Influence of Morus alba Leaves Extract on Human Erythrocytes
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Compounds
2.2. Preparation of Morus alba Extract
2.3. Chemical Characterization of the MA Components by Quantification of Phenolic, Flavonoidic and Carbohydrate Concentration Present in the Extract
2.3.1. Phenolic Concentration
2.3.2. Flavonoid Concentration
2.3.3. Carbohydrate Concentration
2.4. Assay to Analyze Potential Antioxidant Activity of MA
2.4.1. FRAP Assay
2.4.2. DPPH Assay
2.4.3. Superoxide Anion Assay
2.4.4. Hydroxyl Radical Assay
2.4.5. Iron Chelating Assay
2.5. Analysis of the Biological Potential MA on RBCs
2.5.1. Preparation of Human Red Blood Cells
2.5.2. Hemolysis Percentage and Methemoglobin Calculation
2.5.3. Heat-Induced Hemolysis
2.5.4. Modulation of Morus alba Extract on Osmotic Fragility
2.5.5. Effect of Hydrogen Peroxide Exposure on Red Blood Cell Membrane Integrity
2.5.6. Morphological Analysis of the Red Blood Cell Membrane
2.5.7. Flow Cytometry Analysis
2.5.8. Kinetic Measurements
2.5.9. ATP Measurement
2.5.10. Determination of Phosphatase PTP-1B Activity
2.5.11. Caspase 3 Assay
2.5.12. Determination of Sulfhydryl Groups
2.5.13. Lipid Peroxidation
2.6. Statistical Analysis
3. Results
3.1. Antioxidant Activity of the Extract
3.2. Regulation of Osmotic Fragility by Morus alba Extract
3.3. Heat-Induced Hemolysis
3.4. Effect of Hydrogen Peroxide on Erythrocyte Membrane
3.5. Effect of Morus alba on RBCs Morphology
3.6. Influence of Morus alba on Anion Exchange
3.7. Oxidative Status of RBCs
3.8. Effect of Morus alba Extract on ATP Levels and PTP-1B Activity
3.9. The Influence of Morus alba Extract on Caspase 3 Activity
3.10. Flow Cytometry
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledge
Conflicts of Interest
Abbreviations
MA | Morus alba |
RBCs | Red blood cells |
NO | nitric oxide |
ATP | adenosine triphosphate |
PPP | pentose phosphate pathway |
NADPH | reduced nicotinamide adenine dinucleotide phosphate |
Hb | Hemoglobin |
CDB3 | cytoplasmic domain of band 3 protein |
GE | glycolytic enzymes |
FRAP | ferric reducing power |
DPPH | 2,2-diphenyl-1-picrylhydrazil |
HEPES | 2-[4-(2-hydroxyethyl) piperazin-1-yl]ethanesulfonic acid |
H2O2 | hydrogen peroxide |
t-BHT | tert-butyl-hydroperoxide |
AAPH | 2,2-Azobis(2-methylpropionamidine) dihydrochloride |
TBA | thiobarbituric acid |
TBARS | thiobarbituric acid reactive substance |
GSH | glutathione |
References
- Zhang, L.; Su, S.; Zhu, Y.; Guo, J.; Sheng, G.; Qian, D.; Zhen, O.; Ouyang, D.; Duan, D. Mulberry leaf active components alleviate type 2 diabetes and its liver and kidney injury in db/db mice through insulin receptor and tgf-β/smads signaling pathway. Biomed. Pharmacother. 2019, 112, 108675. [Google Scholar] [CrossRef]
- Martín-García, B.; Aznar-Ramos, M.J.; Verardo, V.; Gómez-Caravaca, A.M. The Establishment of Ul-trasonic-Assisted Extraction for the Recovery of Phenolic Compounds and Evaluation of Their Antioxidant Activity from Morus alba Leaves. Foods 2022, 11, 314. [Google Scholar] [CrossRef] [PubMed]
- Fauzi, A.; Kifli, N.; Noor, M.H.M.; Hamzah, H.; Azlan, A. Bioactivity, phytochemistry studies and subacute in vivo toxicity of ethanolic leaf extract of white mulberry (Morus alba linn.) in female mice. J. Ethnopharmacol. 2024, 325, 117914. [Google Scholar] [CrossRef]
- Dugo, P.; Donato, P.; Cacciola, F.; Germanò, M.P.; Rapisarda, A.; Mondello, L. Characterization of the polyphenolic fraction of Morus alba leaves extracts by HPLC coupled to a hybrid IT-TOF MS system. J. Sep. Sci. 2009, 32, 3627–3634. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.M.; Nascimento, M.F.; Ferreira, M.R.; Moura, D.F.; Souza, T.G.; Silva, G.C.; Ramos, E.H.; Paiva, P.M.; Medeiros, P.L.; Silva, T.G.; et al. Evaluation of acute toxicity, genotoxicity and inhibitory effect on acute inflammation of an ethanol extract of Morus alba L. (Moraceae) in mice. J. Ethnopharmacol. 2016, 194, 162–168. [Google Scholar] [CrossRef]
- Xin, X.; Jiang, X.; Thomas, A.; Niu, B.; Zhang, M.; Xu, X.; Zhang, R.; Li, H.; Gui, Z. Studies on 1-deoxynojirimycin biosynthesis in mulberry (Morus alba L.) seeds through comparative transcriptomics. Nat. Prod. Res. 2024, 38, 2585–2594. [Google Scholar] [CrossRef]
- Marchetti, L.; Truzzi, E.; Rossi, M.C.; Benvenuti, S.; Cappellozza, S.; Saviane, A.; Bogataj, L.; Siligardi, C.; Bertelli, D. Alginate-Based Carriers Loaded with Mulberry (Morus alba L.) Leaf Extract: A Promising Strategy for Prolonging 1-Deoxynojirimicyn (DNJ) Systemic Activity for the Nutraceutical Management of Hypergly-cemic Conditions. Molecules 2024, 29, 797. [Google Scholar] [CrossRef] [PubMed]
- Conforti, I.; Marra, A. Iminosugars as glycosyltransferase inhibitors. Org. Biomol. Chem. 2021, 19, 5439–5475. [Google Scholar] [CrossRef]
- Chen, Y.W.; Wang, J. 1-Deoxynojirimycin attenuates high-glucose-induced oxidative DNA damage via ac-tivating NRF2/OGG1 signaling. Appl. Sci. 2024, 14, 3186. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, M.; Li, T.; Li, D.; Feng, Y.; Wang, Y.; Qu, L.; Barcenas, A.R.; Serrano, B.R.; Shen, M.; et al. Effects of 1-Deoxynojirimycin Extracts of Mulberry Leaves on Oxidative Stress and the Function of the Intestinal Tract in Broilers Induced by H2O2. Animals 2024, 14, 3319. [Google Scholar] [CrossRef]
- Li, D.; Chen, G.; Ma, B.; Zhong, C.; He, N. Metabolic profiling and transcriptome analysis of mulberry leaves provide insights into flavonoid biosynthesis. J. Agric. Food Chem. 2020, 68, 1494–1504. [Google Scholar] [CrossRef]
- Katsube, T.; Yamasaki, M.; Shiwaku, K.; Ishijima, T.; Matsumoto, I.; Abe, K.; Yamasaki, Y. Effect of flavonol glycoside in mulberry (Morus alba L.) Leaf on glucose metabolism and oxidative stress in liver in diet-induced obese mice. J. Sci. Food Agric. 2010, 90, 2386–2392. [Google Scholar] [CrossRef]
- Kim, G.; Jang, H. Flavonol content in the water extract of the mulberry (Morus alba L.) Leaf and their antioxidant capacities. J. Food Sci. 2011, 76, C869–C873. [Google Scholar] [CrossRef]
- Sheng, Y.; Liu, J.; Zheng, S.; Liang, F.; Luo, Y.; Huang, K.; Xu, W.; He, X. Mulberry leaves ameliorate obesity through enhancing brown adipose tissue activity and modulating gut microbiota. Food Funct. 2019, 10, 4771–4781. [Google Scholar] [CrossRef]
- Liang, L.H.; Wu, X.Y.; Zhu, M.M.; Zhao, W.G.; Li, F.; Zou, Y.; Yang, L.Q. Chemical composition, nutritional value, and antioxidant activities of eight mulberry cultivars from China. Pharmacogn. Mag. 2012, 8, 215–224. [Google Scholar] [CrossRef]
- Kumar, P.; Chaudhary, N.; Sharma, N.K.; Maurya, P.K. Detection of oxidative stress biomarkers in myricetin treated red blood cells. RSC Adv. 2016, 6, 100028–100034. [Google Scholar] [CrossRef]
- Russo, A.; Patanè, G.T.; Laganà, G.; Cirmi, S.; Ficarra, S.; Barreca, D.; Giunta, E.; Tellone, E.; Putaggio, S. Epicatechin Influence on Biochemical Modification of Human Erythrocyte Metabolism and Membrane Integrity. Int. J. Mol. Sci. 2024, 25, 13481. [Google Scholar] [CrossRef] [PubMed]
- Cortese-Krott, M.M.; Kelm, M. Endothelial nitric oxide synthase in red blood cells: Key to a new erythrocrine function? Redox Biol. 2014, 2, 251–258. [Google Scholar] [CrossRef]
- Fauzi, A.; Kifli, N.; Noor, M.H.M.; Hamzah, H.; Azlan, A. Hematological, biochemical, and histopathological evaluation of the Morus alba L. leaf extract from Brunei Darussalam: Acute toxicity study in ICR mice. Open Vet. J. 2024, 14, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Kang, H.J.; Kim, S.Z.; Kwon, T.O.; Jeong, S.I.; Jang, S.I. Antioxidant effect of astragalin isolated from the leaves of Morus alba L. against free radical-induced oxidative hemolysis of human red blood cells. Arch. Pharm. Res. 2013, 36, 912–917. [Google Scholar] [CrossRef]
- Zheng, Q.; Tan, W.; Feng, X.; Feng, K.; Zhong, W.; Liao, C.; Liu, Y.; Li, S.; Hu, W. Protective Effect of Flavonoids from Mulberry Leaf on AAPH-Induced Oxidative Damage in Sheep Erythrocytes. Molecules 2022, 27, 7625. [Google Scholar] [CrossRef]
- Rabeta, M.S.; Faraniza, R. Total phenolic content and ferric reducing antioxidant power of the leaves and fruits of Garcinia atroviridis and Cynometra cauliflora. Int. Food Res. J. 2013, 20, 1691–1696. [Google Scholar]
- Formagio, A.S.N.; Volobuff, C.R.F.; Santiago, M.; Cardoso, C.A.L.; Vieira, M.D.C.; Pereira, Z.V. Evaluation of antioxidant activity, total flavonoids, tannins and phenolic compounds in Psychotria leaf extracts. Antioxidants 2014, 3, 745–757. [Google Scholar] [CrossRef]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. J. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C.; Aruoma, O.I. The deoxyribose method: A simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Anal. Biochem. 1987, 165, 215–219. [Google Scholar] [CrossRef]
- Decker, E.A.; Welch, B. Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem. 1990, 38, 674–677. [Google Scholar] [CrossRef]
- Tellone, E.; Barreca, D.; Russo, A.; Galtieri, A.; Ficarra, S. New role for an old molecule: The 2,3-diphosphoglycerate case. BBA-General. Subj. 2019, 1863, 1602–1607. [Google Scholar] [CrossRef] [PubMed]
- Zijlstra, W.G.; Buursma, A.; Meeuwsen-van der Roest, W.P. Absorption spectra of human fetal and adult oxyhemoglobin, de-oxyhemoglobin, carboxyhemoglobin, and methemoglobin. Clin. Chem. 1991, 37, 1633–1638. [Google Scholar] [CrossRef]
- Aidoo, D.B.; Konja, D.; Henneh, I.T.; Ekor, M. Protective Effect of Bergapten against Human Erythrocyte Hemolysis and Protein Denaturation In Vitro. Int. J. Inflam. 2021, 2021, 1279359. [Google Scholar] [CrossRef]
- Naparlo, K.; Bartosz, G.; Stefaniuk, I.; Cieniek, B.; Soszynski, M.; Sadowska-Bartosz, I. Interaction of Catechins with Human Erythrocytes. Molecules 2020, 25, 1456. [Google Scholar] [CrossRef]
- Yang, Q.; Noviana, M.; Zhao, Y.; Chen, D.; Wang, X. Effect of curcumin extract against oxidative stress on both structure and deformation capability of red blood cell. J. Biomech. 2019, 95, 109301. [Google Scholar] [CrossRef] [PubMed]
- Carelli-Alinovi, C.; Ficarra, S.; Russo, A.; Giunta, E.; Barreca, D.; Galtieri, A.; Misiti, F.; Tellone, E. Involvement of acetylcholin-esterase and protein kinase C in the protective effect of caffeine against beta-amyloid-induced alterations in red blood cells. Biochimie 2016, 121, 52–59. [Google Scholar] [CrossRef]
- Romano, L.; Peritore, D.; Simone, E.; Sidoti, A.; Trischitta, F.; Romano, P. Chloride-sulphate exchange chemically measured in human erythrocyte ghosts. Cell. Mol. Biol. 1998, 44, 351–355. [Google Scholar]
- Russo, A.; Tellone, E.; Ficarra, S.; Giardina, B.; Bellocco, E.; Lagana, G.; Leuzzi, U.; Kotyk, A.; Galtieri, A. Band 3 protein function in teleost fish erythrocytes: Effect of oxygenation-deoxygenation. Physiol. Res. 2008, 57, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, H.H.; Ellsworth, M.L.; Sprague, R.S.; Dacey, R.G. Red blood cell regulation of microvascular tone through adenosine triphosphate. Am. J. Physiol. 2000, 278, H1294–H1298. [Google Scholar] [CrossRef] [PubMed]
- Bergfeld, G.R.; Forrester, T. Release of ATP from human erythrocytes in response to a brief period of hypoxia and hypercapnia. Cardiovasc. Res. 1992, 26, 40–47. [Google Scholar] [CrossRef]
- Russo, A.; Patanè, G.T.; Putaggio, S.; Lombardo, G.E.; Ficarra, S.; Barreca, D.; Giunta, E.; Tellone, E.; Laganà, G. Mechanisms Underlying the Effects of Chloroquine on Red Blood Cells Metabolism. Int. J. Mol. Sci. 2024, 25, 6424. [Google Scholar] [CrossRef]
- Maccaglia, A.; Mallozzi, C.; Minetti, M. Differential effects of quercetin and resveratrol on Band 3 tyrosine phosphorylation signalling of red blood cells. Biochem. Biophys. Res. Commun. 2003, 305, 541–547. [Google Scholar] [CrossRef]
- Galtieri, A.; Tellone, E.; Ficarra, S.; Russo, A.; Bellocco, E.; Barreca, D.; Scatena, R.; Lagana, G.; Leuzzi, U.; Giardina, B. Resveratrol treatment induces redox stress in red blood cells: A possible role of caspase 3 in metabolism and anion transport. Biol. Chem. 2010, 391, 1057–1065. [Google Scholar] [CrossRef]
- Saito, M.; Sakagami, H.; Fujisawa, S. Cytotoxicity and apoptosis induction by butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT). Anticancer. Res. 2003, 23, 4693–4701. [Google Scholar]
- Aksenov, M.Y.; Markesbery, W.R. Changes in thiol content and expression of glutathione redox system genes in the hippocampus and cerebellum in Alzheimer’s disease. Neurosci. Lett. 2001, 302, 141–145. [Google Scholar] [CrossRef]
- Mendanha, S.A.; Anjos, J.L.; Silva, A.H.; Alonso, A. Electron paramagnetic resonance study of lipid and protein membrane components of erythrocytes oxidized with hydrogen peroxide. Braz. J. Med. Biol. Res. 2012, 45, 473–481. [Google Scholar] [CrossRef]
- Ponder, E. Hemolysis and Related Phenomena; Grune & Stratton: London, UK, 1971. [Google Scholar]
- Durgawale, P.; Shukla, P.S.; Mishra, S. Increased erythrocyte resistance to osmotic lysis in the acute hepatitis caused by true hepatotropic viruses non-A, non-B (nanb). Indian J. Clin. Biochem. 1999, 14, 241–244. [Google Scholar] [CrossRef]
- Xu, Z.; Zheng, Y.; Wang, X.; Shehata, N.; Wang, C.; Sun, Y. Stiffness increase of red blood cells during storage. Microsyst. Nanoeng. 2018, 4, 17103. [Google Scholar] [CrossRef]
- Williamson, J.R.; Shanahan, M.O.; Hochmuth, R.M. The Influence of Temperature on Red Cell Deformability. Blood 1975, 46, 611–624. [Google Scholar] [CrossRef] [PubMed]
- McMahon, T.J.; Darrow, C.C.; Hoehn, B.A.; Zhu, H. Generation and Export of Red Blood Cell ATP in Health and Disease. Front. Physiol. 2021, 12, 754638. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhao, Y.; Sun, Q.; Yang, Y.; Gao, Y.; Ge, W.; Liu, J.; Xu, X.; Weng, D.; Wang, S.; et al. Adenine nucleotide-mediated regulation of hepatic PTP1B activity in mouse models of type 2 diabetes. Diabetologia 2019, 62, 2106–2117. [Google Scholar] [CrossRef]
- Batiha, G.E.; Al-Snafi, A.E.; Thuwaini, M.M.; Teibo, J.O.; Shaheen, H.M.; Akomolafe, A.P.; Teibo, T.K.A.; Al-Kuraishy, H.M.; Al-Garbeeb, A.I.; Alexiou, A.; et al. Morus alba: A comprehensive phytochemical and pharmacological review. Naunyn Schmiedebergs Arch Pharmacol. 2023, 396, 1399–1413. [Google Scholar] [CrossRef]
- Youdim, K.A.; Shukitt-Hale, B.; MacKinnon, S.; Kalt, W.; Joseph, J.A. Polyphenolics enhance red blood cell resistance to oxidative stress: In vitro and in vivo. Biochim. Biophys. Acta 2000, 1523, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef]
- Proença, C.; Freitas, M.; Ribeiro, D.; Sousa, J.L.C.; Carvalho, F.; Silva, A.M.S.; Fernandes, P.A.; Fernandes, E. Inhibition of protein tyrosine phosphatase 1B by flavonoids: A structure—Activity relationship study. Food Chem. Toxicol. 2018, 111, 474–481. [Google Scholar] [CrossRef]
- Bai, X.; Zhao, X.; Liu, K.; Yang, X.; He, Q.; Gao, Y.; Li, W.; Han, W. Mulberry Leaf Compounds and Gut Microbiota in Alzheimer’s Disease and Diabetes: A Study Using Network Pharmacology, Molecular Dynamics Simulation, and Cellular Assays. Int. J. Mol. Sci. 2024, 25, 4062. [Google Scholar] [CrossRef]
- Almasri, I.; Othman, H.; Abu-Irmaileh, B.; Moham-Mad, M.; Bustanji, Y. Flavonoids from plant sources as protein tyrosine phosphatase 1b inhibitors: In silico update. Acta Pharm. Sci. 2021, 59, 619–640. [Google Scholar] [CrossRef]
- Castagnola, M.; Messana, I.; Sanna, M.T.; Giardina, B. Oxygen-linked modulation of erythrocyte metabolism: State of the art. Blood Transfus. 2010, 8, s53–s58. [Google Scholar]
- Yannoukakos, D.; Vasseur, C.; Piau, J.P.; Wajcman, H.; Bursaux, E. Phosphorylation sites in human erythrocyte band 3 protein. Biochim. Biophys. Acta 1991, 1061, 253–266. [Google Scholar] [CrossRef] [PubMed]
- Dekowski, S.A.; Rybicki, A.; Drickamer, K. A tyrosine kinase associated with the red cell membrane phosphorylates band 3. J. Biol. Chem. 1983, 258, 2750–2753. [Google Scholar] [CrossRef] [PubMed]
- Harrison, M.L.; Rathinavelu, P.; Arese, P.; Geahlen, R.L.; Low, P.S. Role of band 3 tyrosine phosphorylation in the regulation of erythrocyte glycolysis. J. Biol. Chem. 1991, 266, 4106–4111. [Google Scholar] [CrossRef] [PubMed]
- Harrison, M.L.; Isaacson, C.C.; Burg, D.L.; Geahlen, R.L.; Low, P.S. Phosphorylation of human erythrocyte band 3 by endogenous p72syk. J. Biol. Chem. 1994, 269, 955–959. [Google Scholar] [CrossRef]
- Brunati, A.M.; Bordin, L.; Clari, G.; James, P.; Quadroni, M.; Baritono, E.; Pinna, L.A.; Donella-Deana, A. Sequential phosphorylation of protein band 3 by Syk and Lyn tyrosine kinases in intact human erythrocytes: Identification of primary and secondary phosphorylation sites. Blood 2000, 96, 1550–1557. [Google Scholar] [CrossRef]
- De Rosa, M.C.; Carelli Alinovi, C.; Galtieri, A.; Russo, A.; Giardina, B. Allosteric properties of hemoglobin and the plasma membrane of the erythrocyte: New insights in gas transport and metabolic modulation. IUBMB Life 2008, 60, 87–93. [Google Scholar] [CrossRef] [PubMed]
- D’Alessandro, A.; Gevi, F.; Zolla, L. Red blood cell metabolism under prolonged anaerobic storage. Mol. Biosyst. 2013, 9, 1196–1209. [Google Scholar] [CrossRef]
- Campanella, M.E.; Chu, H.; Low, P.S. Assembly and regulation of a glycolytic enzyme complex on the human erythrocyte membrane. Proc. Natl. Acad. Sci. USA 2005, 102, 2402–2407. [Google Scholar] [CrossRef]
- Pantaleo, A.; Ferru, E.; Carta, F.; Mannu, F.; Simula, L.F.; Khadjavi, A.; Pippia, P.; Turrini, F. Irreversible AE1 tyrosine phosphorylation leads to membrane vesiculation in G6PD deficient red cells. PLoS ONE 2011, 6, e15847. [Google Scholar] [CrossRef]
- Terra, H.T.; Saad, M.J.; Carvalho, C.R.; Vicentin, D.L.; Costa, F.F.; Saad, S.T. Increased tyrosine phosphorylation of band 3 in hemoglobinopathies. Am. J. Hematol. 1998, 58, 224–230. [Google Scholar] [CrossRef]
- Yang, E.; Seo-Mayer, P.; Lezon-Geyda, K.; Badior, K.E.; Li, J.; Casey, J.R.; Reithmeier, R.A.F.; Gallagher, P.G. A Ser725Arg mutation in Band 3 abolishes transport function and leads to anemia and renal tubular acidosis. Blood 2018, 131, 1759–1763. [Google Scholar] [CrossRef] [PubMed]
- Asgary, S.; Naderi, G.; Askari, N. Protective effect of flavonoids against red blood cell hemolysis by free radicals. Exp. Clin. Cardiol. 2005, 10, 88–90. [Google Scholar] [PubMed]
- Katan, M.B.; Hollman, P.C. Dietary flavonoids and cardiovascular disease. Nutr. Metab. Cardiovasc. Dis. 1998, 8, 1–4. [Google Scholar]
- da Fonseca, S.S.S.; Rodrigues, T.V.P.; de Souza Pinheiro, W.B.; Teixeira, E.B.; dos Santos, K.I.P.; Prata Da Silva, M.G.O.; de Sousa, A.M.; do Vale, D.M.C.; Pinho, J.D.; Araújo, T.M.T.; et al. The effect of 1-deoxynojirimycin isolated from logging residue of Bagassa guianensis on an in vitro cancer model. Front. Chem. Eng. 2024, 6, 1342755. [Google Scholar] [CrossRef]
- Kumar, P.; Wadhwa, R.; Gupta, R.; Chandra, P.; Maurya, P.K. Spectroscopic determination of intracellular quercetin uptake using erythrocyte model and its implications in human aging. 3 Biotech 2018, 8, 498. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Amau, M.; Okamoto, Y.; Suga, K.; Umakoshi, H. Investigation of Quercetin interaction behaviors with lipid bilayers: Toward understanding its antioxidative effect within biomembrane. J. Biosci. Bioeng. 2021, 132, 49–55. [Google Scholar] [CrossRef] [PubMed]
Sample | Carbohydrates (mg Equivalents of Glucose) | Phenols (mg Equivalents of Gallic Acid) | Flavonoids (mg Equivalents of Quercetin) |
---|---|---|---|
100.0 μg/mL | 0.970 ± 0.010 | 2.140 ± 0.037 | 2.200 ± 0.013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putaggio, S.; Russo, A.; Patanè, G.T.; Calderaro, A.; Cirmi, S.; Verboso, I.; Laganà, G.; Ficarra, S.; Barreca, D.; Raymo, F.; et al. Influence of Morus alba Leaves Extract on Human Erythrocytes. Biology 2025, 14, 1005. https://doi.org/10.3390/biology14081005
Putaggio S, Russo A, Patanè GT, Calderaro A, Cirmi S, Verboso I, Laganà G, Ficarra S, Barreca D, Raymo F, et al. Influence of Morus alba Leaves Extract on Human Erythrocytes. Biology. 2025; 14(8):1005. https://doi.org/10.3390/biology14081005
Chicago/Turabian StylePutaggio, Stefano, Annamaria Russo, Giuseppe Tancredi Patanè, Antonella Calderaro, Santa Cirmi, Ivana Verboso, Giuseppina Laganà, Silvana Ficarra, Davide Barreca, Françisco Raymo, and et al. 2025. "Influence of Morus alba Leaves Extract on Human Erythrocytes" Biology 14, no. 8: 1005. https://doi.org/10.3390/biology14081005
APA StylePutaggio, S., Russo, A., Patanè, G. T., Calderaro, A., Cirmi, S., Verboso, I., Laganà, G., Ficarra, S., Barreca, D., Raymo, F., & Tellone, E. (2025). Influence of Morus alba Leaves Extract on Human Erythrocytes. Biology, 14(8), 1005. https://doi.org/10.3390/biology14081005