markets and their relationship with each other, and designs the synergistic mechanism of the electricity-CET-TGC markets, based on which, it constructs the optimal profit model of the thermal power plant operators, renewable energy manufacturers, power grid enterprises, power users and load aggregators under the electricity-CET-TGC markets synergy, and analyses the behavioural decision-making of the main players in the electricity-CET-TGC markets as well as the electric power system to optimise the trading strategy of each player. The results of the study show that: (1) The synergistic mechanism of electricity-CET-TGC markets can increase the proportion of green power grid-connected in the new type of power system. (2) In the selection of different environmental rights and benefits products, the direct participation of green power in the market-oriented trading is the main way, followed by applying for conversion of green power into China certified emission reduction (CCER). (3) The development of independent energy storage technology can produce greater economic and environmental benefits. This study provides policy support to promote the synergistic development of the electricity-CET-TGC markets and assist the low-carbon transformation of the power industry. Full article
Show Figures

Figure 1

23 pages, 3314 KiB  
Article
Functional Express Proteomics for Search and Identification of Differentially Regulated Proteins Involved in the Reaction of Wheat (Triticum aestivum L.) to Nanopriming by Gold Nanoparticles
by Natalia Naraikina, Tomiris Kussainova, Andrey Shelepchikov, Alexey Tretyakov, Alexander Deryabin, Kseniya Zhukova, Valery Popov, Irina Tarasova, Lev Dykman and Yuliya Venzhik
Int. J. Mol. Sci. 2025, 26(15), 7608; https://doi.org/10.3390/ijms26157608 (registering DOI) - 6 Aug 2025
Abstract
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, [...] Read more.
Proteomic profiling using ultrafast chromatography–mass spectrometry provides valuable insights into plant responses to abiotic factors by linking molecular changes with physiological outcomes. Nanopriming, a novel approach involving the treatment of seeds with nanoparticles, has demonstrated potential for enhancing plant metabolism and productivity. However, the molecular mechanisms underlying nanoparticle-induced effects remain poorly understood. In this study, we investigated the impact of gold nanoparticle (Au-NP) seed priming on the proteome of wheat (Triticum aestivum L.) seedlings. Differentially regulated proteins (DRPs) were identified, revealing a pronounced reorganization of the photosynthetic apparatus (PSA). Both the light-dependent reactions and the Calvin cycle were affected, with significant upregulation of chloroplast-associated protein complexes, including PsbC (CP43), chlorophyll a/b-binding proteins, Photosystem I subunits (PsaA and PsaB), and the γ-subunit of ATP synthase. The large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) exhibited over a threefold increase in expression in Au-NP-treated seedlings. The proteomic changes in the large subunit RuBisCo L were corroborated by transcriptomic data. Importantly, the proteomic changes were supported by physiological and biochemical analyses, ultrastructural modifications in chloroplasts, and increased photosynthetic activity. Our findings suggest that Au-NP nanopriming triggers coordinated molecular responses, enhancing the functional activity of the PSA. Identified DRPs may serve as potential biomarkers for further elucidation of nanopriming mechanisms and for the development of precision strategies to improve crop productivity. Full article
(This article belongs to the Special Issue Molecular Research and Applications of Nanomaterials)
Show Figures

Figure 1

24 pages, 2024 KiB  
Article
New Insights into the Synergistic Bioactivities of Zingiber officinale (Rosc.) and Humulus lupulus (L.) Essential Oils: Targeting Tyrosinase Inhibition and Antioxidant Mechanisms
by Hubert Sytykiewicz, Sylwia Goławska and Iwona Łukasik
Molecules 2025, 30(15), 3294; https://doi.org/10.3390/molecules30153294 (registering DOI) - 6 Aug 2025
Abstract
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in [...] Read more.
Essential oils (EOs) constitute intricate mixtures of volatile phytochemicals that have garnered significant attention due to their multifaceted biological effects. Notably, the presence of bioactive constituents capable of inhibiting tyrosinase enzyme activity and scavenging reactive oxygen species (ROS) underpins their potential utility in skin-related applications, particularly through the modulation of melanin biosynthesis and protection of skin-relevant cells from oxidative damage—a primary contributor to hyperpigmentation disorders. Zingiber officinale Rosc. (ginger) and Humulus lupulus L. (hop) are medicinal plants widely recognized for their diverse pharmacological properties. To the best of our knowledge, this study provides the first report on the synergistic interactions between essential oils derived from these species (referred to as EOZ and EOH) offering novel insights into their combined bioactivity. The purpose of this study was to evaluate essential oils extracted from ginger rhizomes and hop strobiles with respect to the following: (1) chemical composition, determined by gas chromatography–mass spectrometry (GC-MS); (2) tyrosinase inhibitory activity; (3) capacity to inhibit linoleic acid peroxidation; (4) ABTS•+ radical scavenging potential. Furthermore, the study utilizes both the combination index (CI) and dose reduction index (DRI) as quantitative parameters to evaluate the nature of interactions and the dose-sparing efficacy of essential oil (EO) combinations. GC–MS analysis identified EOZ as a zingiberene-rich chemotype, containing abundant sesquiterpene hydrocarbons such as α-zingiberene, β-bisabolene, and α-curcumene, while EOH exhibited a caryophyllene diol/cubenol-type profile, dominated by oxygenated sesquiterpenes including β-caryophyllene-9,10-diol and 1-epi-cubenol. In vitro tests demonstrated that both oils, individually and in combination, showed notable anti-tyrosinase, radical scavenging, and lipid peroxidation inhibitory effects. These results support their multifunctional bioactivity profiles with possible relevance to skin care formulations, warranting further investigation. Full article
(This article belongs to the Special Issue Essential Oils—Third Edition)
Show Figures

Figure 1

23 pages, 331 KiB  
Article
Revisiting the Nexus Between Energy Consumption, Economic Growth, and CO2 Emissions in India and China: Insights from the Long Short-Term Memory (LSTM) Model
by Bartosz Jóźwik, Siba Prasada Panda, Aruna Kumar Dash, Pritish Kumar Sahu and Robert Szwed
Energies 2025, 18(15), 4167; https://doi.org/10.3390/en18154167 - 6 Aug 2025
Abstract
Understanding how energy use and economic activity shape carbon emissions is pivotal for achieving global climate targets. This study quantifies the dynamic nexus between disaggregated energy consumption, economic growth, and CO2 emissions in India and China—two economies that together account for more [...] Read more.
Understanding how energy use and economic activity shape carbon emissions is pivotal for achieving global climate targets. This study quantifies the dynamic nexus between disaggregated energy consumption, economic growth, and CO2 emissions in India and China—two economies that together account for more than one-third of global emissions. Using annual data from 1990 to 2021, we implement Long Short-Term Memory (LSTM) neural networks, which outperform traditional linear models in capturing nonlinearities and lagged effects. The dataset is split into training (1990–2013) and testing (2014–2021) intervals to ensure rigorous out-of-sample validation. Results reveal stark national differences. For India, coal, natural gas consumption, and economic growth are the strongest positive drivers of emissions, whereas renewable energy exerts a significant mitigating effect, and nuclear energy is negligible. In China, emissions are dominated by coal and petroleum use and by economic growth, while renewable and nuclear sources show weak, inconsistent impacts. We recommend retrofitting India’s coal- and gas-plants with carbon capture and storage, doubling clean-tech subsidies, and tripling annual solar-plus-storage auctions to displace fossil baseload. For China, priorities include ultra-supercritical upgrades with carbon capture, utilisation, and storage, green-bond-financed solar–wind buildouts, grid-scale storage deployments, and hydrogen-electric freight corridors. These data-driven pathways simultaneously cut flagship emitters, decouple GDP from carbon, provide replicable models for global net-zero research, and advance climate-resilient economic growth worldwide. Full article
(This article belongs to the Special Issue Policy and Economic Analysis of Energy Systems)
13 pages, 1165 KiB  
Article
Simulation of the Adsorption Bed Process of Activated Carbon with Zinc Chloride from Spent Coffee Grounds for the Removal of Parabens in Treatment Plants
by Wagner Vedovatti Martins, Adriele Rodrigues Dos Santos, Gideã Taques Tractz, Lucas Bonfim-Rocha, Ana Paula Peron and Osvaldo Valarini Junior
Processes 2025, 13(8), 2481; https://doi.org/10.3390/pr13082481 - 6 Aug 2025
Abstract
Parabens—specifically methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP)—are widely used substances in everyday life, particularly as preservatives in pharmaceutical and food products. However, these compounds are not effectively removed by conventional water and wastewater treatment processes, potentially causing disruptions to human [...] Read more.
Parabens—specifically methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP)—are widely used substances in everyday life, particularly as preservatives in pharmaceutical and food products. However, these compounds are not effectively removed by conventional water and wastewater treatment processes, potentially causing disruptions to human homeostasis and the endocrine system. This study conducted a transport and dimensional analysis through simulation of the adsorption process for these parabens, using zinc chloride-activated carbon derived from spent coffee grounds (ACZnCl2) as the adsorbent, implemented via Aspen Properties® and Aspen Adsorption®. Simulations were performed for two inlet concentrations (50 mg/L and 100 mg/L) and two adsorption column heights (3 m and 4 m), considering a volumetric flow rate representative of a medium-sized city with approximately 100,000 inhabitants. The results showed that both density and surface tension of the parabens varied linearly with increasing temperature, and viscosity exhibited a marked reduction above 30 °C. Among the tested conditions, the configuration with 50 mg∙L−1 inlet concentration and a 4 m column height demonstrated the highest adsorption capacity and better performance under adsorption–desorption equilibrium. These findings indicate that the implementation of adsorption beds on an industrial scale in water and wastewater treatment systems is both environmentally and socially viable. Full article
Show Figures

Figure 1

16 pages, 3142 KiB  
Review
Mechanisms of Resistance of Oryza sativa to Phytophagous Insects and Modulators Secreted by Nilaparvata lugens (Hemiptera, Delphacidae) When Feeding on Rice Plants
by Xiaohong Zheng, Weiling Wu, Yuting Huang, Kedong Xu and Xinxin Shangguan
Agronomy 2025, 15(8), 1891; https://doi.org/10.3390/agronomy15081891 - 6 Aug 2025
Abstract
The brown planthopper, Nilaparvata lugens (Stål, 1854), is the most devastating pest of rice (Oryza sativa L.). Although insecticides are used to control this pest, host plant resistance is a more effective and economic solution. Therefore, identification of N. lugens-resistant genes [...] Read more.
The brown planthopper, Nilaparvata lugens (Stål, 1854), is the most devastating pest of rice (Oryza sativa L.). Although insecticides are used to control this pest, host plant resistance is a more effective and economic solution. Therefore, identification of N. lugens-resistant genes and elucidation of their underlying resistance mechanisms are critical for developing elite rice cultivars with enhanced and durable resistance. Research has shown that in the long-term evolutionary arms race, rice has developed complex defense systems against N. lugens, while N. lugens has developed diverse and sophisticated strategies to overcome the plant’s defenses. This review emphasizes recent advances in the molecular interactions between rice and the N. lugens, particularly focusing on the resistance mechanisms of 17 cloned major N. lugens resistance genes, which have significantly improved our understanding of the molecular basis of rice–N. lugens interactions. We also highlight the roles of several N. lugens salivary components in activating or suppressing rice defense responses. These insights provide a foundation for developing sustainable and effective strategies to manage this devastating pest of rice. Full article
(This article belongs to the Special Issue New Insights into Pest and Disease Control in Rice)
Show Figures

Figure 1

20 pages, 8071 KiB  
Article
Analysis of the Differences Among Camellia oleifera Grafting Combinations in Its Healing Process
by Zhilong He, Ying Zhang, Chengfeng Xun, Zhen Zhang, Yushen Ma, Xin Wei, Zhentao Wan and Rui Wang
Plants 2025, 14(15), 2432; https://doi.org/10.3390/plants14152432 - 6 Aug 2025
Abstract
Grafting serves as a crucial propagation technique for superior Camellia oleifera varieties, where rootstock–scion compatibility significantly determines survival and growth performance. To systematically evaluate grafting compatibility in this economically important woody oil crop, we examined 15 rootstock–scion combinations using ‘Xianglin 210’ as the [...] Read more.
Grafting serves as a crucial propagation technique for superior Camellia oleifera varieties, where rootstock–scion compatibility significantly determines survival and growth performance. To systematically evaluate grafting compatibility in this economically important woody oil crop, we examined 15 rootstock–scion combinations using ‘Xianglin 210’ as the scion, assessing growth traits and conducting physiological assays (enzymatic activities of SOD and POD and levels of ROS and IAA) at multiple timepoints (0–32 days post-grafting). The results demonstrated that Comb. 4 (Xianglin 27 rootstock) exhibited superior compatibility, characterized by systemic antioxidant activation (peaking at 4–8 DPG), rapid auxin accumulation (4 DPG), and efficient sugar allocation. Transcriptome sequencing and WGCNA analysis identified 3781 differentially expressed genes, with notable enrichment in stress response pathways (Hsp70, DnaJ) and auxin biosynthesis (YUCCA), while also revealing key hub genes (FKBP19) associated with graft-healing efficiency. These findings establish that successful grafting in C. oleifera depends on coordinated rapid redox regulation, auxin-mediated cell proliferation, and metabolic reprogramming, with Comb. 4 emerging as the optimal rootstock choice. The identified molecular markers not only advance our understanding of grafting mechanisms in woody plants but also provide valuable targets for future breeding programs aimed at improving grafting success rates in this important oil crop. Full article
(This article belongs to the Special Issue Advances in Planting Techniques and Production of Horticultural Crops)
Show Figures

Figure 1

33 pages, 5098 KiB  
Review
Medicinal Plants for Skin Disorders: Phytochemistry and Pharmacological Insights
by Nazerke Bolatkyzy, Daniil Shepilov, Rakhymzhan Turmanov, Dmitriy Berillo, Tursunay Vassilina, Nailya Ibragimova, Gulzat Berganayeva and Moldyr Dyusebaeva
Molecules 2025, 30(15), 3281; https://doi.org/10.3390/molecules30153281 (registering DOI) - 6 Aug 2025
Abstract
Skin disorders are common and often chronic conditions with significant therapeutic challenges. Limitations of conventional treatments, such as adverse effects and antimicrobial resistance, have increased interest in plant-based alternatives. This article presents the phytochemical composition and pharmacological potential of several medicinal plants traditionally [...] Read more.
Skin disorders are common and often chronic conditions with significant therapeutic challenges. Limitations of conventional treatments, such as adverse effects and antimicrobial resistance, have increased interest in plant-based alternatives. This article presents the phytochemical composition and pharmacological potential of several medicinal plants traditionally used in the treatment of skin diseases, including Rubus vulgaris, Plantago major, Artemisia terrae-albae, and Eryngium planum. Based on an analysis of scientific literature, the presence of bioactive compounds—including flavonoids, anthocyanins, phenolic acids, tannins, and sesquiterpenes—is summarized, along with their antioxidant, anti-inflammatory, and antimicrobial effects. Emphasis is placed on the correlation between traditional ethnomedicinal applications and pharmacological mechanisms. The findings support the potential of these species as sources for dermatological phytotherapeutics. Further research is needed to standardize active constituents, assess safety, and conduct clinical validation. Full article
(This article belongs to the Special Issue Bioactive Molecules in Medicinal Plants)
Show Figures

Figure 1

17 pages, 1396 KiB  
Article
Dose-Dependent Effect of the Polyamine Spermine on Wheat Seed Germination, Mycelium Growth of Fusarium Seed-Borne Pathogens, and In Vivo Fusarium Root and Crown Rot Development
by Tsvetina Nikolova, Dessislava Todorova, Tzenko Vatchev, Zornitsa Stoyanova, Valya Lyubenova, Yordanka Taseva, Ivo Yanashkov and Iskren Sergiev
Agriculture 2025, 15(15), 1695; https://doi.org/10.3390/agriculture15151695 - 6 Aug 2025
Abstract
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus [...] Read more.
Wheat (Triticum aestivum L.) is a crucial global food crop. The intensive crop farming, monoculture cultivation, and impact of climate change affect the susceptibility of wheat cultivars to biotic stresses, mainly caused by soil fungal pathogens, especially those belonging to the genus Fusarium. This situation threatens yield and grain quality through root and crown rot. While conventional chemical fungicides face resistance issues and environmental concerns, biological alternatives like seed priming with natural metabolites are gaining attention. Polyamines, including putrescine, spermidine, and spermine, are attractive priming agents influencing plant development and abiotic stress responses. Spermine in particular shows potential for in vitro antifungal activity against Fusarium. Optimising spermine concentration for seed priming is crucial to maximising protection against Fusarium infection while ensuring robust plant growth. In this research, we explored the potential of the polyamine spermine as a seed treatment to enhance wheat resilience, aiming to identify a sustainable alternative to synthetic fungicides. Our findings revealed that a six-hour seed soak in spermine solutions ranging from 0.5 to 5 mM did not delay germination or seedling growth. In fact, the 5 mM concentration significantly stimulated root weight and length. In complementary in vitro assays, we evaluated the antifungal activity of spermine (0.5–5 mM) against three Fusarium species. The results demonstrated complete inhibition of Fusarium culmorum growth at 5 mM spermine. A less significant effect on Fusarium graminearum and little to no impact on Fusarium oxysporum were found. The performed analysis revealed that the spermine had a fungistatic effect against the pathogen, retarding the mycelium growth of F. culmorum inoculated on the seed surface. A pot experiment with Bulgarian soft wheat cv. Sadovo-1 was carried out to estimate the effect of seed priming with spermine against infection with isolates of pathogenic fungus F. culmorum on plant growth and disease severity. Our results demonstrated that spermine resulted in a reduced distribution of F. culmorum and improved plant performance, as evidenced by the higher fresh weight and height of plants pre-treated with spermine. This research describes the efficacy of spermine seed priming as a novel strategy for managing Fusarium root and crown rot in wheat. Full article
Show Figures

Figure 1

12 pages, 560 KiB  
Article
Determination of Antioxidant Activity and Proximate Composition of a Variety of Red Pigmented Zea mays L. from Puebla, Mexico
by Jesabel Pineda-Quiroz, Juan Alex Hernández-Rivera, Ivonne Pérez-Xochipa, Pedro Antonio-López and Alan Carrasco-Carballo
AppliedChem 2025, 5(3), 18; https://doi.org/10.3390/appliedchem5030018 - 6 Aug 2025
Abstract
Corn is one of the most consumed cereals in the Mexican diet. In this country, there are multiple varieties that exhibit nutraceutical potential due to their content of different metabolites with biological activity, such as blue corn. Another variety that has received little [...] Read more.
Corn is one of the most consumed cereals in the Mexican diet. In this country, there are multiple varieties that exhibit nutraceutical potential due to their content of different metabolites with biological activity, such as blue corn. Another variety that has received little study is the red pigmented corn variety Chilac from Puebla, Mexico, which is being studied for its nutraceutical potential. A differential extraction using the Soxhlet method was carried out to evaluate the phenolic content, total flavonoid content, and monomeric anthocyanins, and free radical scavenging test was performed using the DPPH reagent. A proximate analysis was also conducted to identify the main macronutrients. The results of the proximate analysis were comparable to those of other traditional corn varieties, with carbohydrates being the macronutrient present in the highest amount at 77.9%. Regarding phenolic content and the presence of anthocyanins, the best extractions were obtained using alcoholic solvents; for example, ethanol for phenols, yielding 1368.420 ± 104.094 mg of gallic acid equivalents (GAE)/kg plant. In contrast, the flavonoid content was higher in the aqueous extract, with 833.984 ± 65.218 mg QE/Kg. In the case of the DPPH assay, the best result was obtained with ethyl acetate (73.81 ± 5.31%). These findings provide a foundation for expanding the use of corn varieties with nutraceutical potential, opening the possibility of studies focused on deeper characterization. Full article
Show Figures

Graphical abstract

23 pages, 2394 KiB  
Article
Functional, Antioxidant, and Antimicrobial Profile of Medicinal Leaves from the Amazon
by Gabriela Méndez, Elena Coyago-Cruz, Paola Lomas, Marco Cerna and Jorge Heredia-Moya
Antioxidants 2025, 14(8), 965; https://doi.org/10.3390/antiox14080965 (registering DOI) - 5 Aug 2025
Abstract
The Amazon region is home to a remarkable diversity of plant species that are used in traditional medicine and cuisine. This study aimed to evaluate the functional, antioxidant, and antimicrobial properties of the leaves of Allium schoenoprasum, Brugmansia candida (white and pink), [...] Read more.
The Amazon region is home to a remarkable diversity of plant species that are used in traditional medicine and cuisine. This study aimed to evaluate the functional, antioxidant, and antimicrobial properties of the leaves of Allium schoenoprasum, Brugmansia candida (white and pink), and Cyclanthemum bipartitum. Bioactive compounds (L-ascorbic acid, organic acids, carotenoids, phenolic compounds, and chlorophylls) were quantified using liquid chromatography. The ABTS and DPPH methods were used to assess the antioxidant capacity. Additionally, the antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus mutans, Candida albicans, and Candida tropicalis was evaluated. The results revealed a high content of L-ascorbic acid (7.6 mg/100 g dry weight) and total carotenoids (509.0 mg/100 g dry weight), as well as high antioxidant capacity (4.5 mmol TE/100 g dry weight) and broad antimicrobial activity in Brugmansia candida ‘pink’. The White variety had the highest concentration of total chlorophylls (1742.8 mg/100 g DW), Cyclanthemum bipartitum had the highest total organic acid content (2814.5 mg/100 g DW), and Allium schoenoprasum had the highest concentration of total phenolic compounds (11,351.6 mg/100 g DW). These results constitute a starting point for future research, emphasizing the potential health risks that certain species may pose. Full article
(This article belongs to the Special Issue Plant Materials and Their Antioxidant Potential, 2nd Edition)
Show Figures

Figure 1

26 pages, 4213 KiB  
Article
Influence of Morus alba Leaves Extract on Human Erythrocytes
by Stefano Putaggio, Annamaria Russo, Giuseppe Tancredi Patanè, Antonella Calderaro, Santa Cirmi, Ivana Verboso, Giuseppina Laganà, Silvana Ficarra, Davide Barreca, Françisco Raymo and Ester Tellone
Biology 2025, 14(8), 1005; https://doi.org/10.3390/biology14081005 - 5 Aug 2025
Abstract
Morus alba L. (MA) is a member of the Moraceae family, known as “white mulberry”. Due to the high levels of bioactive compounds, mulberry plants can be considered a good source of nutrients and antioxidant compounds. Our study aims to analyze the effect [...] Read more.
Morus alba L. (MA) is a member of the Moraceae family, known as “white mulberry”. Due to the high levels of bioactive compounds, mulberry plants can be considered a good source of nutrients and antioxidant compounds. Our study aims to analyze the effect of MA extract leaves on erythrocytes, focusing on its action on metabolism and membrane integrity. The choice of erythrocytes as a study model is based on their metabolic simplicity and their easy availability. Cell viability, following exposure of the cells to the extract, was evaluated by hemolysis, methemoglobin, caspase 3 activity and flow cytofluorimetric analysis; in addition, the effect of the pretreatment with the MA was detected after incubation of erythrocytes with different stressors. The impact on cell metabolism was evaluated by measuring anion flux kinetics, ATP levels and phosphatase activity. The results obtained show a peculiar (double) effect of the extract, which, on the one hand, probably by exploiting its component with antioxidant properties, protects the cell membrane by accumulating on the bilayer. On the other hand, the alteration of anion exchange could lead to the triggering of apoptosis and consequent cell death. The hypotheses, although excluded by our data, all point toward a beneficial and protective action of the extract on the health and vitality of RBCs. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

17 pages, 7335 KiB  
Article
Osage Orange (Maclura pomifera) and Spearmint (Mentha spicata) Leaf Extracts Exhibit Antibacterial Activity and Inhibit Human Respiratory Syncytial Virus (hRSV)
by Milica Nenadovich, Molly Kubal, Maci R. Hopp, Abigail D. Crawford, Megan E. Hardewig, Madison G. Sedlock, Rida Jawad, Zarrar A. Khan, Adrianna M. Smith, Mia A. Mroueh, Matthew DuBrava, Ellie C. Jones, Cael Rahe, Sean T. Berthrong, Anne M. Wilson, Michael P. Trombley, Ashlee H. Tietje and Christopher C. Stobart
Pathogens 2025, 14(8), 776; https://doi.org/10.3390/pathogens14080776 - 5 Aug 2025
Abstract
The increasing prevalence of antibiotic resistance and the limited availability of antiviral therapeutics for pathogens such as human respiratory syncytial virus (hRSV) underscore the need for novel, plant-derived antimicrobial substances. In this study, we evaluated the antiproliferative, antibacterial, and antiviral activities of aqueous [...] Read more.
The increasing prevalence of antibiotic resistance and the limited availability of antiviral therapeutics for pathogens such as human respiratory syncytial virus (hRSV) underscore the need for novel, plant-derived antimicrobial substances. In this study, we evaluated the antiproliferative, antibacterial, and antiviral activities of aqueous leaf extracts from two plants commonly found in North America, Osage orange (M. pomifera) and spearmint (M. spicata). Both extracts exhibited no significant cytotoxic or morphologic impact on HEp-2 human cancer cells up to 25 mg/mL. However, both extracts demonstrated strong dose-dependent antibacterial activity, significantly inhibiting replication of E. coli and S. aureus at concentrations ≥ 1 mg/mL. Antiviral assays revealed that both extracts inhibited hRSV infectivity, with spearmint extract showing higher potency (EC50 = 1.01 mg/mL) compared to Osage orange (EC50 = 3.85 mg/mL). Gas chromatography–mass spectrometry (GC-MS) identified three major extract constituents: 3-hydroxybenzyl alcohol, 4-hydroxybenzyl alcohol (Osage orange), and R-(-)-carvone (spearmint). Among these, only carvone significantly inhibited hRSV in vitro, suggesting its key role in spearmint’s antiviral activity. These findings highlight the therapeutic potential of Osage orange and spearmint leaf extracts, particularly as sources of water-soluble compounds with antimicrobial properties, and support further investigation into their mechanisms of action and broader clinical relevance. Full article
Show Figures

Figure 1

20 pages, 5212 KiB  
Article
Assessing the Land Surface Temperature Trend of Lake Drūkšiai’s Coastline
by Jūratė Sužiedelytė Visockienė, Eglė Tumelienė and Rosita Birvydienė
Land 2025, 14(8), 1598; https://doi.org/10.3390/land14081598 - 5 Aug 2025
Abstract
This study investigates long-term land surface temperature (LST) trends along the shoreline of Lake Drūkšiai, a transboundary lake in eastern Lithuania that formerly served as a cooling reservoir for the Ignalina Nuclear Power Plant (INPP). Although the INPP was decommissioned in 2009, its [...] Read more.
This study investigates long-term land surface temperature (LST) trends along the shoreline of Lake Drūkšiai, a transboundary lake in eastern Lithuania that formerly served as a cooling reservoir for the Ignalina Nuclear Power Plant (INPP). Although the INPP was decommissioned in 2009, its legacy continues to influence the lake’s thermal regime. Using Landsat 8 thermal infrared imagery and NDVI-based methods, we analysed spatial and temporal LST variations from 2013 to 2024. The results indicate persistent temperature anomalies and elevated LST values, particularly in zones previously affected by thermal discharges. The years 2020 and 2024 exhibited the highest average LST values; some years (e.g., 2018) showed lower readings due to localised environmental factors such as river inflow and seasonal variability. Despite a slight stabilisation observed in 2024, temperatures remain higher than those recorded in 2013, suggesting that pre-industrial thermal conditions have not yet been restored. These findings underscore the long-term environmental impacts of industrial activity and highlight the importance of satellite-based monitoring for the sustainable management of land, water resources, and coastal zones. Full article
Show Figures

Figure 1

18 pages, 2376 KiB  
Article
Selection and Characterisation of Elite Mesorhizobium spp. Strains That Mitigate the Impact of Drought Stress on Chickpea
by María Camacho, Francesca Vaccaro, Pilar Brun, Francisco Javier Ollero, Francisco Pérez-Montaño, Miriam Negussu, Federico Martinelli, Alessio Mengoni, Dulce Nombre Rodriguez-Navarro and Camilla Fagorzi
Agriculture 2025, 15(15), 1694; https://doi.org/10.3390/agriculture15151694 - 5 Aug 2025
Abstract
The chickpea (Cicer arietinum L.) is a key legume crop in Mediterranean agriculture, valued for its nutritional profile and adaptability. However, its productivity is severely impacted by drought stress. To identify microbial solutions that enhance drought resilience, we isolated seven Mesorhizobium strains [...] Read more.
The chickpea (Cicer arietinum L.) is a key legume crop in Mediterranean agriculture, valued for its nutritional profile and adaptability. However, its productivity is severely impacted by drought stress. To identify microbial solutions that enhance drought resilience, we isolated seven Mesorhizobium strains from chickpea nodules collected in southern Spain and evaluated their cultivar-specific symbiotic performance. Two commercial cultivars (Pedrosillano and Blanco Lechoso) and twenty chickpea germplasms were tested under growth chamber and greenhouse conditions, both with and without drought stress. Initial screening in a sterile substrate using nodulation assays, shoot/root dry weight measurements, and acetylene reduction assays identified three elite strains (ISC11, ISC15, and ISC25) with superior symbiotic performance and nitrogenase activity. Greenhouse trials under reduced irrigation demonstrated that several strain–cultivar combinations significantly mitigated drought effects on plant biomass, with specific interactions (e.g., ISC25 with RR-98 or BT6-19) preserving over 70% of shoot biomass relative to controls. Whole-genome sequencing of the elite strains revealed diverse taxonomic affiliations—ISC11 as Mesorhizobium ciceri, ISC15 as Mesorhizobium mediterraneum, and ISC25 likely representing a novel species. Genome mining identified plant growth-promoting traits including ACC deaminase genes (in ISC11 and ISC25) and genes coding for auxin biosynthesis-related enzymes. Our findings highlight the potential of targeted rhizobial inoculants tailored to chickpea cultivars to improve crop performance under water-limiting conditions. Full article
(This article belongs to the Special Issue Beneficial Microbes for Sustainable Crop Production)
Show Figures

Figure 1

Back to TopTop