Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (654)

Search Parameters:
Keywords = plant–microorganism interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4258 KiB  
Article
Abscisic Acid Metabolizing Rhodococcus sp. Counteracts Phytopathogenic Effects of Abscisic Acid Producing Botrytis sp. on Sunflower Seedlings
by Alexander I. Shaposhnikov, Oleg S. Yuzikhin, Tatiana S. Azarova, Edgar A. Sekste, Anna L. Sazanova, Nadezhda A. Vishnevskaya, Vlada Y. Shahnazarova, Polina V. Guro, Miroslav I. Lebedinskii, Vera I. Safronova, Yuri V. Gogolev and Andrey A. Belimov
Plants 2025, 14(15), 2442; https://doi.org/10.3390/plants14152442 - 7 Aug 2025
Abstract
One of the important traits of many plant growth-promoting rhizobacteria (PGPR) is the biocontrol of phytopathogens. Some PGPR metabolize phytohormone abscisic acid (ABA); however, the role of this trait in plant–microbe interactions is scarcely understood. Phytopathogenic fungi produce ABA and use this property [...] Read more.
One of the important traits of many plant growth-promoting rhizobacteria (PGPR) is the biocontrol of phytopathogens. Some PGPR metabolize phytohormone abscisic acid (ABA); however, the role of this trait in plant–microbe interactions is scarcely understood. Phytopathogenic fungi produce ABA and use this property as a negative regulator of plant resistance. Therefore, interactions between ABA-producing necrotrophic phytopathogen Botrytis sp. BA3 with ABA-metabolizing rhizobacterium Rhodococcus sp. P1Y were studied in a batch culture and in gnotobiotic hydroponics with sunflower seedlings. Rhizobacterium P1Y possessed no antifungal activity against BA3 and metabolized ABA, which was synthesized by BA3 in vitro and in associations with sunflower plants infected with this fungus. Inoculation with BA3 and the application of exogenous ABA increased the root ABA concentration and inhibited root and shoot growth, suggesting the involvement of this phytohormone in the pathogenesis process. Strain P1Y eliminated negative effects of BA3 and exogenous ABA on root ABA concentration and plant growth. Both microorganisms significantly modulated the hormonal status of plants, affecting indole-3-acetic, salicylic, jasmonic and gibberellic acids, as well as cytokinins concentrations in sunflower roots and/or shoots. The hormonal effects were complex and could be due to the production of phytohormones by microorganisms, changes in ABA concentrations and multiple levels of crosstalk in hormone networks regulating plant defense. The results suggest the counteraction of rhizobacteria to ABA-producing phytopathogenic fungi through the metabolism of fungal ABA. This expands our understanding of the mechanisms related to the biocontrol of phytopathogens by PGPR. Full article
Show Figures

Figure 1

21 pages, 4939 KiB  
Article
Nitrogen-Fixing Bacterium GXGL-4A Promotes the Growth of Cucumber Plant Under Nitrogen Stress by Altering the Rhizosphere Microbial Structure
by Ying-Ying Han, Yu-Qing Bao, Er-Xing Wang, Ya-Ting Zhang, Bao-Lin Liu and Yun-Peng Chen
Microorganisms 2025, 13(8), 1824; https://doi.org/10.3390/microorganisms13081824 - 5 Aug 2025
Viewed by 97
Abstract
The rhizosphere microbiome plays an important role in carbon- and nitrogen-cycling in soil and in the stress response of plants. It also affects the function of the ammonium transporter (AmtB) that senses nitrogen levels inside and outside the cells of the associative nitrogen-fixing [...] Read more.
The rhizosphere microbiome plays an important role in carbon- and nitrogen-cycling in soil and in the stress response of plants. It also affects the function of the ammonium transporter (AmtB) that senses nitrogen levels inside and outside the cells of the associative nitrogen-fixing bacterium GXGL-4A. However, the potential mechanism of the interaction between the AmtB deletion mutant of GXGL-4A (∆amtB) and microorganisms in the rhizosphere of plants under low-nitrogen stress is still unclear. As revealed by transcriptome analyses, mutation of the amtB gene in GXGL-4A resulted in a significant up-regulation of many functional genes associated with nitrogen fixation and transportation at transcription level. The application of ∆amtB changed the nitrogen level in the rhizosphere of cucumber seedlings and reshaped the microbial community structure in the rhizosphere, enriching the relative abundance of Actinobacteriota and Gemmatimonadota. Based on bacterial functional prediction analyses, the metabolic capacities of rhizobacteria were improved after inoculation of cucumber seedlings with the original strain GXGL-4A or the ∆amtB mutant, resulting in the enhancement of amino acids, lipids, and carbohydrates in the cucumber rhizosphere, which promoted the growth of cucumber plants under a low-nitrogen stress condition. The results contribute to understanding the biological function of gene amtB, revealing the regulatory role of the strain GXGL-4A on cucumber rhizosphere nitrogen metabolism and laying a theoretical foundation for the development of efficient nitrogen-fixing bacterial agents for sustainable agricultural production. Full article
Show Figures

Figure 1

35 pages, 698 KiB  
Review
Mechanistic Role of Heavy Metals in Driving Antimicrobial Resistance: From Rhizosphere to Phyllosphere
by Rahul Kumar, Tanja P. Vasić, Sanja P. Živković, Periyasamy Panneerselvam, Gustavo Santoyo, Sergio de los Santos Villalobos, Adeyemi Nurudeen Olatunbosun, Aditi Pandit, Leonard Koolman, Debasis Mitra and Pankaj Gautam
Appl. Microbiol. 2025, 5(3), 79; https://doi.org/10.3390/applmicrobiol5030079 - 4 Aug 2025
Viewed by 71
Abstract
Heavy metal pollution represents a pervasive environmental challenge that significantly exacerbates the ever-increasing crisis of antimicrobial resistance and the capacity of microorganisms to endure and proliferate despite antibiotic interventions. This review examines the intricate relationship between heavy metals and AMR, with an emphasis [...] Read more.
Heavy metal pollution represents a pervasive environmental challenge that significantly exacerbates the ever-increasing crisis of antimicrobial resistance and the capacity of microorganisms to endure and proliferate despite antibiotic interventions. This review examines the intricate relationship between heavy metals and AMR, with an emphasis on the underlying molecular mechanisms and ecological ramifications. Common environmental metals, including arsenic, mercury, cadmium, and lead, exert substantial selective pressures on microbial communities. These induce oxidative stress and DNA damage, potentially leading to mutations that enhance antibiotic resistance. Key microbial responses include the overexpression of efflux pumps that expel both metals and antibiotics, production of detoxifying enzymes, and formation of protective biofilms, all of which contribute to the emergence of multidrug-resistant strains. In the soil environment, particularly the rhizosphere, heavy metals disrupt plant–microbe interactions by inhibiting beneficial organisms, such as rhizobacteria, mycorrhizal fungi, and actinomycetes, thereby impairing nutrient cycling and plant health. Nonetheless, certain microbial consortia can tolerate and detoxify heavy metals through sequestration and biotransformation, rendering them valuable for bioremediation. Advances in biotechnology, including gene editing and the development of engineered metal-resistant microbes, offer promising solutions for mitigating the spread of metal-driven AMR and restoring ecological balance. By understanding the interplay between metal pollution and microbial resistance, we can more effectively devise strategies for environmental protection and public health. Full article
Show Figures

Graphical abstract

23 pages, 3221 KiB  
Article
Drought Modulates Root–Microbe Interactions and Functional Gene Expression in Plateau Wetland Herbaceous Plants
by Yuanyuan Chen, Shishi Feng, Qianmin Liu, Di Kang and Shuzhen Zou
Plants 2025, 14(15), 2413; https://doi.org/10.3390/plants14152413 - 4 Aug 2025
Viewed by 147
Abstract
In plateau wetlands, the interactions of herbaceous roots with ectorhizosphere soil microorganisms represent an important way to realize their ecological functions. Global change-induced aridification of plateau wetlands has altered long-established functional synergistic relationships between plant roots and ectorhizosphere soil microbes, but we still [...] Read more.
In plateau wetlands, the interactions of herbaceous roots with ectorhizosphere soil microorganisms represent an important way to realize their ecological functions. Global change-induced aridification of plateau wetlands has altered long-established functional synergistic relationships between plant roots and ectorhizosphere soil microbes, but we still know little about this phenomenon. In this context, nine typical wetlands with three different moisture statuses were selected from the eastern Tibetan Plateau in this study to analyze the relationships among herbaceous plant root traits and microbial communities and functions. The results revealed that drought significantly inhibited the accumulation of root biomass and surface area as well as the development of root volumes and diameters. Similarly, drought significantly reduced the diversity of ectorhizosphere soil microbial communities and the relative abundances of key phyla of archaea and bacteria. Redundancy analysis revealed that plant root traits and ectorhizosphere soil microbes were equally regulated by soil physicochemical properties. Functional genes related to carbohydrate metabolism were significantly associated with functional traits related to plant root elongation and nutrient uptake. Functional genes related to carbon and energy metabolism were significantly associated with traits related to plant root support and storage. Key genes such as CS,gltA, and G6PD,zwf help to improve the drought resistance and barrenness resistance of plant roots. This study helps to elucidate the synergistic mechanism of plant and soil microbial functions in plateau wetlands under drought stress, and provides a basis for evolutionary research and conservation of wetland ecosystems in the context of global change. Full article
(This article belongs to the Special Issue Soil-Beneficial Microorganisms and Plant Growth: 2nd Edition)
Show Figures

Figure 1

32 pages, 4311 KiB  
Article
Proteomics-Based Prediction of Candidate Effectors in the Interaction Secretome of Trichoderma harzianum and Pseudocercospora fijiensis
by Jewel Nicole Anna Todd, Karla Gisel Carreón-Anguiano, Gabriel Iturriaga, Roberto Vázquez-Euán, Ignacio Islas-Flores, Miguel Tzec-Simá, Miguel Ángel Canseco-Pérez, César De Los Santos-Briones and Blondy Canto-Canché
Microbiol. Res. 2025, 16(8), 175; https://doi.org/10.3390/microbiolres16080175 - 1 Aug 2025
Viewed by 182
Abstract
Microbe–microbe interactions have been explored at the molecular level to a lesser degree than plant–pathogen interactions, primarily due to the economic impact of crop losses caused by pathogenic microorganisms. Effector proteins are well known for their role in disease development in many plant–pathogen [...] Read more.
Microbe–microbe interactions have been explored at the molecular level to a lesser degree than plant–pathogen interactions, primarily due to the economic impact of crop losses caused by pathogenic microorganisms. Effector proteins are well known for their role in disease development in many plant–pathogen pleinteractions, but there is increasing evidence showing their involvement in other types of interaction, including microbe–microbe interactions. Through the use of LC-MS/MS sequencing, effector candidates were identified in the in vitro interaction between a banana pathogen, Pseudocercospora fijiensis and a biological control agent, Trichoderma harzianum. The diverse interaction secretome revealed various glycoside hydrolase families, proteases and oxidoreductases. T. harzianum secreted more proteins in the microbial interaction compared to P. fijiensis, but its presence induced the secretion of more P. fijiensis proteins that were exclusive to the interaction secretome. The interaction secretome, containing 256 proteins, was screened for effector candidates using the algorithms EffHunter and WideEffHunter. Candidates with common fungal effector motifs and domains such as LysM, Cerato-platanin, NPP1 and CFEM, among others, were identified. Homologs of true effectors and virulence factors were found in the interaction secretome of T. harzianum and P. fijiensis. Further characterization revealed a potential novel effector of T. harzianum. Full article
Show Figures

Figure 1

22 pages, 2591 KiB  
Article
Could Hydroinfiltrators Made with Biochar Modify the Soil Microbiome? A Strategy of Soil Nature-Based Solution for Smart Agriculture
by Azahara Navarro, Ana del Moral, Gabriel Delgado, Jesús Párraga, José Ángel Rufián, Raúl Rojano and Juan Manuel Martín-García
Appl. Sci. 2025, 15(15), 8503; https://doi.org/10.3390/app15158503 - 31 Jul 2025
Viewed by 513
Abstract
Climate change negatively affects agriculture, causing desertification, salinisation, and drought. The biochar hydroinfiltrator (ES Patent No.: ES2793448 B2) is a device that increases the capture of rainwater or irrigation water for crops by increasing infiltration rates. Biochar, produced via biomass pyrolysis, has emerged [...] Read more.
Climate change negatively affects agriculture, causing desertification, salinisation, and drought. The biochar hydroinfiltrator (ES Patent No.: ES2793448 B2) is a device that increases the capture of rainwater or irrigation water for crops by increasing infiltration rates. Biochar, produced via biomass pyrolysis, has emerged as a promising agricultural amendment, as it helps to optimise moisture retention and improve soil structure, key aspects for boosting crop yields. There is growing interest in microorganisms’ plant-growth-promoting activity (PGP) by carrying out different activities considered growth promoters. The aim of the present study is to evaluate the use of a biochar hydroinfiltrator as a promoter of microbial activity when it is used in soil. Metagenomic analysis of soils with and without the device reveals that genera Bacillus and Sphingomonas became particularly enriched in soils with hydroinfiltrators. Also, in order to understand the interaction between the uses of biochar together with bacteria PGP, an in vitro test was carried out. Two microorganisms, previously selected for their characteristics as plant growth promoters, were inoculated in soils with and without biochar and they grew better after 15 to 30 days of inoculation, showing major CFU counts. This combined strategy—biochar hydroinfiltrator and PGP bacteria—offers an innovative, eco-friendly approach to sustainable agriculture, particularly under drought stress. Full article
Show Figures

Figure 1

16 pages, 3171 KiB  
Article
A Simple and Rapid Synthesis of Spherical Silver Phosphate (Ag3PO4) and Its Antimicrobial Activity in Plant Tissue Culture
by Nongnuch Laohavisuti, Banjong Boonchom, Pesak Rungrojchaipon, Wimonmat Boonmee, Somkiat Seesanong and Sirichet Punthipayanon
Int. J. Mol. Sci. 2025, 26(15), 7371; https://doi.org/10.3390/ijms26157371 - 30 Jul 2025
Viewed by 284
Abstract
A simple and rapid precipitation process was successfully employed to prepare silver phosphate (SP, Ag3PO4). Two different phosphate sources: diammonium hydrogen phosphate ((NH4)2HPO4) and dipotassium hydrogen phosphate (K2HPO4) were [...] Read more.
A simple and rapid precipitation process was successfully employed to prepare silver phosphate (SP, Ag3PO4). Two different phosphate sources: diammonium hydrogen phosphate ((NH4)2HPO4) and dipotassium hydrogen phosphate (K2HPO4) were applied separately as the precursor, obtaining ((NH4)2HPO4) and K2HPO4 derived SP powders, named SP-A or SP-P, respectively. Fourier transform infrared (FTIR) spectra pointed out the vibrational characteristics of P–O and O–P–O interactions, confirming the presence of the PO43– functional group for SP. X-ray diffraction (XRD) patterns revealed that the SP crystallized in a cubic crystal structure. Whereas the field emission scanning electron microscope (FESEM) exposed spherical SP particles. The potentially antibacterial activity of SP-A and SP-P against bacterial Bacillus stratosphericus, yeast Meyerozyma guilliermondii, and fungal Phanerodontia chrysosporium was subsequently investigated. All studied microorganisms were recovered and isolated from the aquatic plant during the tissue culture process. The preliminary result of the antimicrobial test revealed that SP-A has higher antimicrobial activity than SP-P. The superior antimicrobial efficiency of SP-A compared to SP-P may be attributed to its purity and crystallite size, which provide a higher surface area and more active sites. In addition, the presence of potassium-related impurities in SP-P could have negatively affected its antimicrobial performance. These findings suggest that SP holds potential as an antimicrobial agent for maintaining sterility in tissue cultures, particularly in aquatic plant systems. The growth of both B. stratosphericus and M. guilliermondii was suppressed effectively at 30 ppm SP-A, whereas 10 ppm of SP-A can suppress P. chrysosporium development. This present work also highlights the potential of SP at very low concentrations (10–30 ppm) for utilization as an effective antimicrobial agent in tissue culture, compared to a commercial antimicrobial agent, viz., acetic acid, at the same concentration. Full article
(This article belongs to the Special Issue Antimicrobial Materials: Molecular Developments and Applications)
Show Figures

Figure 1

22 pages, 3472 KiB  
Review
Systems Biology Applications in Revealing Plant Defense Mechanisms in Disease Triangle
by Tahmina Akter, Hajra Maqsood, Nicholas Castilla, Wenyuan Song and Sixue Chen
Int. J. Mol. Sci. 2025, 26(15), 7318; https://doi.org/10.3390/ijms26157318 - 29 Jul 2025
Viewed by 957
Abstract
Plant diseases resulting from pathogens and pests constitute a persistent threat to global food security. Pathogenic infections of plants are influenced by environmental factors; a concept encapsulated in the “disease triangle” model. It is important to elucidate the complex molecular mechanisms underlying the [...] Read more.
Plant diseases resulting from pathogens and pests constitute a persistent threat to global food security. Pathogenic infections of plants are influenced by environmental factors; a concept encapsulated in the “disease triangle” model. It is important to elucidate the complex molecular mechanisms underlying the interactions among plants, their pathogens and various environmental factors in the disease triangle. This review aims to highlight recent advancements in the application of systems biology to enhance understanding of the plant disease triangle within the context of microbiome rising to become the 4th dimension. Recent progress in microbiome research utilizing model plant species has begun to illuminate the roles of specific microorganisms and the mechanisms of plant–microbial interactions. We will examine (1) microbiome-mediated functions related to plant growth and protection, (2) advancements in systems biology, (3) current -omics methodologies and new approaches, and (4) challenges and future perspectives regarding the exploitation of plant defense mechanisms via microbiomes. It is posited that systems biology approaches such as single-cell RNA sequencing and mass spectrometry-based multi-omics can decode plant defense mechanisms. Progress in this significant area of plant biology has the potential to inform rational crop engineering and breeding strategies aimed at enhancing disease resistance without compromising other pathways that affect crop yield. Full article
(This article belongs to the Special Issue Plant Pathogen Interactions: 3rd Edition)
Show Figures

Graphical abstract

25 pages, 4954 KiB  
Article
Local Fungi Promote Plant Growth by Positively Affecting Rhizosphere Metabolites to Drive Beneficial Microbial Assembly
by Deyu Dong, Zhanling Xie, Jing Guo, Bao Wang, Qingqing Peng, Jiabao Yang, Baojie Deng, Yuan Gao, Yuting Guo, Xueting Fa and Jianing Yu
Microorganisms 2025, 13(8), 1752; https://doi.org/10.3390/microorganisms13081752 - 26 Jul 2025
Viewed by 378
Abstract
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi [...] Read more.
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi (DK; F18-3) and commercially available bacteria (B0) were used as materials to explore their regulatory mechanisms for plant growth, soil physicochemical factors, microbial communities, and metabolic profiles in the field. Compared to bacterial treatments, local fungi treatments exhibited stronger ecological restoration efficacy. In addition, the DK and F18-3 strains, respectively, increased shoot and root biomass by 23.43% and 195.58% and significantly enhanced soil nutrient content and enzyme activity. Microbiome analysis further implied that, compared with the CK, DK treatment could significantly improve the α-diversity of fungi in the rhizosphere soil (the Shannon index increased by 14.27%) and increased the amount of unique bacterial genera in the rhizosphere soil of plants, totaling fourteen genera. Meanwhile, this aggregated the most biomarkers and beneficial microorganisms and strengthened the interactions among beneficial microorganisms. After DK treatment, twenty of the positively accumulated differential metabolites (DMs) in the plant rhizosphere were highly positively associated with six plant traits such as shoot length and root length, as well as beneficial microorganisms (e.g., Apodus and Pseudogymnoascus), but two DMs were highly negatively related to plant pathogenic fungi (including Cistella and Alternaria). Specifically, DK mainly inhibited the growth of pathogenic fungi through regulating the accumulation of D-(+)-Malic acid and Gamma-Aminobutyric acid (Cistella and Alternaria decreased by 84.20% and 58.53%, respectively). In contrast, the F18-3 strain mainly exerted its antibacterial effect by enriching Acidovorax genus microorganisms. This study verified the core role of local fungi in the restoration of mining areas in the Qinghai–Tibet Plateau and provided a new direction for the development of microbial agents for ecological restoration in the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

35 pages, 1657 KiB  
Article
Efficient Assessment and Optimisation of Medium Components Influencing Extracellular Xylanase Production by Pediococcus pentosaceus G4 Using Statistical Approaches
by Noor Lutphy Ali, Hooi Ling Foo, Norhayati Ramli, Murni Halim and Karkaz M. Thalij
Int. J. Mol. Sci. 2025, 26(15), 7219; https://doi.org/10.3390/ijms26157219 - 25 Jul 2025
Viewed by 229
Abstract
Xylanase is an essential industrial enzyme for degrading plant biomass, pulp and paper, textiles, bio-scouring, food, animal feed, biorefinery, chemicals, and pharmaceutical industries. Despite its significant industrial importance, the extensive application of xylanase is hampered by high production costs and concerns regarding the [...] Read more.
Xylanase is an essential industrial enzyme for degrading plant biomass, pulp and paper, textiles, bio-scouring, food, animal feed, biorefinery, chemicals, and pharmaceutical industries. Despite its significant industrial importance, the extensive application of xylanase is hampered by high production costs and concerns regarding the safety of xylanase-producing microorganisms. The utilisation of renewable polymers for enzyme production is becoming a cost-effective alternative. Among the prospective candidates, non-pathogenic lactic acid bacteria (LAB) are promising for safe and eco-friendly applications. Our investigation revealed that Pediococcus pentosaceus G4, isolated from plant sources, is a notable producer of extracellular xylanase. Improving the production of extracellular xylanase is crucial for viable industrial applications. Therefore, the current study investigated the impact of various medium components and optimised the selected medium composition for extracellular xylanase production of P. pentosaceus G4 using Plackett–Burman Design (PBD) and Central Composite Design (CCD) statistical approaches. According to BPD analysis, 8 out of the 19 investigated factors (glucose, almond shell, peanut shell, walnut shell, malt extract, xylan, urea, and magnesium sulphate) demonstrated significant positive effects on extracellular xylanase production of P. pentosaceus G4. Among them, glucose, almond shells, peanut shells, urea, and magnesium sulphate were identified as the main medium components that significantly (p < 0.05) influenced the production of extracellular xylanase of P. pentosaceus G4. The optimal concentrations of glucose, almond shells, peanut shells, urea, and magnesium sulphate, as determined via CCD, were 26.87 g/L, 16 g/L, 30 g/L, 2.85 g/L, and 0.10 g/L, respectively. The optimised concentrations resulted in extracellular xylanase activity of 2.765 U/mg, which was similar to the predicted extracellular xylanase activity of 2.737 U/mg. The CCD-optimised medium yielded a 3.13-fold enhancement in specific extracellular xylanase activity and a 7.99-fold decrease in production costs compared to the commercial de Man, Rogosa and Sharpe medium, implying that the CCD-optimised medium is a cost-effective medium for extracellular xylanase production of P. pentosaceus G4. Moreover, this study demonstrated a positive correlation between extracellular xylanase production, growth, lactic acid production and the amount of sugar utilised, implying the multifaceted interactions of the physiological variables affecting extracellular xylanase production in P. pentosaceus G4. In conclusion, statistical methods are effective in rapidly assessing and optimising the medium composition to enhance extracellular xylanase production of P. pentosaceus G4. Furthermore, the findings of this study highlighted the potential of using LAB as a cost-effective producer of extracellular xylanase enzymes using optimised renewable polymers, offering insights into the future use of LAB in producing hemicellulolytic enzymes. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

29 pages, 2926 KiB  
Review
Microbial Symbiosis in Lepidoptera: Analyzing the Gut Microbiota for Sustainable Pest Management
by Abdul Basit, Inzamam Ul Haq, Moazam Hyder, Muhammad Humza, Muhammad Younas, Muhammad Rehan Akhtar, Muhammad Adeel Ghafar, Tong-Xian Liu and Youming Hou
Biology 2025, 14(8), 937; https://doi.org/10.3390/biology14080937 - 25 Jul 2025
Viewed by 416
Abstract
Recent advances in microbiome studies have deepened our understanding of endosymbionts and gut-associated microbiota in host biology. Of those, lepidopteran systems in particular harbor a complex and diverse microbiome with various microbial taxa that are stable and transmitted between larval and adult stages, [...] Read more.
Recent advances in microbiome studies have deepened our understanding of endosymbionts and gut-associated microbiota in host biology. Of those, lepidopteran systems in particular harbor a complex and diverse microbiome with various microbial taxa that are stable and transmitted between larval and adult stages, and others that are transient and context-dependent. We highlight key microorganisms—including Bacillus, Lactobacillus, Escherichia coli, Pseudomonas, Rhizobium, Fusarium, Aspergillus, Saccharomyces, Bifidobacterium, and Wolbachia—that play critical roles in microbial ecology, biotechnology, and microbiome studies. The fitness implications of these microbial communities can be variable; some microbes improve host performance, while others neither positively nor negatively impact host fitness, or their impact is undetectable. This review examines the central position played by the gut microbiota in interactions of insects with plants, highlighting the functions of the microbiota in the manipulation of the behavior of herbivorous pests, modulating plant physiology, and regulating higher trophic levels in natural food webs. It also bridges microbiome ecology and applied pest management, emphasizing S. frugiperda as a model for symbiont-based intervention. As gut microbiota are central to the life history of herbivorous pests, we consider how these interactions can be exploited to drive the development of new, environmentally sound biocontrol strategies. Novel biotechnological strategies, including symbiont-based RNA interference (RNAi) and paratransgenesis, represent promising but still immature technologies with major obstacles to overcome in their practical application. However, microbiota-mediated pest control is an attractive strategy to move towards sustainable agriculture. Significantly, the gut microbiota of S. frugiperda is essential for S. frugiperda to adapt to a wide spectrum of host plants and different ecological niches. Studies have revealed that the microbiome of S. frugiperda has a close positive relationship with the fitness and susceptibility to entomopathogenic fungi; therefore, targeting the S. frugiperda microbiome may have good potential for innovative biocontrol strategies in the future. Full article
(This article belongs to the Special Issue Recent Advances in Wolbachia and Spiroplasma Symbiosis)
Show Figures

Graphical abstract

20 pages, 8662 KiB  
Article
Analysis of Composition, Structure, and Driving Factors of Root-Associated Endophytic Bacterial Communities of the Chinese Medicinal Herb Glycyrrhiza
by Zhilin Zhang, Aifang Ma, Tao Zhang, Li Zhuang and Hanli Dang
Biology 2025, 14(7), 856; https://doi.org/10.3390/biology14070856 - 15 Jul 2025
Viewed by 342
Abstract
The role of endophytic bacteria in the interaction between medicinal plants and microorganisms, secondary metabolite accumulation, plant nutrient changes, as well as their interactions with microbial communities, needs to be investigated in medicinal plants. In this study, 16S rRNA genes of endophytic bacterial [...] Read more.
The role of endophytic bacteria in the interaction between medicinal plants and microorganisms, secondary metabolite accumulation, plant nutrient changes, as well as their interactions with microbial communities, needs to be investigated in medicinal plants. In this study, 16S rRNA genes of endophytic bacterial communities in the root systems of three medicinal licorice species at different root depths (0–20, 20–40, and 40–60 cm) were sequenced using high-throughput sequencing technology, and their relationships with plant and soil factors were investigated. Our study indicated that the influence of Glycyrrhiza species on the structure of endophytic bacterial communities is significantly greater than that of root depth, and there are significant differences in the structure of endophytic bacterial communities at different sampling sites. At the phylum level, Proteobacteria and Actinobacteria are the dominant phylum. Functional gene prediction shows that functional genes related to metabolism dominate the endogenous bacterial community. Plant factors and soil physicochemical properties are important environmental drivers affecting the distribution of endophytic bacterial communities. This study will give new information on plant–soil–endophyte interactions and open up new possibilities for medicinal licorice development and use. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

31 pages, 4680 KiB  
Article
Path Mechanism and Field Practice Effect of Green Agricultural Production on the Soil Organic Carbon Dynamics and Greenhouse Gas Emission Intensity in Farmland Ecosystems
by Xiaoqian Li, Yi Wang, Wen Chen and Bin He
Agriculture 2025, 15(14), 1499; https://doi.org/10.3390/agriculture15141499 - 12 Jul 2025
Viewed by 370
Abstract
Exploring the mechanisms by which green agricultural production reduces emissions and enhances carbon sequestration in soil can provide a scientific basis for greenhouse gas reduction and sustainable development in farmland. This study uses a combination of meta-analysis and field experiments to evaluate the [...] Read more.
Exploring the mechanisms by which green agricultural production reduces emissions and enhances carbon sequestration in soil can provide a scientific basis for greenhouse gas reduction and sustainable development in farmland. This study uses a combination of meta-analysis and field experiments to evaluate the impact of different agricultural management practices and climatic conditions on soil organic carbon (SOC) and the emissions of CO2 and CH4, as well as the role of microorganisms. The results indicate the following: (1) Meta-analysis reveals that the long-term application of organic fertilizers in green agriculture increases SOC at a rate four times higher than that of chemical fertilizers. No-till and straw return practices significantly reduce CO2 emissions from alkaline soils by 30.7% (p < 0.05). Warm and humid climates in low-altitude regions are more conducive to soil carbon sequestration. (2) Structural equation modeling of plant–microbe–soil carbon interactions shows that plant species diversity (PSD) indirectly affects microbial biomass by influencing organic matter indicators, mineral properties, and physicochemical characteristics, thereby regulating soil carbon sequestration and greenhouse gas emissions. (3) Field experiments conducted in the typical green farming research area of Chenzhuang reveal that soils managed under natural farming absorb CH4 at a rate three times higher than those under conventional farming, and the stoichiometric ratios of soil enzymes in the former are close to 1. The peak SOC (19.90 g/kg) in the surface soil of Chenzhuang is found near fields cultivated with natural farming measures. This study provides theoretical support and practical guidance for the sustainable development of green agriculture. Full article
Show Figures

Figure 1

18 pages, 409 KiB  
Review
Impact of Drought on Soil Microbial Communities
by Sujani De Silva, Lithma Kariyawasam Hetti Gamage and Vesh R. Thapa
Microorganisms 2025, 13(7), 1625; https://doi.org/10.3390/microorganisms13071625 - 10 Jul 2025
Viewed by 612
Abstract
Drought, an increasingly prevalent climate stressor due to global warming, profoundly impacts agricultural systems, particularly the soil microbiome. Soil microorganisms are crucial for nutrient cycling, plant health, and ecosystem stability; however, drought-induced changes disrupt microbial community structure, function, and interactions with plants. This [...] Read more.
Drought, an increasingly prevalent climate stressor due to global warming, profoundly impacts agricultural systems, particularly the soil microbiome. Soil microorganisms are crucial for nutrient cycling, plant health, and ecosystem stability; however, drought-induced changes disrupt microbial community structure, function, and interactions with plants. This review synthesizes current knowledge on the effects of drought on soil microbiomes, with a focus on microbial diversity, resilience, and functional shifts in agricultural contexts. It highlights key microbial mechanisms underpinning plant drought tolerance, including symbioses with plant growth-promoting bacteria and fungi. Furthermore, it addresses knowledge gaps in the long-term effects of repeated drought events, microbial adaptations, and plant–soil feedback mechanisms. By advancing our understanding of drought–microbiome dynamics, this review aims to inform sustainable agricultural practices and resilience strategies to mitigate the adverse impacts of drought on crop productivity and ecosystem health. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

21 pages, 6314 KiB  
Article
Metagenomic and Metabolomic Perspectives on the Drought Tolerance of Broomcorn Millet (Panicum miliaceum L.)
by Yuhan Liu, Jiangling Ren, Binhong Yu, Sichen Liu and Xiaoning Cao
Microorganisms 2025, 13(7), 1593; https://doi.org/10.3390/microorganisms13071593 - 6 Jul 2025
Viewed by 452
Abstract
Drought stress is an important abiotic stress factor restricting crop production. Broomcorn millet (Panicum miliaceum L.) has become an ideal material for analyzing the stress adaptation mechanisms of crops due to its strong stress resistance. However, the functional characteristics of its rhizosphere [...] Read more.
Drought stress is an important abiotic stress factor restricting crop production. Broomcorn millet (Panicum miliaceum L.) has become an ideal material for analyzing the stress adaptation mechanisms of crops due to its strong stress resistance. However, the functional characteristics of its rhizosphere microorganisms in response to drought remain unclear. In this study, metagenomics and metabolomics techniques were employed to systematically analyze the compositional characteristics of the microbial community, functional properties, and changes in metabolites in the rhizosphere soil of broomcorn millet under drought stress. On this basis, an analysis was conducted in combination with the differences in functional pathways. The results showed that the drought treatment during the flowering stage significantly altered the species composition of the rhizosphere microorganisms of broomcorn millet. Among them, the relative abundances of beneficial microorganisms such as Nitrosospira, Coniochaeta, Diversispora, Gigaspora, Glomus, and Rhizophagus increased significantly. Drought stress significantly affects the metabolic pathways of rhizosphere microorganisms. The relative abundances of genes associated with prokaryotes, glycolysis/gluconeogenesis, and other metabolic process (e.g., ribosome biosynthesis, amino sugar and nucleotide sugar metabolism, and fructose and mannose metabolism) increased significantly. Additionally, the expression levels of functional genes involved in the phosphorus cycle were markedly upregulated. Drought stress also significantly alters the content of specific rhizosphere soil metabolites (e.g., trehalose, proline). Under drought conditions, broomcorn millet may stabilize the rhizosphere microbial community by inducing its restructuring and recruiting beneficial fungal groups. These community-level changes can enhance element cycling efficiency, optimize symbiotic interactions between broomcorn millet and rhizosphere microorganisms, and ultimately improve the crop’s drought adaptability. Furthermore, the soil metabolome (e.g., trehalose and proline) functions as a pivotal interfacial mediator, orchestrating the interaction network between broomcorn millet and rhizosphere microorganisms, thereby enhancing plant stress tolerance. This study sheds new light on the functional traits of rhizosphere microbiota under drought stress and their mechanistic interactions with host plants. Full article
(This article belongs to the Section Microbiomes)
Show Figures

Figure 1

Back to TopTop